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Abstract

th

A “scheduled” arrival process is one in which the n'* arrival is scheduled for time n, but

instead occurs at n+¢&, , where the {;’s are iid. We describe here the behavior of a single server
queue fed by such traffic in which the processing times are deterministic. A particular focus
is on perturbation with Pareto-like tails but with finite mean. We obtain tail approximations
for the steady-state workload in both cases where the queue is critically loaded and under a
heavy-traffic regime. A key to our approach is our analysis of the tail behavior of a sum of
independent Bernoulli random variables with parameters of the form p, ~ c¢n™ as n — oo, for
c>0and a> 1.

1 Introduction

In conventional queueing models, it is frequently assumed that the exogenous arrivals to the system
are described by a renewal (counting) process. Specifically, the sequence x = (xn : n > 1) of inter-
arrival times of successive customers is assumed to be a sequence of independent and identically
distributed (iid) non-negative random variables (rv’s). More complex (arrival) traffic models can
be obtained by assuming that the y;’s are Markov-dependent or form a stationary time series.
While such traffic models are frequently appropriate, there are some modelling settings in which
one may seek alternatives. One such setting is that in which arrivals are scheduled in advance; for
example, an outpatient clinic. Patients are typically scheduled to arrive at regular fifteen or twenty
minute intervals. Of course, some patients arrive early for their appointments, and others arrive
late, so that there is some random variation present. A natural traffic model to adopt here is to
assume that the n'? patient is scheduled to arrive at the clinic at time nh, but actually arrives

at time nh + &,, where £ = (&, : n > 0) is a stationary sequence of rv’s. We call such an arrival
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process a “scheduled traffic model”, and we refer to the &,’s as the (random) perturbations about
the schedule. Given our terminology, it therefore seems natural to use the notation S/M/1, S/G/1,
and so forth to refer to a single-server queue in which the arrivals follow a scheduled traffic model,

and in which the processing times are exponential, generally distributed, etc.

Scheduled traffic is described in i ) as a possible arrival model to a queue.
However, no analysis is offered for it. |Chen et aIJ (I2DQ£) consider an application of the S/D/1

queue to the air traffic control space in the vicinity of an airport, and show that the S/D/1 queue

is frequently stable even when p = 1. More recently, I&Mﬂ@ 2012) show that the arrival
counting process corresponding to a scheduled traffic arrival process with infinite mean Pareto-like
perturbations converges to a fractional Brownian motion with H < 1/2. They also obtain a heavy
traffic limit theorem for a single server queue fed by such traffic. Our primary goal here is the
analysis of queues fed by scheduled traffic when the perturbations have finite mean.

It turns out that in the context of heavy traffic theory, a single server queue fed by a scheduled
traffic with i.i.d. service times, (i.e., S/G/1 queue) behaves exactly the same as a D/G/1 queue.
In that setting, the stochasticity of the i.i.d. random service times dominates the randomness
present in the scheduled arrival process. This has been already established in the case where

the perturbations have infinite mean (see, Bimmnm_(ﬂ.;mnl (|2Q]j)) We reach here a similar

conclusion for the case of finite-mean perturbations, the details of which are relegated to the last

section. Moreover, in a separate work, we show that the tail asymptotics of the waiting times in
an S/G/1 queue is again the same as that of a D/G/1 queue. In view of all this, and in order to
highlight and expose the impact of scheduled traffic on a queueing system, our primary focus in
this paper is on a single server queue with deterministic service times, (i.e., an S/D/1 queue.)

A recent paper bymw 12£!1é) studies what they call transitory queueing and, in this

context, introduces scheduled traffic, as one case of particular interest. Specifically, they consider

a queueing system that faces a finite number of scheduled arrivals during a given finite horizon
and restrict themselves to perturbations that are uniformly distributed. They develop fluid and
diffusion limits by scaling the number of scheduled arrivals while keeping the horizon and the
perturbations untouched. By doing so, the perturbations become increasingly large relatively to
the duration of the scheduled interarrival times. This leads to an asymptotic regime that is very
different than ours. We also note the work on optimized appointment scheduling in outpatient

care (e.g., [Zacharias and Armgnyl 12!!1j) and [Kemper et alJ (2!!14)). These works introduce also

uncertainty to an initial traffic that is deterministically scheduled. Zacharias and Armon 12!!1j)

model the process of taking an appointment, as well as the resulting in-clinic queueing that is then

created. They assume that only a fraction of those scheduled will show up, but those showing

up follow a renewal-like process. [Kemper et alJ 12!!14) suggest a procedure for optimal regularly
scheduled appointments that will be feeding a D/G/1 like queue. They discuss how to adapt this

procedure when arrivals are perturbed by an i.i.d. r.v. that they assume to be substantially smaller
than a typical job duration.

In the next section, we present some properties of scheduled traffic. We establish a close
connection between scheduled traffic and sums of Bernoulli random variables. In Section [ we study

the logarithmic and exact tail asymptotics for sums of independent Bernoulli random variables with



probabilities of the form p, ~ ¢n™ as n — oo, for ¢ > 0 and a > 1. The results we obtain there
allow us to infer the tail asymptotics of the arrival counting process associated with scheduled
traffic. We next analyze the behavior of a single server queue when fed by a scheduled traffic.
Specifically, in Sections [ and [l we investigate the S/D/1 queue, and obtain limiting results for the
workload, both when the queue is critically loaded and under a heavy traffic regime. Finally, in
Section [6l we discuss the S/G/1 queue with random service times, and argue that under a heavy

traffic regime, such a queue behaves identically to the corresponding D/G/1 queue.

2 Properties of Scheduled Traffic

Let (& : j € Z) be an ii.d. sequence of perturbations. We note that independence of the &;’s
seems plausible in many settings, given that perturbation j is typically determined by decisions or
preferences that are idiosyncratic to consumer j. Given the {;’s, we define the random measure N
via
NA) =S 1+ &+ U e A),
J

where U is a uniform r.v. on [0, 1] independent of the §;’s. It is easily argued that N is time-
stationary, in the sense that N (- + t) 2N () for t € R (where 2 denotes equality in distribution.)
We further define the counting process N = (N(t) : t > 0) via N(t) = ]\Nf((O,t]); N(t) counts the
cumulative number of arrivals to the system in (0, ¢]. Our focus, in this section, is on the scheduled
arrival process N.

We start by noting that regardless of whether £y has infinite mean or not, /N is a unit intensity

counting process. Specifically,

1
EN(t):Z/O P(j+x+& € (0,t])dx
j
1 .
:ZJ:/O P(j+z+& € (0,t])dx

_ /Oo P(r + & < (0,4])dr

:E/ I(T’E (—&),t—&)])dr

=1.

In fact, regardless of the tails of the ¢;’s, the counting process IV has light tails. In particular,
the moment generating function of N(t) is always finite-valued. Specifically, the independence of

the {;’s ensures that for any 6,



log (Eexp(6 N(t))) = 3 _ log /01 E exp (9 I(j+z+¢& €0, t])) d:z:>

J+1 E exp <9 I(T +& € (0,t])> dr)

Il
—
o
0]
7 N N N

j+1
1+ —1 P(r 0,t]) dr
o >/j (&€ 0t ar)

Jj+1
< (¢ - 1)2/ Plr + & € (0,4]) dr = (¢! — ).
j J

In order to obtain insight into the dependence structure of N, we next study its covariance
properties. Set AN(t) = N(t) — N(t — 1) for t > 1, and recall that

Cov(AN(1), AN(%))
= ECov((AN(1), AN())|U) + Cov(E(AN(1)|U), E(AN(£)|U));

see p. 392 of@ (@) Noting that

AN (t) :ZI(j+§j+Ue (t—1,1))

=2 (- +g+Ue@—[t) -1t [1)])

J

2N I(k+&+Ue(t—t) —1,t—[t]]),

k

(2.1)

it is evident that E(AN(t)|U) depends on t only through ¢ — [¢|. The second term in (21]) does
not decay to zero as t — oo and it reflects the correlation due to the common random placement

of the time origin associated with U. The more informative term on the right-hand side of (2.1]) is
Cov((AN(1),AN(t))|U). Note that for ¢ > 2,

Cov((AN(1),AN(1))|U)
=Y Pi+&+U€(01],j+&+U e (t—1,4|U)

2
—Y Pli+&+U € (0,1)P(+&+U € (t— 1, ]|U)
i,J
SR &+ U (0,1],)+&+U € (t—1,4|U) (22)
i#j
Y Pli+&+U € (0,1)P(+&+U € (t—1,]|U)
i,J

==Y Pli+&+UeOUU)PGE+&+TU € (t—1,4|0),

7
so the conditional covariance is always non-positive. This is intuitively reasonable, since scheduled
traffic has the characteristic that if an abnormally large number of customers arrive in an interval,

this reduces the number available to arrive in a subsequent interval. We can now use ([2.2]) to



develop asymptotics for the conditional covariance.

Proposition 1

i.) Suppose that & has a bounded density for which there exists positive constants ci,ca, a1, o
such that

flx) ~c g

f=a) ~czam !

as x — 00. If oy < aw, then
Cov((AN(1),AN(n))|U) ~ —¢cyn~ 1
as n — 0o, whereas if as < aq, then
Cov((AN(1), AN (n))|U) ~ —cyn= >~
as n — 0o. If ay = a, then
Cov((AN(1),AN(n))|U) ~ —(c1 + ¢2) n-o1 1
as n — oo.

i1.) Suppose that &y has a bounded density f for which there exists positive constants dy,da, 1, P2
such that

fla) ~dye e,
f=a) ~ dyem e

as x — oco. If By < Pa, then

Con((AN(), AN)IV) ~ —e 7 Z (e Ze-m P(é + U € (j — 1,4]|U)

as n — 0o, whereas if By < (1, then

Cov((AN(1), AN(n)|U) ~ —e~ 27 ;2 e P2) Ze"ﬁ U0 P& + U € (j — 1, 4]|U)

as n — oo. If B = B, then

Cov((AN(1),AN(n))|U) ~ —ne ™ <"+1>% (1—eP1)?
1

as n — o0.



Proof: According to (2.2)), the conditional covariance is given by
—> P(&+Ue(G—1LU)PE+U € (n+j—1,n+jU)
J
—— Y P&+Ue(f-1LU)P(&+U e (n+j—1n+j]U)
j>—n/2

— Y P&+Ucek—n—1k-n)lU)P&+U € (k- 1,K|U)
k<n/2

Given our bounded density assumption, the Bounded Convergence Theorem implies that
nH PG +UEm+j—1ntj)—a

as n — oo, and (no‘lJrl P&+Uen+j—1n+j]):5> —n/2) is uniformly bounded. Another
application of the Bounded Convergence Theorem therefore implies that,
nt N PG+ U € (- Li)PE+U € (n+i—Ln+jlU) =
j>—n/2
as n — oo. Similarly,
n®t N PG+ UE(k—n—1Lk—nllU)PE+U € (k—1E|U) = c
k<n/2
as n — oo, proving part i.).
For part ii.), suppose first that 8; < B2 and note that
S e PIPE +U € (j— L,4)|U) < oo
J
Furthermore, our assumption on f guarantees that
dy
Br
as n — oo, and (eﬁlj P&+Ue(3—-14lU): 75> 0) is uniformly bounded. Applying the Bounded

Convergence Theorem, we conclude that

Pinpigo+U € (n+j—1,n+j]|U) = == (et —1)eH10G-U)

NN PG+ U E (G- LIU)PE +U € (n+j—1,n+j]|U)
j>—n
=Y Plo+U€e(—14U)e - IR+ U € (n+j - 1,n+j]|U)
j>—n
dl

-5 (e —1) MUY " e PIP(gy + U € (j - 1,4)|U)

J
as n — 0o. Similarly,
2N P&+ U € (k—n—1,k—n)|lU)P(& + U € (k—1,k]|U)

k<0
d2

ﬁz

(2.3)
(1—e ) e PUN PG+ U € (k- 1,E|U)e?*
k<0



as n — 00, thereby establishing that the conditional covariance satisfies

e ZP(sow € (= L) PE +U € (n+j—Ln+4)U)
J

) 26_61(] P&+ U € (j —1,4]|U)

as n — oo. The case where 5o < 51 can be handled identically.

To handle the case where 31 = 32, we write the conditional covariance as

— Y P&G+U€e(—LU)P(&+U € (n+j—1,n+j)|U)

Jj=0
—n<j<0

~Y P&+U€e(k—n—1k-n]U)P&+U € (k- LE|U).
k<0

Relation (Z3)) shows that the third term is of order O(e™#2™) as n — oo; a similar argument proves

that the first term is of order O(e~#1™). To handle the second term, we write it as

- ) P&+Ue(-LU)PE&+U € (n+j—1n+jU)
—n<j<—n/2
- Y P&G+UE(-1LjU)PE+UE€ (n+j—1,n+jU)
—n/2<j<0 (24)
=— > Pé+Ue(k—n—1Lk—nlU)P&+U € (k—1,K|U)
0<k<n/2
— Y P&+U€e(-LU)PE+U € (n+j—1,n+U).
—n/2<5<0

But the second term above equals

dq

7 (e B _ 1) e~ Br(n+j=U) (1 + 0(1))7

- Y P&+Ue(-LiUv) S

—n/2<j<0
as n — oo, where the o(1) term is uniform in —n/2 < j < 0. So this sum equals

dy

B _ 1) HrG-U)
3 (e )

—(L+om)e ™ ¥ Plé+Ue(-1U) 7

—n/2<j<0
Since 81 = fo, P({o +Ue(—-1 j]|U) i — Cﬁl (1 —eP1)e AU as j — —oo. Consequently, the
second term is asymptotic to —e= 1 ("1 (p /2) didy (1 —e=F1)2 as n — 0o. A similar analysis works

for the first term in (24]), proving part ii.) for ﬂl Bo. m

As a consequence of Proposition[Il i.), we see that if min{ay,as} < 1, the conditional autocorre-

lations are non-summable, indicating long-range dependence. This is the parameter range covered



by Araman and Glynn (2012), in which it was established that N(-) satisfies a functional limit
theorem with fractional Brownian motion having H < 1/2 as a limit.
We turn next to a key representation for N that holds only when E|{y| < co. In preparation
for stating this result, let
Ed)= > Ii+&+U<t)

i+U>t
Lit)= D Ili+&+U>1).

i+U<t
The r.v. £(t) represents the total number of early customers at time ¢, who have arrived earlier than
scheduled, while £(t) is the total number of late customers that will arrive after ¢ but were scheduled
to arrive before t. The Borel-Cantelli lemma makes clear that £(t) is finite-valued a.s. if and only
if B¢, 2 E max(—&p,0) < oo while £(¢) is finite-valued a.s. if and only if E¢; 2 Emax(&p,0) < co.
Furthermore, ((£(t),L(t)) : t € R) is a time-stationary process, where for every t, £(t) and L(t)

are independent random variables.

Proposition 2 Suppose that E|§y| < co. Then, fort >0,

Nt —t=( > 1) —t+ (&) — L) — (£(0) — £(0)). (2.5)

1+U€(0,1]

Proof: Observe that

Nty—t= > I(i+&+UcO)+ > Ii+&+Uec (041
i+U€(0,t] i+U>t

+ Y I+ &+ U € (0,8]) —t
i+U<0
= Y (A-IG+&+U>t)—I(i+&+U<0)—t (2.6)
i+U€(0,¢]
+ > [Ii+&+U<t) - I(i+&+U<0)
i+U>t
+ Y I+ &E+U>0)—I(i+&+U >t).
i+U<0
We now combine the first indicator sum with the sixth (to obtain —£(t)), and the second indicator

sum with the fourth (to obtain —£(0)), thereby proving the result. m
We can now prove that N(t) —t converges weakly as t — 0o, when we let ¢ — oo in such a way
that ¢ — [t] is constant.
Theorem 1 Suppose that E|¢y| < oo, and fix s € [0,1). Then,
N(n+s)—(n+s)=—s+I(U <s)+ (E(s) — L'(s)) — (£(0) — L(0))

as n — 0o, where £'(s), L'(s),£(0), L(0) are independent of one another given U, and E'(s) 2 £(0),

£'(s) 2 £(0).



Proof: Recall that

Nn+s)—(n+s)= Y 1—(n+s)+(EMn+s)—E0) = (Ln+s)—L0)).
i+U€e(0,n+s]

We start by observing that

Z 1—(n+s)=—-s+1(U<5s)
i+U€(0,n+s]
forn € Zy,s € [0,1). Furthermore, if k,, is an integer-valued sequence such that &, /n — v € (0,1)
as n — 0o, we can write
(E(n+s) = &£(0), L(n + s) — L£(0))
- ( Y IHi+U+&eOnts))— Y IG+U+&<0),

i+U>n+s i+U€(0,n+s]
S I+ &+USnts) - Y I(z’—i—U—i—fiE(O,n—Fs]))
i+Ue(0,n+s] i+U<0
:( Y Ii+U+&eOn+s))— > I(i+U+&<0)— > I[i+U+&<0),
i+U>n+s 1+U€E(0,kn] i+U€(kn,n+s)
Yo Ii+&+U>n+s)+ > Ii+&+U>nts)— Y I(z’+U—|—£¢6(0,n—|—3])>
i4+U€(0,kn] i+U€(kn,kn+s] i+U<0

2 (E"(n+s) = En—ELLLin+5)+ Lo(n+s) — Ln).

Note that because Efar < 00,

EL)(n+s)Ul= > Pli+&+U>n+s|U)
+U€(0,kn]
< Z P& >n—ky,—j—1)—0
J+U<0

as n — oo, proving that ﬁg(n +5) = 0 as n — oo. Similarly, the fact that E{; < oo implies that
&' = 0 as n — oo. Finally, the four random variables (”(n+s), &y, £ (n+s), L,) all involve sums
over subsets in ¢ that are disjoint, so they are conditionally independent of one another, given U.
Furthermore, £ (n + s) = £/'(s) and &"(s) = &'(s) while, &, = £(0) and £, = £(0) as n — oo,
proving the theorem. m

Note that we must restrict convergence to sequences of the form ¢, = n + s with n — oco. In
particular, weak convergence does not hold when ¢ — oo without any restrictions. To see this,

consider the case in which & = 0 a.s. Then,

i+U€(0,t]
= —(t—|th)+I(U < t—[t)),



and observe that the distribution of the right-hand side depends on ¢ — [t], regardless of the
magnitude of t.

Theorem [ shows that N(¢) — ¢ is stochastically bounded in ¢. This is in sharp contrast to the
case in which (for example) N is a unit rate renewal counting process with finite-variance inter-
arrival times, in which event ¢t~1/2 (N(t) —t) converges weakly to a normal r.v. (see Ross (1996)),
so that N (t) — t exhibits stochastic fluctuations of order /2.

3 Tail Asymptotics for Sums of Bernoulli Random Variables

The analysis of Section [2] establishes that N,& and £ all can be clearly represented as sums of
independent Bernoulli r.v.’s. As we will see in the next section, the tail behavior of these r.v.’s
significantly affects the queueing dynamics of systems that are fed by scheduled traffic. In addition,
Bernoulli sums arise in many other applications settings (e.g. credit risk). As a consequence, this
section is focused on tail behavior for such Bernoulli sums.

Let (I : j € Z) be a family of independent r.v.’s, in which p; =P(/; =1) =1 —-P(I; =0).

o

Theorem 2 Suppose that there exist constants ¢ > 0 and o > 1 for which p, ~ cn™% as n — oo.

IfZ=73% ;501 then
B 1

z logz

logP(Z > 2) - —«

as z — Q.

Proof: We shall employ an argument similar to that commonly used in the theory of large devia-
tions; see, for example, p. 44 in Mmm_zmmmj (Il&%j) (Note, however, that the asymptotic

setting described by Theorem [2]is not covered by traditional large deviations.) We start by observ-

ing that
A
Y(0) =logEexp (0 2) = Zlog (pj(e? —1)+1)
Jj=0
(where the sum converges absolutely since a > 1). Choose 6 = 6(z) such that e?*) = rz® (where
r > 0), and note that for € > 0, § > 0, and z sufficiently large,
$(0(z)) = > log (p;(e"® —1) +1)
0<j<lez]
+ Z log (pj(ee(z) —1)+1)
> ez]
< Z log (e‘g(z) +1)
0<j<ez]
+ Z log ((1 + e)ej e 4 1)
J>lez]
< (lez] +1) log(1 +rz®) + Z log ((1+€)re(j/z)"* +1). (3.1)

j>lez]

10



Note that the second term in ([BI]), when multiplied by 1/z, is a Riemann sum approximation, and

hence

é Z log((L+€)re(j/z)"*+1)
j>lez]
—>/Oolog((1+e)rca:_a+l)da;

as z — oo. (Specifically, the function log ((1 +e)rcx + 1) is directly Riemann integrable (see
|Aimuss_(—m| (IZDDA)), so the Riemann approximation over [e, 00) converges.) It follows that

Markov’s inequality guarantees that

P(Z > z) <exp(—0(2)z + ¢¥(6(2))),

and hence
logP(Z > 2) < —a (1 —e).

lim, o0

1
zlog z

Since € > 0 can be chosen to be arbitrarily small, we conclude that

lim, o0

o2 logP(Z > z) < —au (3.2)

To obtain the lower bound needed for Theorem 2] we apply a change-of-measure argument. For
z >0, put

P.(-) = EI()exp (8(2) Z — $(6(2))),

and let IEZ() be the associated expectation operator. Then,

P(Z > 2) = E.I(Z > 2)exp (— 0(2)Z + ¥(8(2))). (3.3)
Of course, o0
nd o o pje’t®
E.Z=4/(0()) = ZO @O T (3.4)
So,

pjrz® 1
—EZ
ijrza—l +1 2

—

Since p; 2% ~ ¢ (j/2)™* as j — 00, a simple adaptation of the earlier Riemann sum approximation

1~ o0
—&Z%/ L
z o cr+x®

argument proves that

as z — 0o. Similarly,

. 1 pi (1 —pj)e’™ 1
S varZ =~ = r ’ =
_var Zﬂ) (0(2)) ; (pj (9 —1)4+1)2 =z

/°° crxz®
— —  _dx
o (cr+x)?

11




as z — 00. For € > 0, we now select 7 > 0 (uniquely) so that

o
/ cr dr=1+¢e.
o cr+ax¢

Observe that because ¥ (60(z)) > 0,

P(Z > 2) =B, 1(Z > 2)exp (— 0(2) Z +1(6(2)))
> exp ( -0

(2) 2+ ¥(8(2))) Po(Z > 2)
>exp (—0(z) 2) P.(Z > 2). (3.5)

But for z large enough, we have that

P.(Z>2)=P.(Z—-E.,Z>2—E.Z)
>P(Z-BE.Z>z—(14+e—¢/2)z)

>P(Z-E.Z > —c2/2)

>1-P.(|Z -E.Z| > €2/2)
var,Z

>1—-4— —1

- 22€2

as z — 00, where the last inequality is an application of Chebyshev’s inequality. Hence, (3.5
implies that

1
lim — logP(Z > z) > —a,

70 2 log 2

proving the theorem. m

We now turn to the tail of Z when Z is the difference of two independent Bernoulli sums,
E:jzoljand.§2j<0I¢

Corollary 1 Suppose that Ezj<0 j:j < oo and that there exists ¢ > 0 and o > 1 for which
El, ~en ™ asn— +oo. If Z=3% ~0l; =30 I;, then

loglP(Z > z) —» —«
zlog z

as z — oo.

Proof: We note that P(Z > z) < P(ijo I; > z), and apply Theorem 2l to conclude that
— 1
lim, ;oo ——logP(Z > 2) < —a.

zlog z

For the lower bound, observe that the independence yields

P(Z>2)2P(Y L>2+d,> I;<d)

7>0 7<0
:P(j;[j > z+d>P(j§Ij <d).

12



Hence, we apply Theorem ] to conclude that

) 1 . 1
h_mz_,oo@bgP(Z > 2) Zh_mz_,ooﬁgzlogﬁ”(;@ > z—l—d) = —a,

proving the result. m

We can immediately apply Theorem [2l and its corollary to the tail asymptotics of £, £ and N(t).

Theorem 3

i.) Suppose that &y is such that P(§y > x) ~ cix™* as © — oo for ¢y >0, ag > 1. Then,

1
xlogx

logP(L(t) > z) — —ay
as x — oo.

ii.) Suppose that &y is such that P(§y < —x) ~ cox ™ as x — oo for ca >0, ag > 1. Then,

1
xlogx

logP(E(t) > z) = —a
as x — oo.

i11.) Suppose that & has a bounded density for which there exist positive constants c1,ca, o, g such
that

flx) ~c gl
fl=x) ~co pm2 !

as x — 0o. Then,

TTog e logP(N(t) > x) — —min(oy + 1, a3 + 1)

as r —r 0.

Proof:
For part i.) we recall that £(t) 2 L£(0). Furthermore, P(§;41 > j) < P(—j+&-;+U > 0) <
P(¢; > j — 1), so that

]P’(ilj>a;) §]P’(£(t)>x)§]P’(in>x), (3.6)
j=1 Jj=0

where the I;’s are independent Bernoulli r.v.’s in which I; = I(§; > j — 1). Theorem [ can then
be applied to the extreme members of (3.6]), yielding i.). Part ii.) follows similarly. As for iii.),
suppose that a1 < ap and set I; = I(j + & + U € (0,t]). Fix an integer d > 1 and observe that
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P(le >z) <P(N(t) > )
PO Ii>a)+P() I <a,> I >x)

§<0 j<0 §>0
P> I > +Z <leex[k:/d,(k:+1)/d),z}j>x(1—(kz+1)/d))
§<0 §<0 j>0
<(d+1) maX]P’ ZI >ak/d)P ZI >z(1—(k+1)/d)").
7<0 7>0

(3.7)
Recalling our bounded density assumption, the Bounded Convergence Theorem implies that P(I_; =
D~epti @ band P(I; =1) ~ ot j72 71 as j — oo.
Arguing as for i.) and ii.), we find that

1

log IP E 1 = —(a;+1 .
TTog og (j<0 i >x) (v ) (3.8)
and
log IP E 1 — —(ag+1 .
TTogz og (j>0 j >x) (a2 ) (3.9)

as x — oo. Utilizing (3.8) and (3.9), we observe that, for 0 < k < d — 1, the term

11 log[P(3"1; > wk/d) P(SI; > 2 (1 — (k +1)/d)]
rest i<0 3>0 (3.10)
_(oa—gl)k: (o +1) (dd— k1) +1)d%1

as © — 00. Hence, letting  — oo on the extreme terms of (3.7, followed by sending d — oo yields
iii.). A symmetric argument works for a; > .

[
The next result shows that the large deviations tail exponent of N(¢) is not inherited by its equi-
librium limit. In other words, one cannot interchange x — oo in the large deviations limit with

t — oo in time.

For our next result, we fix s € [0,1] and recall Theorem [I] and the quantities £'(s) and &’(s)
defined there.

Proposition 3 Suppose that &y is such that P(§y > x) ~ ci 2™ and P(§y < —x) ~ cox™ 2 as
T — oo for ci,co >0 and oy, > 1. Then,

10g]P’<(5/(8) — L£'(s)) — (£(0) — £(0)) > x) — — min(ay, as)

zlogx

as r — Q.

14



Proof: Utilizing Corollary [l and arguing as in the proof of Theorem B] we find that

1 / /
TTog s logP(E'(s) — L'(s) > x)) = —a,
and )
gz log P(L(0) — £(0) > z)) = —y

as © — 0o0. We can now use the same upper bound argument as in (3.7)) to conclude that

lim, o0

1ogrp>((5'(s) — () — (£(0) — £(0)) > :17) < —min(ar, az).

xlogx

For the lower bound, suppose that as < aq. We find that

P((E’(s) — () — (£(0) — £(0)) > x)

so that

lim, @ log B((£/(s) — £(s)) ~ (E(0) — £(0)) > z) > ~a,

A symmetric argument holds for a; < as. =

Because of their intrinsic interest and their importance for scheduled queues, we now provide

exact tail asymptotics for Bernoulli sums.

Theorem 4

i.) Suppose that there exists ¢ > 0 and o > 1 such that p, = cn™*(1 + O(1/n)) as n — oo.
Then,

1 -n ,, —an— a
PQ_Tj 2 m) ~ o exp ((rn))

Jj=0
o0
cr
— " dr=1
0 CTy+a“

_/°° cry T% g
e = o (cre+x2)2 "

ii.) Suppose that p, = c¢(w +n)~% for n > 0, where c,w >0 and o > 1. Then,

as n — 0o, where r, satisfies

and

1 \otl D(w)™ Lw  —antd(a_1)—
PO =)~ (=) R (o e 0w
>0 ( 27T> T«

as n — 0o, where vy = fol log (1 + %:Ea)diﬂ + [T log (1 + era™®)dx + o + log(c).
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Proof: We start from the change-of-measure formula ([B8.3]), with the specific choice 0, (n) = log .+
alogn (so that exp(6.(n)) = r«n®). Then,

P(Z > n) =exp (— 0.(n)n +¢(r.n®)) - EnI(Z > n)exp (= 0.(n)(Z —n)).

We wish now to apply the local central limit theorem (CLT) to Z under P,. Recall 34]) and note
that

pjren®

_ (n/j)ers ;
- (Tl/j) CT*—pj+1(1+O(1/j))

N Speret (4/n)* — (4/n)*p, (1+0(1/7))

CTy

+ (/) + O(n==) (1+ O(1/7))
=Y o (e 0a/i)

cry + (j/n)"

CTy

+ > 0/ +0k,") >

y (07
0<j<kn G>kn cri+ (j/n)

v(j/n) + O(logky) + O(nk; 1) Z %U(j/n),

J>kn

I\/

BIH

where v(z) = ¢ry (c7y + 2%) "1 and k, is selected so that k,/n*? — 1 as n — co. But

nZ—vj/n —n/ v(:n)d:v%—nZ/'- (i /) — v(2)]da

j>0

The defining equation for 7, implies that [;~ v(z)dx = 1. Set
nl) = [ [o(i/m) ~ olw)ldy.
i/n
Since wy, is twice differentiable with w) (z) = v(j/n) — v(z) and w](x) = —v'(z), there exists
xjn € [j/n,(j +1)/n] such that

wn (7 +1)/n) = wa(i/n) +1/n - wy,(j/n) +1/n* - wy(2n) /2

so that
(G+1)/ ' ) 1
[ oy = )
and hence
G+1)/ , 1
nZ/ [v(j/n) —v(z)|de = —1/2 ZU(:EJ”)E
Jj=0 >0
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The latter sum is a Riemann sum approximation to the integral of — %v’ (+) over [0, 00). Consequently,

(G41)/n N
n}l/j h@myw@mm%—%é o (2)dx = 1/2. (3.11)

i>0"3/m

Similarly,
1 [ee]
Z —v(j/n) — / v(x)dr — 0
J>kn
as n — oo. It follows that
En.Z =n+ O(n'/?) (3.12)

as n — 0o. Also, as noted in the proof of Theorem [2]
1
- varpZ — 1 (3.13)

as n — 0o.

We are now ready to apply the local CLT due to Davis and McDonald (1995). We first write
7Z = Z?’;O I; +Y,, where b, — oo fast enough that E,Y2/n — 0 as n — oco. It is easily verified
that the conditions of the Lindeberg-Feller CLT apply to (Z — IEnZ)/(varnZ)l/Q; see p. 205 of
(@) Furthermore, by recalling that, var,/; = IF’n(Ij = 1) Iﬁ’n(lj = 0), we conclude
that the sequence @Q,, = Zj_h min (ﬁin(lj = O),@n(Ij = 1)) that appears in the hypotheses of

Theorem 1.2 of i ) can be lower bounded by }°,., var,l; ~ nn, as

n — oo. Consequently, Theorem 1.2 asserts that

k—-E,Z. 1
¢mﬁ)¢ﬁﬂﬂ+dn)

uniformly in k as n — oo, where ¢(-) is the density of a N'(0,1) r.v. Hence, in view of (8.12]) and

(B]:{l)v

k
N

1

Po(Z =n+k)=¢( N

)

(1 +o0(1))
as n — 0o, so that

EnI(Z > n)exp (= 0i(n)(Z —n))

= Pu(Z=n+k)exp(—0.(n)k)
k>0
1

V2T nn,

~

as n — oo, proving part i.).
Part ii.) is a special case of i.). All that is needed is the development of an asymptotic for

P(r«n®), to the order of o(1). Denoting (as usual) the gamma function by I'(-), we write
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Zlog c(j+w) ™ (ren®—1)+1)

—|—Zlog c(j+w) ™ (ren®—1)+1)

j>n
n—1 n—1
n Jtwya 1 !
=10g(]1_[0(j+ Jiler)” +]Z;)log (1 n )cr*_CT*no‘
jtw, - 1
+Z]0g (1 —i—CT*(T) a(l - T na))

jzn

B n"T(w) \* n I4w/n 1 . 1
= log <<7I‘(w+n)> (cry) ) —i—n/w/n log (1+ e [ pyogpers

+n/ log (14 crya™ (1 - ! ))dzx

1+w/n s N

n—1

(J+1)/n -
en 3 [ hatim) @i +n Y / a(i/m) — o @)

i=0"7

where

hn(z) =log (1 + (x + %)a

h(z) = log (1+cr(z+ %)_O‘(l —

))-

7y N

)

(3.14)

The first term in the third equality is due to the property of the Gamma function whereby for

any z > 0, I'(z + 1) = 2I'(2). Set h(z) = log (1 + —— CT* z%), h(zx) = log (1+ecr,

(BI0), the sum of the last two terms converges to

—1/2/ ' (x d:c—1/2/ W (x
= —1/2(h(1) — h(0)) — 1/2 (h(c0) — h(1))
= —1/2(log(1 + ci’ ) —log(1+cry)) =1/2 log(ery).

*

Also,

1+w/n
n/ log (1 + ! x — ! )dz

w/n CTy cren®

1+w/n 1
=n / log (1 + e z®)dz + O(n'™%)

w/n *

:n/llog(l—l— ! 2)dz + wh(1) — wh(0) + o(1)
0 cry

as n — oo. Similarly,

o 1
n / log (1+cria™®(1——))da
1+w/n ne

=n / log (1+croa™®)de —w h(1).
1
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Finally, we use the asymptotic

__1 n+w—1
w4 n) ~ VErm (L)

(&

as n — oo (see p. 63 of (@)), to conclude that

as n — 0o. Combining ([B.14) through ([B.I8)) yields part ii.). m

With Theorem [ at our disposal, we can now derive exact asymptotics for the r.v.’s £(t) and

L(t). For example, in view of the fact that the proof of part 7i.) holds uniformly in w,

1 a+1 CTx P(l) )a _ _;,_l( _1)
> -~ an «a yn
P(E(0) > n) (—\/ﬂ> o E [7(67’* na)U} n 2 e

as n — oo, provided that P(§yp < —x) = c2™® for x > 1 and where ~ is the same constant defined

in Theorem [M]

4 Behavior of the S/D/1 Workload Process under Critical Loading

In this section, we consider a queue that is fed by a scheduled traffic in which each customer’s
service time requirement is of unit duration, and in which the server has the capacity to process
work at unit rate. Under these assumptions, the rate at which work arrives per unit time equals
the service capacity of the system, so that the queue is subject to critical loading.

Note that the total work to arrive in (0,t] is given by N(t). Let W(t) be the workload in the
system at time ¢ (i.e. ¢t 4+ W (¢) is the first time subsequent to ¢ at which the system would empty
if no additional work were to arrive after ¢t.) If W(0) = 0, then

W(t) = max [(N(t) 1) = (N(s) - )],

Our goal is to analyze the behavior of W (t) for ¢ large.
If E|¢y| < oo, Proposition 2 applies so that
W(t) = max [£(t) — E(s) — L) + L(5)] + Op(1), (4.1)
where O,(1) is a term that is stochastically bounded in ¢. Because of the stationarity of ((£(t), £(t)) :
tc R), the first term in (A1) has the same distribution as
M(t) = max [£(0) = E(—(t = 5)) = £(0) + L(~(t — 5))|,

0<s<t

e [8*(r) — L5(r)| = &€7(0) + £L(0),

(4.2)

Note that £*(-) is the “early customer” process for the time-reversed system in which the pertur-

bations are given by (—£—; : j € Z), and L*(-) is the corresponding “late customer” process. As a
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result, £*(r) 4 L(—r) and L*(r) e (—r). As a matter of fact these equalities hold pathwise except
for the fact that £ and L£* are generated following the uniform distribution, 1 — U, instead of U.
Given that £* and £* are non-negative processes for which £*(r) is independent of £*(r) for r € R,
it is evident that the growth of M(¢) will be determined by £* and that the left tail of —&y (or right
tail of &) governs the large time behavior of M(-) (and hence W (-)). The dominance of the right
tail of &y over the left tail is perhaps explained by the fact that the left tail induces the arrival of
“early customers” from the future evolution of the queue. More such early arrivals in an interval
mean fewer potential customers available from which to stimulate a future burst of arrivals, so that

the left tail has less influence over “growing” M (-) over time.

Theorem 5 Suppose that E{; < oo and that there exists constant ¢ > 0 and o > 1 for which
P(& > z) ~cx™ as x — co. Then,
W (t)
logt/loglogt

1/«

as t — oo.

Proof: Clearly,
2% ET0) — 0] < s £°0)

< max max £ (n—s).
1<n<[t]+1 0<s<1

ForO<s<landn>1,

En—s)= >  Ii+U+&>-n+s)
J+U<—n+s

< Y IG+U+&>-n)
J+U<—n+s

=&Mm+ D, IG+U+&>—n)
—n<j+U<—n+s

< E*(n) + > 1

—n<j+U<—n+s
— &)+ 1 (4.3)
So,

* _ * < * .
Jnax, (& (r) =L (r)] <1+ 1§7Ilr;iij+1€ (n)
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Hence, for € > 0 and t sufficiently large,

. . 1+3¢ logt
P(ongl?%(t [5 (r)—£ (T)] = « loglogt>

1+2¢ logt
<P *
- (ogggﬁﬂg (n) > «a loglogt>
[t]+1

. 14+2¢ logt
Z]P’(S (n) > « loglogt>

IN

n=1

(1t] + 1)]?(5*(0) >

IN

14+2¢ logt
« loglogt>
1+2¢ logt
« loglogt)))

= ([t]+1) exp (log (P(£(0) >

<([t]+1) exp(— (1+¢) logt)
= 0(t™) =0 (4.4)

as t — oo, where we used Theorem [ for the final inequality.

To obtain the necessary lower bound, fix ¢ € (0,1/8) and note that for such ¢, 1 — 2¢ +
g2 < 1—2e—¢%+¢/2a(< 1). Choose 7 in the interval (1 — 2e +£2,1 — 2¢ — &2 + ¢/2a). Put
b(t) = (1/a)(logt/loglogt), c(t) = (1 —2¢)?b(t)?, and k(t) = [t7]. As in the proof of Theorem [
we find that for 8 > 0,

Jj=-1
gexp<—9n—|— Z log (P(j + & SO)(69—1)+1))
j>—1
<exp(—On+ Y PG+ & <0)(e ~ 1))
j=-1
[—&o]
:exp<—9n+(e€—1)E Z 1)
j=—1

< exp < —On+ (e —1)(Eg + 3))
By setting 6 = logn, we conclude that
P(£(0) > n)) < exp (—nlogn+ O(n))

so that
P(£(0) > eb(t)) <t/ (4.5)

for t sufficiently large. In addition, an examination of the proof of Theorem [2] shows that under

the conditions stated there,
[2%]

logIP’(ZIj >z) = —« (4.6)
j=0

1
zlog z

as z — 00.
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We now subdivide the interval [—t, 0] into k(¢) subintervals of equal length, and let 1,79, ..., 0
be the right endpoints of the k(t) subintervals.

Then,
IP’( max [€%(r) — £7(r)] > (1—35)b(t))
> p( \max [£(r) = £(r)] > (1-3¢) 10)
> <1<I?3;§it — () I(E(r) < eb(t)] > (1= 3)b(1))
> P(lggﬁt )I(E(rs) < eb(t)] > (1 — 2¢) b(t)>
> P(lgfﬁt L(r) > (1—2¢e)b(t ))
- P(lggﬁt) L)I(E(r) > eb(t)) > (1— 2¢) b(t)>
> P(Ig]%t) L(ri) > (1—2¢) b(t))

k(%)

_Zp(c r)I(E(ri) > bt ))>(1—25)b(t)>

21@( max L(r;) > (1 - 2¢) b(t))

1<i<k(t)
- k;(t)]P’(ﬁ(O) > (1—26)b(t), E(0) > ab(t))
2]?( max Z I(j—|—£j>7“i)>(1—2€)b(t)>

1<i<k(t
Si<k( )m—c(t)ﬁjgri—l

- k(t)]P’(ﬁ(O) > (1-2¢) b(t)) P(g(()) > eb(t))
:1—(1—]?( > I(j—|—£j>0)>(1—26)b(t))>k(t) (4.7)

—e(t)<j<-1
- k;(t)]P’(ﬁ(O) > (1-2¢) b(t)) ]P’(S(O) > sb(t)),

where we used the independence of £(0) and £(0) and that of disjointly indexed indicator r.v.’s for
both of the last two lines displayed above.
Given (Z0), it follows that

P( Y I+ >0) > (1-2¢) b@)) > —(1-20)=2

—c(t)<j<—1
for ¢ sufficiently large. In view of the choice of 7, we conclude that

(1—1@( Y I +g>0) > (1—25)1)(1:)))'“(” =0 (4.8)

—e(t)<j<—1

as t — oo. On the other hand,
P(ﬁ(o) > (1—2¢) b(t)) < ¢ (1=2e)+e?
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for ¢ sufficiently large. Given (LX) and our choice of 7, we find that
k(t) IP’(L‘(O) > (1-2¢) b(t)) 9(5(0) > sb(t)) =0 (4.9)
as t — oo. Relations (@A), (L7), (£8) and (£9) prove the theorem. m

Theorem [B shows that the workload of the S/D/1 queue under critical loading increases very
slowly (at logt/ (log log t) rate), even in the presence of “heavy tailed” perturbations. This is in
sharp contrast to the t'/2 increase in workload that occurs under critical loading for a G/D/1
queue, in which the arriving traffic is described by a renewal process with finite positive variance
(see (@)) This result makes clear the significant positive impact that scheduling can have

upon queue performance.

5 Behavior of the S/D/1 Workload Process in Heavy Traffic

We now turn to the analysis of the S/D/1 queue when the system has more service capacity than is
needed. We assume, as in Section @] that work is arriving at unit rate (on average) via deterministic
service time requirements of unit size, but give the server a capacity to process work at the rate
1/p with p < 1 (so that the queue’s utilization factor is p). Let W,(-) be the associated workload
process. Then,

W (1) = max [£(1) — £(s) — L) + £(s) +alt) — a(s) — ——L (1~ 5)].

0<s<t P

where a(t) 2 —(t—[t]) +I(U <t —[t]). As argued in Section @ W,(t) Z M,(t), where
My(t) = mas, [5*(@ _ oy = ; P+ a(0) - a(—r)] 4 L£7(0) — £4(0). (5.1)

v

Since M,(t) / M,(co) a.s. as t — oo, it follows that W,(t) = W,(oc0) as t — oo, where W,(0c0)
M,(00). Our key result in this section describes the “heavy traffic” behavior of W,(c0) as p 1.

Theorem 6 Suppose that E{; < oo and that there exist constants ¢ > 0 and o > 1 for which
P&y > x) ~cx™ as x — co. Then,

log log <1 ) 1

p
()

(5.2)

Q |

as p /1.

Proof: Note that for 1/2 < p < 1,
1—
max [5*(7‘) — L*(r) — i r}

r>0 P
1—
)~ L]
P

> max {5* (r)—L*(r
> max {5* (r)— ﬁ*(r)] —2.

0<r<1/(1-p)
0<r<1/(1-p)
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Of course, Theorem [ establishes that

log log (%p)

1
max EX(r)—L(r)| = — (5.3)
log (rlp) 0<r<1/(1-p) ] o
as p /1, proving the required lower bound for (5.2I).
To prove the upper bound, observe that
I}gg{ {5 (r)y—L*(r)— —p r}
1—
< max [5*(7‘) - £*(7‘)} + max [5*(7") S r]. (5.4)
1\ 1te 1o\ 1te 1%
0<r< () r2(25)
Application of Theorem [ proves that
log log ( 1
# max | [e7() - £°0)] = ZE (5.5)
log (45) - osrs(i2)
as p /1. On the other hand,
1 —
P max [5*(7‘) - pr} > 1)
() ’
< — — - - >
< Pmax | ax & (=) +n+s) - ()5 -7 2)
* 1 1+e 1
< . — > .
_P<13L1§{<[5 ((1_p) +n) Tt p)n}_()), (5.6)
where we used ([{3)) for the last inequality. The quantity (5.6]) can, in turn, be upper bounded by
i[@(&*(o) > _La-p n)
vt (1—p)

Theorem [3] proves that
P(£7(0) > t) < exp(—at)

for ¢ sufficiently large, and hence the above sum is dominated by

;::Oexp(—a((l_lp)e—i-(l—p)n))

a

= exp(— m) <1—exp(—a(1—p))>_1
! 1
~e( g

- p)E) 5 (L—p
as p /1. Relations (5.3)), (5.4), (5.5), and (5.6) then prove the theorem, in view of the fact that e

can be made arbitrarily small. =

))—>0
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This S/D/1 heavy traffic limit theorem should be contrasted against the analogo%D /1 limit

(199c)).
For the G/D/1 queue, time scales of order 1/(1 — p)? are needed in order that fluctuations of order
1/(1— p) are exhibited (when W,(0) = 0) (see again (@)) The proof of Theorem [ shows
that the time scale needed for W, to reach equilibrium is of order 1/(1 — p), so that the S/D/1
queue equilibrates more quickly than does the G/D/1 queue.

theorem, for which the steady-state r.v. W,(c0) scales as 1/(1 — p) as p 7 1; (see

6 Remarks on the S/G/1 Queue

This paper has focussed thus far on the S/D/1 queue. We now turn to a discussion of the S/G/1
queue, in which the service requirements (V; : ¢ > 1) associated with the sequence of arriving
customers is assumed to be i.i.d. and independent of N. In this setting the total work A(¢) to

arrive in the interval (0,] is given by
N(?)

At) =)V
=1

Our main objective here is to point out that if the V;’s are random (i.e. non-degenerate), then the
behavior of the S/G/1 queue closely resembles that of the corresponding D/G/1 queue in which
& =0forieZ.

Our first result shows that, in great generality, A satisfies the same functional central limit
theorem (FCLT) as does A’, where

[t]
ANty => Vi
i=1

Proposition 4 Suppose that E|&| < oo and EVF < oo for p > 2. Then
1
— sup |A(s) —A'(s)|=0
t 0<s<t

as t — oo.

Proof: First, we recall that max;<;<, |Vi| = o(nl/p) a.s. as n — oo; (see, p. 278 oflﬁ
(é%l)) Also,

) N(s) ls]
-1/2
t 0123%3 z_; Vi — z_; Vi

<t™Y2  max |Vj|- max [N(s)— s
0<i<N(t)+t 0<s<t

maxo<i<as [Vi|  maxo<s<t [V(s) — s
tl/p t1/2-1/p

N maXOSsSt |N(S) — S|

=o(1) - H1/2=1/p

a.s. (6.1)
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as t — 0o, where the first equality is due to the fact N(¢) —¢ <t a.s. We further note that E{y < oo
guarantees that Eexp (§£(n)) < oo for § > 0. In particular, Yo P (exp(6L(n)) > n) < oo, and

hence the Borel-Cantelli lemma insures that, lim,_ lﬁ(g"n <1/6 a.s. Hence,

maXlSiSn ﬁ(l) < 1/0 a.s

lim,, o0

logn
Since |L(n 4+ s) — L(n)| <1 for 0 < s < 1 (see [@3) for a similar bound involving &),

maxi<s<t ﬁ(S)

<1 .S.
logt s1/8 as

limy o0

for > 0. Similarly, lim; . maxj<s<; E(s)/logt < 1/6 a.s. for § > 0, because E&; < oco. Propo-
sition [2 then completes the proof. m

As a consequence, the input to the S/G/1 queue satisfies the same FCLT as for the D/G/1.
Hence, the heavy traffic theory for the S/G/1 with random service times is identical to that for the
corresponding D/G/1 queue. This fact is illustrated in the next result.

Corollary 2 Under the assumptions of Proposition

N(n-)
n_1/2< Z Vi —nEV; ) = /varVj B(-)
i=1

as n — oo, in D(0,00), where B(-) is a standard Brownian motion, and = corresponds here to

weak convergence in D(0,00) (see, lelmg&lcd (Il.QQd) for the definition,).
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