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1 Introduction Statistical inference of the model parameters of a queueing system
from data is an essential part of the study of the system. The data collection pro-
cedure specifies the type of observations from the system which are available. The
estimation of the parameters can follow standard statistical procedures if we can col-
lect all the necessary information from the system (e.g. arrival times and service times
of customers) [5]. This explains the initial limited literature in statistical inference
of queueing systems compared with performance analysis studies. For a survey on
estimation in queueing systems, see [3].

The explosion of data in the operation of large computer networks and in the
management of human service systems is creating opportunities for new inference
problems in queueing theory. Reflecting this new setting, there is interest in inference
using partial information of the system motivated by active measurements of Internet
traffic. In this context towhich queueingmodels are applied, probe packets (say, special
customers) are sent to the network and their delays are observed through the route
path. The goal is to infer the statistical characteristics of the stream of packets flowing
through the network. The majority of the networking literature is based on heuristic
methods or assumes non-intrusive probes. Note that probes are packets, which have a
minimum size and therefore perturbate the system. The analysis of a queueing system
with additional input (probes) is a difficult problem [8]. A small number of works
have provided rigorous results for classical queueing systems (e.g., M/M/1, M/G/1,
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G/M/1), see e.g., [1, 2, 4]. The idea consists in sending a stream of probes, according
to a point process, with a given size distribution. From the arrival and departure times
of the probes, the intensity rate and the size distribution of the original packet stream
are inferred. There have been few analytical extensions with more than one queue. For
instance, twoM/G/1 queues in tandem are investigated in [7]. AKelly network is used
to estimate the residual capacity in each queue with probing based on the end-to-end
delay of the probes, notably in [4]. However, in contrast to these networks, packets have
constant size when they progress through a network and so service times in different
queues of the network are correlated.Additionally, probes need to be sent according to a
Poisson process with exponential sizes. Other probing strategies have been considered
based on the arrival and departure times of probe-pairs at the different queues [6].
2 Problem statement We first describe a general system without the probes. Con-
sider a network with n queues Q1, . . . , Qn in tandem and n + 1 arrivals of packets
streams. Each Qi is a single-server with processing speedCi , FIFO discipline and infi-
nite capacity. The stream 0 enters Q1 according to an arrival point process of intensity
λ0 and passes through all queues; stream i = 1, . . . , n enters Qi according to an
arrival point process of intensity λi and after service leaves the system. The packet
sizes of stream i are i.i.d. and follow a general distribution Gi . The arrival processes
of the streams to the network and their size distributions are independent and their
statistical characteristics are unknown.

Probes enter the network at selected time instants with specific size and follow
the path Q1, . . . , Qn . The arrival times and sizes of the probes are defined by the
probing strategy and therefore known. The addition of probes should be constrained to
creating a small perturbation in the original streams. It is assumed that the systemwith
the probes is stable. Additionally, the probe information available are the instants at
which the streamprobes leave Qi and enter Qi+1, i = 1, . . . , n−1, and alsowhen they
depart from Qn . The problem is to define a probing strategy and an inference method
to estimate the arrival point process and the distribution size of the different streams.

From the probing information, the following quantities can be observed. Let Ai
j , S

i
j ,

Di
j , j ≥ 1, denote the arrival time, service time, and departure time of the j th probe

entering Qi , respectively. If two consecutive probes, say j th and ( j+1)th probes, share
the same busy period in Q1, then the corresponding output separation time observed
between the probes will be equal to S1j+1 in case there is no stream traffic between
them. Otherwise, the output separation time will contain the workload of the streams
0 and 1 that arrives to the queue during the interval (A1

j , A
1
j+1). Thus, the workload

in Q1 between j th and ( j + 1)th probes is given by W 1
j = D1

j+1 − D1
j − S1j+1.

If the arrival processes of the original streams are Poisson, then the probing
strategy in [1] can be used to estimate the arrival rate λ0 + λ1 to Q1 through
E[I ] = E[e−(λ0+λ1)T ], where I is a randomvariablewhich is equal to 1 if noworkload
arrives between two probes and 0 otherwise, and T is the inter-arrival time between the
probes. The moments of packet sizes could also be estimated assuming that streams
0 and 1 have the same distribution [(see [1], Eqs. (7)–(10)]. In this work, the probe
sizes are general and their arrival times to Q1 follow a renewal point process. The
rate λ0 could also be estimated in a cumbersome way through the comparison of the
workloads W 1

j and W 2
j . To extend this probing strategy to estimate the streams char-

123



Queueing Systems (2022) 100:493–495 495

acteristics in the other queues would be very inefficient. For instance, for stream 2
we will need to observe consecutive probe pairs ( j, j + 1) in Q1with W 1

j = S1j+1.

In this case, the workload between the probes W 2
j in Q2 will be only from stream

2, and if they share the same busy period in Q2, the same approach described above
can be used to estimate the stream characteristics. However, the number of probes
under these two conditions will be reduced as they progress through the network and
at the expense of a prolonged observation time. Alternatively, probes could arrive in
batch to increase the chances to be in the same busy period at a queue, but this would
increase the perturbation in the system. On the other hand, the estimation procedure
uses the method of moments characterized by its simplicity and resulting in estima-
tors which are consistent but biased. Also other desired properties of the estimators
(e.g., asymptotic normality, efficiency) are difficult to establish or do not exist.
3 Discussion The inference of the arrival processes and size distributions of differ-
ent streams in tandem queues with probes is a difficult and open problem. A probing
strategy framework allowing to estimate the stream characteristics in the different
queues should be designed. It is possible to consider several probing phases. Other
route paths of the streams can also be considered. In order to avoid the problems associ-
ated with the method of moments, other estimation procedures should be investigated
based on the method of maximum likelihood, expectation-maximization algorithm or
Bayes method. Addressing non-Poisson arrival processes for packet streams and non-
parametric size distributions are also challenging problems. Good properties of the
estimators, such as efficiency and asymptotic normality, are desired. Another direction
is the study of optimal probing strategies with minimum variance of the estimators.
Finally, the consideration of piecewise-stationary arrival processes for the streams is
also a possible direction [2].
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