Skip to main content
Log in

Tolerances in Geometric Constraint Problems

  • Published:
Reliable Computing

Abstract

We study error propagation through implicit geometric problems by linearizing and estimating the linearization error. The method is particularly useful for quadratic constraints, which turns out to be no big restriction for many geometric problems in applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Asimov, L. and Roth, B.: The Rigidity of Graphs, Trans. Amer. Math. Soc. 245 (1978), pp. 171–190.

    Google Scholar 

  2. Asimov, L. and Roth, B.: The Rigidity of Graphs II, J. Math. Anal. Appl. 68 (1979), pp. 171–190.

    Article  Google Scholar 

  3. Bhatia, R.: Matrix Analysis, Springer, 1997.

  4. Bouma, W., Fudos, I., Hoffmann, C., Cai, J., and Paige, R.: Geometric Constraint Solver, Computer-Aided Design 27 (1995), pp. 487–501.

    Article  Google Scholar 

  5. Bruederlin, B.: Using Geometric Rewriting Rules for Solving Geometric Problems Symbolically, Theoret. Comput. Sci. 116 (1993), pp. 291–303.

    Article  Google Scholar 

  6. Cauchy, A. L.: IIe mémoire sur les polygones et les polyèdres, Journal de l’Ecole Polytechnique 19 (1813), pp. 87–98.

    Google Scholar 

  7. Conelly, R.: On Generic Global Rigidity, in: Gritzmann, P. and Sturmfels, B.(eds), Applied Geometry and Discrete Mathematics—The Victor Klee Festschrift, American Mathematical Society,

  8. Crippen, G. M. and Havel, T. F.: Distance Geometry and Molecular Conformation, Chemometrics Series 15, Research Studies Press Ltd., Chichester, 1988.

    Google Scholar 

  9. Fudos, I. and Hoffmann, C.: A Graph-Constructive Approach to Solving Systems of Geometric Constraints, ACMTransactions on Graphics 16 (1997), pp. 179–216.

    Article  Google Scholar 

  10. Gao, X. S. and Chou, S. C.: Solving Geometric Constraint Systems. I.A Global Propagation Approach, Computer-Aided Design 30 (1998), pp. 47–54.

    Article  Google Scholar 

  11. Gao, X. S. and Chou, S. C.: Solving Geometric Constraint Systems. II.A Symbolic Approach and Decision of rc-Constructibility, Computer-Aided Design 30 (1998), pp. 115–122.

    Article  Google Scholar 

  12. Ghosh, P.: A Unified Computational Framework for Minkowski Operations, Computers & Graphics 17 (1993), pp. 357–378.

    Google Scholar 

  13. Higham, N. J.: Accuracy and Stability of Numerical Algorithms, Soc. Industrial and Appl. Math, 1996, Section 6.2.

  14. Hoffmann, C. M.: Robustness in Geometric Computations, Journal of Computing and InformationScience in Engineering 1 (2001), pp. 143–156.

    Article  Google Scholar 

  15. Hoffmann, C. M. and Vermeer, P.: Geometric Constraint Solving in R2 and R3, in: Du, D.-Z. and Hwang, F. K.(eds.), Computing in Euclidean Geometry, World Scientific, 1995, pp. 266–298.

  16. Hu, S.-M. and Wallner, J.: ErrorPropagation through Geometric Transformations, Technical Report 102, Institut four Geometrie, TU Wien, 2003.

    Google Scholar 

  17. Kondo, K.: Algebraic Method for Manipulation of Dimensional Relationships in Geometric Models, Computer-Aided Design 24 (1992), pp. 141–147.

    Article  Google Scholar 

  18. Laman, G.: On Graphs and Rigidity of Plane Skeletal Structures, J. Engrg. Math. 4 (1970), pp. 331–340.

    Article  Google Scholar 

  19. Lamure, H. and Michelucci, D.: Solving Geometric Constraints by Homotopy, IEEE Trans. Vis. Comp. Graph. 2 (1996), pp. 28–34.

    Article  Google Scholar 

  20. Lee, J. Y. and Kim, K.: A 2-D Geometric Constraint Solver Using DOF-Based Graph Reduction, Computer-Aided Design 30 (1998), pp. 883–896.

    Article  Google Scholar 

  21. Lee, K.-Y., Kwon, O.-H., Lee, J.-Y., and Kim, T. W.: A Hybrid Approach to Geometric Constraint Solving with Graph Analysis and Reduction, Adv. Eng. Software 34 (2003), pp. 103–113.

    Article  Google Scholar 

  22. Li, Y.-T., Hu, S.-M., and Sun, J.-G.: A Constructive Approach to Solving 3-D Geometric Constraint Systems Using Dependence Analysis, Computer-Aided Design 34 (2002), pp. 97–108

    Article  Google Scholar 

  23. Light, R. A. and Gossard, D. C.: Modification of Geometric Models through Variational Geometry, Computer-Aided Design 14 (1982), pp. 209–214.

    Article  Google Scholar 

  24. Pottmann, H., Odehnal, B., Peternell, M., Wallner, J., and Haddou, R. A.: On Optimal Tolerancing in Computer-Aided Design, in: Martin, R. and Wang, W.(eds), Geometric Modeling and Processing 2000, IEEE Computer Society, Los Alamitos, 2000, pp. 347–363.

    Google Scholar 

  25. Pottmann, H. and Wallner, J.: Computational Line Geometry, Springer, 2001.

  26. Requicha, A. A. G.: Towards a Theory of Geometric Tolerancing, Internat. J. Robotics Res. 2 (1983), pp. 45–60.

    Google Scholar 

  27. Servatius, B. and Whiteley, W.: Constraining Plane Configurations in Computer-Aided Design: Combinatorics of Directions and Lengths, SIAM J. Discret. Math. 12 (1999), pp. 136–153.

    Article  Google Scholar 

  28. Stachel, H.: Higher-Order Flexibility for a Bipartite Planar Framework, in: Kecskeméthy, A., Schneider, M., and Woernle, C.(eds) Advances in Multi-Body Systems and Mechatronics, Inst. f. Mechanik und Getriebelehre der TU Graz, Duisburg, 1999, pp. 345–357.

  29. Verroust, A., Schonek, F., and Roller, D.: Rule-Oriented Method for Parametrized ComputerAided Design, Computer-Aided Design 25 (1993), pp. 531–540.

    Google Scholar 

  30. Wallner, J., Krasauskas, R., and Pottmann, H.: Error Propagation in Geometric Constructions, Computer-Aided Design 32 (2000), pp. 631–641.

    Article  Google Scholar 

  31. Whitely, W.: Infinitesimal Motions of a Bipartite Framework, Pacific J. Math. 110 (1984), pp. 233–255.

    Google Scholar 

  32. Wunderlich, W.: Ebene Kinematik, BI-Hochschultaschenb ücher 447/447a, Bibliograph. Inst., Mannheim, 1970.

  33. Wunderlich, W.: Über Ausnahmefachwerke, deren Knoten auf einem Kegelschnitt liegen, Acta Math. 47 (1983), pp. 291–300.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Wallner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wallner, J., Schröcker, HP. & Hu, SM. Tolerances in Geometric Constraint Problems. Reliable Comput 11, 235–251 (2005). https://doi.org/10.1007/s11155-005-3617-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11155-005-3617-0

Keywords

Navigation