Skip to main content
Log in

Contracting Optimally an Interval Matrix without Loosing Any Positive Semi-Definite Matrix Is a Tractable Problem

  • Published:
Reliable Computing

Abstract

In this paper, we show that the problem of computing the smallest interval submatrix of a given interval matrix [A] which contains all symmetric positive semi-definite (PSD) matrices of [A], is a linear matrix inequality (LMI) problem, a convex optimization problem over the cone of positive semidefinite matrices, that can be solved in polynomial time. From a constraint viewpoint, this problem corresponds to projecting the global constraint PSD (A) over its domain [A]. Projecting such a global constraint, in a constraint propagation process, makes it possible to avoid the decomposition of the PSD constraint into primitive constraints and thus increases the efficiency and the accuracy of the resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adjiman, C., Dallwig, S., Floudas, C., and Neumaier, A.: A Global Optimization Method, αBB, for General Twice-Differentiable Constrained NLPs — I Theoretical Advances, Computers and Chemical Engineering 22 (1998), pp. 1137–1158.

    Google Scholar 

  2. Ben-Tal, A. and Nemirovskii, A.: Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications, SIAM, Philadelphia, 2001.

    Google Scholar 

  3. Bliek, C., Spellucci, P., Vincente, L., Neumaier, A., Granvilliers, L., Huens, E., Hentenryck, P. V., Sam-Haroud, D., and Faltings, B.: Algorithms for Solving Nonlinear Constrained and Optimisation Problems: State of the Art, Progress report of the COCONUT project, 2001, http://www.mat.univie.ac.at/~neum/glopt/coconut/cocbib.html.

  4. Boyd, S. and Vanbenberghe, L.: Convex Optimization, Lecture Notes at Stanford University and University of California at Los Angeles, 2003, http://www.stanford.edu/~boyd.

  5. Davey, B. A. and Priestley, H. A.: Introduction to Lattices and Order, Cambridge University Press, 2002.

  6. Gahinet, P. and Nemirovskii, A.: LMI Lab: A Package for Manipulating and Solving LMIs, INRIA Rocquencourt, France, 1993.

    Google Scholar 

  7. Gahinet, P., Nemirovskii, A., Laub, A. J., and Chilali, M.: The LMI Control Toolbox for Use with Matlab, The MathWorks, Natick, 1995.

    Google Scholar 

  8. Hansen, E. R.: Global Optimization Using Interval Analysis, Marcel Dekker, New York, 1992.

    Google Scholar 

  9. Jansson, C.: A Rigorous Lower Bound for the Optimal Value of Convex Optimization Problems, Journal of Global Optimization 28 (2004), pp. 121–137.

    Google Scholar 

  10. Jaulin, L., Kieffer, M., Didrit, O., and Walter, E.: Applied Interval Analysis, with Examples in Parameter and State Estimation, Robust Control and Robotics, Springer-Verlag, London, 2001.

    Google Scholar 

  11. Karmarkar, M.: A New Polynomial-Time Algorithm for Linear Programming, Combinatorica 4 (1984), pp. 373–395.

    Google Scholar 

  12. Löfberg, J.: YALMIP, Yet Another LMI Parser, University of Linköping, Sweden, 2001, http://www.control.isy.liu.se/~johanl.

    Google Scholar 

  13. Nesterov, Y. and Nemirovskii, A.: Interior-Point Polynomial Methods in Convex Programming. SIAM, Philadelphia, 1994.

    Google Scholar 

  14. Neumaier, A.: Interval Methods for Systems of Equations, Cambridge University Press, Cambridge, 1990.

    Google Scholar 

  15. Rohn, J.: An Algorithm for Checking Stability of Symmetric Interval Matrices, IEEE Trans. Autom. Control 41 (1) (1996), pp. 133–136.

    Google Scholar 

  16. Sam-Haroud, D.: Constraint Consistency Techniques for Continuous Domains, PhD dissertation 1423, Swiss Federal Institute of Technology in Lausanne, 1995.

    Google Scholar 

  17. Scherer, C. and Weiland, S.: Course on LMIs in Control, Lecture Notes at Delft University of Technology and Eindhoven University of Technology, 2002. http://www.cs.ele.tue.nl/SWeiland/lmi.htm.

  18. Sturm, J. F.: Using SeDuMi 1.02, a Matlab Toolbox for Optimization over Symmetric Cones, Optimization Methods and Software 11–12 (1999), pp. 625–653, http://fewcal.kub.nl/sturm.

    Google Scholar 

  19. van Hentenryck, P., Michel, L., and Deville, Y.: Numerica—A Modelling Language for Global Optimization, MIT Press, Cambridge, Massachusetts, 1997.

    Google Scholar 

  20. Vandenberghe, L. and Boyd, S.: Semidefinite Programming, SIAM Review 38 (1) (1996), pp. 49–95.

    Google Scholar 

  21. VanEmden, M.: Algorithmic Power from Declarative Use of Redundant Constraints, Constraints 4 (4) (1999), pp. 363–381.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Didier Henrion.

Additional information

D. Henrion acknowledges support of grant No. 102/02/0709 of the Grant Agency of the Czech Republic, and project No. ME 698/2003 of the Ministry of Education of the Czech Republic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jaulin, L., Henrion, D. Contracting Optimally an Interval Matrix without Loosing Any Positive Semi-Definite Matrix Is a Tractable Problem. Reliable Comput 11, 1–17 (2005). https://doi.org/10.1007/s11155-005-5939-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11155-005-5939-3

Keywords

Navigation