Skip to main content
Log in

Empirical Investigation of the Convergence Speed of Inclusion Functions in a Global Optimization Context

  • Published:
Reliable Computing

Abstract

This paper deals with the empirical convergence speed of inclusion functions applied in interval methods for global optimization. According to our experience the natural interval extension of a given function can be as good as a usual quadratically convergent inclusion function, and although centered forms are in general only of second-order, they can perform as one of larger convergence order. These facts indicate that the theoretical convergence order should not be the only indicator of the quality of an inclusion function, it would be better to know which inclusion function can be used most efficiently in concrete instances. For this reason we have investigated the empirical convergence speed of the usual inclusion functions on some test functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alefeld, G. and Herzberger, J.: Introduction to Interval Computations, Academic Press, New York, 1983.

    Google Scholar 

  2. Baumann, E.: Optimal Centered Forms, BIT 28(1) (1988), pp. 80–87.

    Google Scholar 

  3. Berz, M. and Hofstätter, G.: Computation and Application of Taylor Polynomials with Interval Remainder Bounds, Reliable Computing 4(1) (1998), pp. 83–97.

    Article  Google Scholar 

  4. Bräuer, M., Hofschuster, W., and Krämer, W.: Steigungsarithmetiken in C–XSC, Preprint 2001/3, Universität Wuppertal, 2001.

  5. Csendes, T.: Numerical Experiences with a New Generalized Subinterval Selection Criterion for Interval Global Optimization, Reliable Computing 9(2) (2003), pp. 109–125.

    Article  Google Scholar 

  6. Hammer, R., Hocks, M., Kulisch, U., and Ratz, D.: C++ Toolbox for Verified Computing I: Basic Numerical Problems: Theory, Algorithms, and Programs, Springer-Verlag, Berlin, 1995.

    Google Scholar 

  7. Klatte, R., Kulisch, U., Wiethoff, A., Lawo, C., and Rauch, M.: C–XSC, A C++ Class Library for Extended Scientific Computing, Springer-Verlag, Berlin, 1993.

    Google Scholar 

  8. Krawczyk, R. and Nickel, K.: The Centered Form in Interval Arithmetics: Quadratic Convergence and Inclusion Isotonicity, Computing 28(2) (1982), pp. 117–137.

    Google Scholar 

  9. Markót, M. Cs., Csendes, T., and Csallner, A. E.: Multisection in Interval Branch-and-Bound Methods for Global Optimization II, Numerical Tests, J. Global Optimization 16(2000), pp. 219–228.

    Article  MathSciNet  Google Scholar 

  10. Martínez, J. A., Casado, L. G., García, I., Sergeyev, Ya. D., and Tóth, B.: On an Efficient Use of Gradient Information for Accelerating Interval Global Optimization Algorithms, Numerical Algorithms 37 (2004), pp. 61–69.

    Article  MathSciNet  Google Scholar 

  11. Messine, F.: Extensions of Affine Arithmetic: Application to Global Optimization, Journal of Universal Computer Science 8 (11) (2002), pp. 992–1015.

    Google Scholar 

  12. Moore, R. E.: Interval Analysis, Prentice Hall, Englewood Cliffs, 1966.

    Google Scholar 

  13. Neumaier, A.: Taylor Forms—Use and Limits, Reliable Computing 9(1) (2003), pp. 43–79.

    Article  Google Scholar 

  14. Ratschek, H. and Rokne, J.: Geometric Computations with Interval and New Robust Methods, Horwood Publ., Chichester, 2003.

    Google Scholar 

  15. Ratschek, H. and Rokne, J.: New Computer Methods for Global Optimization, Wiley, New York, 1988.

    Google Scholar 

  16. Ratz, D.: Automatic Slope Computation and Its Application in Nonsmooth Global Optimization, Shaker Verlag, Aachen, Germany, 1998.

    Google Scholar 

  17. Stolfi, J. and de Figueiredo, L.: Self-Validated Numerical Methods and Applications, Monograph for 21st Brazilian Mathematics Colloquium, IMPA, Rio de Janeiro, 1997.

    Google Scholar 

  18. Tóth, B. and Vinkó, T.: An Efficient Computer Tool Solving Mathematical Problems, Polygon XI (2002), pp. 19–42 (in Hungarian).

    Google Scholar 

  19. Vinkó, T., Lagouanelle, J.-L., and Csendes, T.: A New Inclusion Function for Optimization: Kite—The One Dimensional Case, J. Global Optimization, accepted.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boglárka Tóth.

Additional information

This work has been supported by the Grants OTKA T 034350 and T 032118, OMFB D–30/2000, and OMFB E–24/2001.

The authors are grateful for the anonymous referees for their suggestions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tóth, B., Csendes, T. Empirical Investigation of the Convergence Speed of Inclusion Functions in a Global Optimization Context. Reliable Comput 11, 253–273 (2005). https://doi.org/10.1007/s11155-005-6890-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11155-005-6890-z

Keywords

Navigation