Skip to main content
Log in

A Contribution to the Feasibility of the Interval Gaussian Algorithm

  • Published:
Reliable Computing

Abstract

We apply the interval Gaussian algorithm to an n × n interval matrix [A] whose comparison matrix 〈[A]〉 is generalized diagonally dominant. For such matrices we prove conditions for the feasibility of this method, among them a necessary and sufficient one. Moreover, we prove an equivalence between a well-known sufficient criterion for the algorithm on H matrices and a necessary and sufficient one for interval matrices whose midpoint is the identity matrix. For the more general class of interval matrices which also contain the identity matrix, but not necessarily as midpoint, we derive a criterion of infeasibility. For general matrices [A] we show how the feasibility of reducible interval matrices is connected with that of irreducible ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alefeld, G. : On the Convergence of Some Interval-Arithmetic Modifications of Newton's Method, SIAM J. Numer. Anal. 21 (1984), pp. 363–372.

    Article  MATH  MathSciNet  Google Scholar 

  2. Alefeld, G.: Über die Durchführbarkeit des Gaußschen Algorithmus bei Gleichungen mil Intervallen als Koeffizienten, Computing Suppl. 1 (1977), pp. 15–19.

    MATH  Google Scholar 

  3. Alefeld, G. and Herzberger, J.: Einführung in die Intervallrechnung, Reihe Informatik 12, Bibliographisches Institut, Mannheim, 1974.

  4. Alefeld, G. and Herzberger, J.: Introduction to Interval Computations, Academic Press, New York, 1983.

    Google Scholar 

  5. Alefeld, G. and Mayer, G.: The Gaussian Algorithm for Linear Systems with Interval Data, in: Carlson, D., Johnson, C. R., Lay, D. C., and Porter, A. D. (eds), Linear Algebra Gems: Assets for the Undergraduate Mathematics, The Mathematical Association of America, MAA Notes 59.

  6. Barth, W. and Nuding, E: Optimale Lösung von Intervallgleichungssystemen, Computing 12 (1974), pp. 117–125.

    Article  MathSciNet  Google Scholar 

  7. Berman, A. and Plemmons, R. J.: Nonnegative Matrices in the Mathematical Sciences, Classics in Applied Mathematics 9, SIAM, Philadelphia, 1994.

    Google Scholar 

  8. Frommer, A: A Feasibility Result for Interval Gaussian Elimination Relying on Graph Structure, in: Alefeld, G., Rohn, J., Rump, S., and Yamamoto, T. (eds), Symbolic Algebraic Methods and Verification Methods, SpringerMathematics, Springer, Wien, 2001, pp. 79–86.

    Google Scholar 

  9. Frommer, A. and Mayer, G.: A New Criterion to Guarantee the Feasibility of the Interval Gaussian Algorithm, SIAM J. Matrix Anal. Appl. 14 (1993), pp. 408–419.

    Article  MathSciNet  Google Scholar 

  10. Frommer, A. and Mayer, G.: Linear Systems with Ω-Diagonally Dominant Matrices and Related Ones, Linear Algebra Appl. 186 (1993), pp. 165–181.

    Article  MathSciNet  Google Scholar 

  11. Garloff, J.: Block Methods for the Solution of Linear Interval Equations, SIAM J. Matrix Anal. Appl. 11 (1990), pp. 89–106.

    Article  MATH  MathSciNet  Google Scholar 

  12. Hansen, E. R.: Gaussian Elimination in Interval Systems, preprint, 1997.

  13. Hansen, E. R.: The Hull of Preconditioned Interval Linear Equations, Reliable Computing 6 (2) (2000), pp. 95–103.

  14. Hansen, E. R. and Smith, R.: Interval Arithmetic in Matrix Computations, Part II, SIAM J. Numer. Anal. 4 (1967), pp. 1–9.

    Article  MathSciNet  Google Scholar 

  15. Hebgen, M.: Eine scaling-invariante Pivotsuche für Intervallmatrizen, Computing 12 (1974), pp. 99–106.

    MATH  MathSciNet  Google Scholar 

  16. Klatte, R., Kulisch, U., Neaga, M., Ratz, D., and Ullrich, C.: PASCAL-XSC, Sprachbeschreibung mil Beispielen, Springer, Berlin, 1991.

    Google Scholar 

  17. Mayer, G.: Old and New Aspects of the Interval Gaussian Algorithm, in: Kaucher, E., Markov, S. M., and Mayer, G. (eds), Computer Arithmetic, Scientific Computation and Mathematical Modelling, IMACS Annals on Computing and Applied Mathematics 12, Baltzer, Basel, 1991, pp. 329–349.

    Google Scholar 

  18. Mayer, G. and Pieper, L.: A Necessary and Sufficient Criterion to Guarantee the Feasibility of the Interval Gaussian Algorithm for a Class of Matrices, Appl. Math. 38 (1993), pp. 205–220.

    MathSciNet  Google Scholar 

  19. Mayer, G. and Rohn, J.: On the Applicability of the Interval Gaussian Algorithm, Reliable Computing 4 (3) (1998), pp. 205–222.

  20. Mayer, J.: An Approach to Overcome Division by Zero in the Interval Gaussian Algorithm, Reliable Computing 8 (3) (2002), pp. 229–237.

    Article  MATH  MathSciNet  Google Scholar 

  21. Moore, R. E.: Interval Analysis, Prentice Hall, Englewood Cliffs, 1966.

    Google Scholar 

  22. Moré, J. J.: Nonlinear Generalizations of Matrix Diagonal Dominance with Applications to Gauss-Seidel Iterations, SIAM J. Numer. Anal. 9 (1972), pp. 357–378.

    MATH  MathSciNet  Google Scholar 

  23. Neumaier, A.: Interval Methods for Systems of Equations, Cambridge University Press, Cambridge, 1990.

    Google Scholar 

  24. Neumaier, A.: New Techniques for the Analysis of Linear Interval Equations, Linear Algebra Appl. 58 (1984), pp. 273–325.

    MATH  MathSciNet  Google Scholar 

  25. Nickel, K.: Interval-Analysis, in: Jacobs, D. A. H. (ed.), The State of the Art in Numerical Analysis, Academic Press, London, 1977, pp. 193–225.

    Google Scholar 

  26. Ortega, J. M.: Numerical Analysis, A Second Course, SIAM, Philadelphia, 1990.

    Google Scholar 

  27. Reichmann, K.: Abbruch beim Intervall-Gauss-Algorithmus, Computing 22 (1979), pp. 355–361.

    MATH  MathSciNet  Google Scholar 

  28. Reichmann, K.: Ein hinreichendes Kriterium für die Durchführbarkeit des Intervall-Gauß-Algorithmus bei Intervall-Hessenberg-Matrizen ohne Pivotsuche, Z. Angew. Math. Mech. 59 (1979), pp. 373–379.

    MATH  MathSciNet  Google Scholar 

  29. Rohn, J.: On Overestimations Produced by the Interval Gaussian Algorithm, Reliable Computing 3 (4) (1997), pp. 363–368.

    Article  MATH  MathSciNet  Google Scholar 

  30. Rump, S. M.: INTLAB—INTerval LABoratory, in: Csendes, T. (ed.), Developements in Reliable Computing, Kluwer Academic Publishers, Dordrecht, 1999, pp. 77–104.

    Google Scholar 

  31. Schäfer, U.: The Feasibility of the Interval Gaussian Algorithm for Arrowhead Matrices, Reliable Computing 7 (1) (2001), pp. 59–62.

    MATH  MathSciNet  Google Scholar 

  32. Schätzle, F.: Überschätzung beim Gauss-Algorithmus für lineare Intervallgleichungssysteme, Diplomarbeit, Freiburger Intervall-Berichte 84/3 (1984), pp. 1–122.

    Google Scholar 

  33. Schwandt, H.: An Interval Arithmetic Approach for the Construction of an Almost Globally Convergent Method for the Solution of Nonlinear Poisson Equation on the Unit Square, SIAM J. Set. Statist. Comput. 5 (1984), pp. 427–452.

    MATH  MathSciNet  Google Scholar 

  34. Varga, R. S.: Matrix Iterative Analysis, 2nd ed., Springer, Berlin, 2000.

    Google Scholar 

  35. Wongwises, P.: Experimentelle Untersuchungen zur numerischen Auflösung von linearen Gle-ichungssystemen mil Fehlererfassung, in: Goos, G. and Hartmanis, J. (eds), Interval Mathematics, Lecture Notes in Computer Science 29, Springer, Berlin, 1975, pp. 316–325.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günter Mayer.

Additional information

Dedicated to Professor Dr. H. J. Stetter, Wien, on the occasion of his 75th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mayer, G. A Contribution to the Feasibility of the Interval Gaussian Algorithm. Reliable Comput 12, 79–98 (2006). https://doi.org/10.1007/s11155-006-4876-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11155-006-4876-0

Keywords

Navigation