Skip to main content
Log in

Reliable Modeling and Optimization for Chemical Engineering Applications: Interval Analysis Approach

  • Published:
Reliable Computing

Abstract

In many applications of interest in chemical engineering it is necessary to deal with nonlinear models of complex physical phenomena, on scales ranging from the macroscopic to the molecular. Frequently these are problems that require solving a nonlinear equation system and/or finding the global optimum of a nonconvex function. Thus, the reliability with which these computations can be done is often an important issue. Interval analysis provides tools with which these reliability issues can be addressed, allowing such problems to be solved with complete certainty. This paper will focus on three types of applications: 1) parameter estimation in the modeling of phase equilibrium, including the implications of using locally vs. globally optimal parameters in subsequent computations; 2) nonlinear dynamics, in particular the location of equilibrium states and bifurcations of equilibria in ecosystem models used to assess the risk associated with the introduction of new chemicals int the environment; 3) molecular modeling, with focus on transition state analysis of the diffusion of a sorbate molecule in a zeolite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adjiman, C. S., Androulakis, I. P., and Floudas, C. A.: A Global Optimization Method, Alpha-BB, for General Twice-Differentiable Constrained NLPs—II. Implementation and Com putational Results, Comput. Chem. Eng. 22 (1998), p. 1159.

    Article  Google Scholar 

  2. Adjiman, C. S., Dallwig, S., Floudas, C. A., and Neumaier, A.: A Global Optimization Method, Alpha-BB, for General Twice-Differentiable Constrained NLPs—I. Theoretical Advances, Com put, Chem. Eng.22 (1998), p. 1137.

    Article  Google Scholar 

  3. Baker, J.: An Algorithm for The Location of Transition-States, J. Comput. Chem. 7(1986), pp. 385–395.

    Article  Google Scholar 

  4. Bischof, C. H., Lang, B., Marquardt, W., and Monnigmann, M.: Verified Determination of Sin gularities in Chemical Processes, in: Proceedings SCAN 2000, 9th GAMM-IMACS International Symposium on Scientific Computing, Computer Arithmetic, and Validated Numerics,Karlsruhe, 2000.

  5. Brennecke, J. F. and Maginn, E. J.: Ionic Liquids: Innovative Fluids for Chemical Processing, AIChEJ.47 (2001), pp. 2384–2389.

    Article  Google Scholar 

  6. Burgos-Solorzano, G. I., Brennecke, J. F., and Stadtherr, M. A.: Validated Computing Approach for High-Pressure Chemical and Multiphase Equilibrium, Fluid Phase Equilib.219 (2004), pp. 245–255.

    Article  Google Scholar 

  7. Doedel, E. J., Champneys, A. R., Fairgrieve, T. F, Kuznetsov, Y. A., Sandstede, B., and Wang, X. J.: AUTO97: Continuation and Bifurcation Software for Ordinary Differential Equa tions,Technical report, Department of Computer Science, Concordia Univeristy, Montreal, 1997.

  8. Freemantle, M.: Meeting Briefs: Ionic Liquids Separated from Mixtures by CO2, Chem. Eng. News80 (36) (2002), pp. 44 5.

    Google Scholar 

  9. Gau, C.-Y., Brennecke, J. F., and Stadtherr, M. A.: Reliable Parameter Estimation in VLB Modeling, Fluid Phase Equilib.168 (2000), pp. 1–18.

    Article  Google Scholar 

  10. Gau, C.-Y. and Stadtherr, M. A.: Deterministic Global Optimization for Data Reconciliation and Parameter Estimation Using Error-in-Variables Approach, in: Luus, R. (ed.): Optimization and Optimal Control in Chemical Engineering,Research Signpost, Trivandrum, 2002.

  11. Gau, C.-Y. and Stadtherr, M. A.: Deterministic Global Optimization for Error-in-Variables Param eter Estimation, AIChEJ.48 (2002), pp. 1191–1197.

    Article  Google Scholar 

  12. Gau, C.-Y. and Stadtherr, M. A.: New Interval Methodologies for Reliable Chemical Process Modeling, Comput. Chem. Eng.26 (2002), pp. 827–840.

    Article  Google Scholar 

  13. Gau, C.-Y. and Stadtherr, M. A.: Reliable Nonlinear Parameter Estimation Using Interval Analysis Error-in-Variable Approach, Comput. Chem. Eng.24 (2000), pp. 631–638.

  14. Gerke, V and Marquardt, W.: A Singularity Theory Approach to the Study of Reactive Distillation, Comput. Chem. Eng.21 (1997), pp. S1001–S1006.

    Google Scholar 

  15. Gmehling, J., Onken, U., and Arlt, W.: Vapor-Liquid Equilibrium Data Collection, Chemistry Data Series, Vol. I, Parts 1–8,DECHEMA, Frankfurt/Main, 1977–1990.

  16. Gragnani, A., De Feo, O., and Rinaldi, S.: Food Chains in the Chemostat: Relationships between Mean Yield and Complex Dynamics, B. Math. Biol.60 (4) (1998), pp. 703–719.

    Google Scholar 

  17. Gwaltney, C. R. and Stadtherr, M. A.: Reliable Computation of Equilibrium States and Bifurca tions in Nonlinear Dynamics, in: Proceedings PARA’04 Workshop on State-of-the-art in Scientific Computing,Lyngby, 2004.

  18. Gwaltney, C. R., Styczynski, M. P., and Stadtherr, M. A.: Reliable Computation of Equilibrium States and Bifurcations in Food Chain Models, Comput. Chem. Eng.28 (2004), pp. 1981–1996.

    Article  Google Scholar 

  19. Hansen, E. R. and Walster, G. W.: Global Optimization Using Interval Analysis,Marcel Dekker, New York, 2004.

  20. Hooke, R. and Jeeves, T. A.: Direct Search Solution of Numerical and Statistical Problems, J. Assoc. Comput. Mach.8 (1961), pp. 212–229.

    MATH  Google Scholar 

  21. Hua, J. Z., Brennecke, J. F, and Stadtherr, M. A.: Enhanced Interval Analysis for Phase Stability Cubic Equation of State Models, Ind. Eng. Chem. Res.37 (1998), p. 1519.

    Google Scholar 

  22. Hua, J. Z., Brennecke, J. F., and Stadtherr, M. A.: Reliable Computation of Phase Stability Using Interval Analysis Cubic Equation of State Models, Comput. Chem. Eng.22 (1998), p. 1207.

    Google Scholar 

  23. Jastorff, B., Stormann, R., Ranke, J., Molter, K., Stock, F., and Oberheitmann, B.: How Haz ardous Are Ionic Liquids? Structure-Activity Relationships and Biological Testing as Important Elements for Sustainability Evaluation, Green Chemistry5 (2003), pp. 136–142.

  24. Jaulin, L., Kieffer, M., Didrit, O., and Walter, E: Applied Interval Analysis,Springer-Verlag, London, 2001.

  25. June, R. L., Bell, A. T., and Theodorou, D. N.: Transition-State Studies of Xenon and SF6Diffusion in Silicalite, J. Phys. Chem.95 (1991), pp. 8866–8878.

    Article  Google Scholar 

  26. Karger, J. and Ruthven, D. M.: Diffusion in Zeolites and Other Microporous Solids,Wiley, New York, 1992.

  27. Kaupe, A. R: Algorithm 178 Direct Search, Commun,ACM 6 (1963), p. 313.

  28. Kearfott, R. B.: Rigorous Global Search: Continuous Problems,Kluwer Academic Publishers, Dordrecht, 1996.

  29. Kiselev, A. V., Lopatkin, A. A., and Shulga, A. A.: Molecular Statistical Calculation of Gas Adsorption by Silicalite, Zeolites5 (1985), pp. 1508–1516.

    Article  Google Scholar 

  30. Kuznetsov, Y. A.: Elements of Applied Bifurcation Theory,Springer-Verlag, New York, 1998.

  31. Lin, Y. and Stadtherr, M. A.: Advances in Interval Methods for Deterministic Global Optimization in Chemical Engineering, J. Global Optim. 29 (2004), pp. 281–296.

  32. Lin, Y. and Stadtherr, M. A.: Locating Stationary Points of Sorbate-Zeolite Potential Energy Surfaces Using Interval Analysis, J, Chem. Phys.121 (2004), pp. 10159–10166.

    Google Scholar 

  33. Lin, Y. and Stadtherr, M. A.: LP Strategy for Interval-Newton Method in Deterministic Global Optimization, Ind. Eng. Chem. Res. 43(2004), pp. 3741–3749.

    Google Scholar 

  34. Maier, R. W., Brennecke, J. P., and Stadtherr, M. A.: Reliable Computation of Homogeneous Azeotropes, AIChEJ. 44(1998), p. 1745.

  35. Maier, R. W, Brennecke, J. P., and Stadtherr, M. A.: Reliable Computation of Reactive Azeotropes, Comput. Chem. Eng.24 (2000), pp. 1851–1858.

    Article  Google Scholar 

  36. Maier, R. W. and Stadtherr, M. A.: Reliable Density-Functional-Theory Calculations of Adsorp tion inNanoporous Materials, AIChEJ.47 (2001), pp. 1874–1884.

  37. McKinnon, K. I. M., Millar, C. G., and Mongeau, M.: Global Optimization for the Chemical and Phase Equilibrium Problem Using Interval Analysis, in: Floudas, C. A. and Pardalos, P. M. (eds): State of the Art in Global Optimization Computational Methods and Applications,Kluwer Academic Publishers, Dordrecht, 1996.

  38. Moghadas, S. M. and Gumel, A. B.: Dynamical and Numerical Analysis of a Generalized Food- chain Model, Appl. Math. Comput.142 (1) (2003), pp. 35 19.

  39. Monnigmann, M. and Marquardt, W.: Normal Vectors on Manifolds of Critical Points for Para metric Robustness of Equilibrium Solutions of ODE Systems, J. Nonlinear Sci.12 (2002), pp. 85–112.

    Article  MathSciNet  Google Scholar 

  40. Neumaier, A.: Interval Methods for Systems of Equations,Cambridge University Press, Cam bridge, 1990.

  41. Olson, D. H., Kokotailo, G. T., Lawton, S. L., and Meier, W. M.: Crystal Structure and Structure- Related Properties of ZSM-5, J. Phys. Chem.85 (1981), pp. 2238–2243.

    Article  Google Scholar 

  42. Rohn, J. and Kreinovich, V: Computing Exact Componentwise Bounds on Solution of Linear Systems with Interval Data Is NP-Hard, SIAMJ. Matrix. Anal.16 (1995), pp. 415 120.

  43. Schnepper, C. A. and Stadtherr, M. A.: Robust Process Simulation Using Interval Methods, Comput. Chem. Eng.20 (1996), p. 187.

    Article  Google Scholar 

  44. Scurto, A. M., Xu, G., Brennecke, J. R, and Stadtherr, M. A.: Phase Behavior and Reliable Computation of High-Pressure Solid-Fluid Equilibrium with Cosolvents, Ind. Eng. Chem. Res.42 (2003), pp. 6464–6475.

    Google Scholar 

  45. Siirola, J. D., Hauen, S., and Westerberg, A. W.: Agent-Based Strategies for Multiobjective Optimization,Paper 265g, AIChE Annual Meeting, Indianapolis, 2002.

  46. Stadtherr, M. A., Schnepper, C. A., and Brennecke, J. F.: Robust Phase Stability Analysis Using Interval Methods, AIChE Symp. Ser.91 (304) (1995), p. 356.

    Google Scholar 

  47. Stradi, B. A., Brennecke, J. P., Kohn, J. P., and Stadtherr, M. A.: Reliable Computation of Mixture Critical Points, AIChE J.47 (2001), pp. 212–221.

    Article  Google Scholar 

  48. Stradi, B. A., Xu, G., Brennecke, J. P., and Stadtherr, M. A.: Modeling and Design of an Environmentally Benign Reaction Process, AIChE Symp. Ser. 96(323) (2000), pp. 371–375.

  49. Tessier, S. R., Brennecke, J. R, and Stadtherr, M. A.: Reliable Phase Stability Analysis for Excess Gibbs Energy Models, Chem. Eng. Sci.55 (2000), p. 1785.

    Google Scholar 

  50. Trefethen, N.: A Hundred-Dollar Hundred-Digit Challenge, SIAMNews35 (2002), p. 1.

  51. Tsai, C. J. and Jordan, K. D.: Use of An Eigenmode Method to Locate The Stationary-Points on The Potential-Energy Surfaces of Selected Argon And Water Clusters, J, Phys. Chem.97 (1993), pp. 11227–11237.

    Article  Google Scholar 

  52. Ulas, S., Diwekar, U. M., and Stadtherr, M. A.: Uncertainties in Parameter Estimation and Optimal Control in Batch Distillation, Comput, Chem, Eng, 29(2005), pp. 1805–1814.

    Article  Google Scholar 

  53. Westerberg, K. M. and Ploudas, C. A.: Locating All Transition States and Studying the Reaction Pathways of Potential Energy Surfaces, J. Chem. Phys. 110(1999), pp. 9259–9295.

    Article  Google Scholar 

  54. Xu, G., Brennecke, J. P., and Stadtherr, M. A.: Reliable Computation of Phase Stability and Equilibrium from the SAPT Equation of State, Ind, Eng, Chem, Res, 41(2002), pp. 938–952.

    Article  Google Scholar 

  55. Xu, G., Scurto, A. M., Castier, M., Brennecke, J. P., and Stadtherr, M. A.: Reliable Computation of High Pressure Solid-Fluid Equilibrium, Ind. Eng. Chem. Res.39 (2000), pp. 1624–1636.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Stadtherr.

Additional information

Author to whom all correspondence should be addressed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, Y., Gwaltney, C.R. & Stadtherr, M.A. Reliable Modeling and Optimization for Chemical Engineering Applications: Interval Analysis Approach. Reliable Comput 12, 427–450 (2006). https://doi.org/10.1007/s11155-006-9013-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11155-006-9013-6

Keywords

Navigation