Skip to main content
Log in

Population modeling of the emergence and development of scientific fields

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

We analyze the temporal evolution of emerging fields within several scientific disciplines in terms of numbers of authors and publications. From bibliographic searches we construct databases of authors, papers, and their dates of publication. We show that the temporal development of each field, while different in detail, is well described by population contagion models, suitably adapted from epidemiology to reflect the dynamics of scientific interaction. Dynamical parameters are estimated and discussed to reflect fundamental characteristics of the field, such as time of apprenticeship and recruitment rate. We also show that fields are characterized by simple scaling laws relating numbers of new publications to new authors, with exponents that reflect increasing or decreasing returns in scientific productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Derek J. de Solla Price, Little Science, Big Science, New York: Columbia University Press, 1963.

    Google Scholar 

  2. T. Braun, E. Bujdosó, A. Schubert, The Literature of Analytical Chemistry: A Scientometric Evaluation, Boca Raton, FL: CRC Press, 1987.

    Google Scholar 

  3. W. Goffman, V. A. Newill, Generalization of epidemic theory: An application to the transmission of ideas, Nature, 204 (1964) 225–228; W. Goffman, Mathematical approach to the spread of scientific ideas: The history of mast cell research, Nature, 212 (1966) 449–452; W. Goffman, G. Harmon, Mathematical approach to the prediction of scientific discovery, Nature, 229 (1971) 103–104.

    Article  Google Scholar 

  4. E. Garfield, The epidemiology of knowledge and the spread of scientific information, Current Contents, 35 (1980) 5–10.

    Google Scholar 

  5. A. N. Tabah, Literature dynamics: Studies of growth, diffusion, and epidemics, Annual Review of Information Science and Technology (ASIS), 34 (1999) 249–286.

    Google Scholar 

  6. T. Braun, The epidemic spread of fullerene research, Angew. Chem. Int. Ed. Engl., 31 (1992) 588–589.

    Article  Google Scholar 

  7. M. E. J. Newman, Scientific collaboration networks: I. Network construction and fundamental results, Phys. Rev. E, 64 (2001) 016131; M. E. J. Newman, Scientific collaboration networks: II. Shortest paths, weighted networks, and centrality, Phys. Rev. E, 64 (2001) 016132; M. E. J. Newman, The structure of scientific collaboration networks, Proc. Natl. Acad. Sci. USA, 101 (2004) 404–409.

  8. S. Redner, Citations statistics from 110 years of Physical Review, Physics Today, 58 (2005) 49.

    Article  Google Scholar 

  9. R. M. Shiffrin, K. Börner, Mapping knowledge domains, Proc. Natl. Acad. Sci. USA, 98 (2001) 5183–5185.

    Google Scholar 

  10. C. Chen, Searching for intellectual turning points: Progressive knowledge domain visualization, Proc. Natl. Acad. Sci. USA (suppl.), 101 (2004) 5303–5310.

    Article  Google Scholar 

  11. K. W. Boyack, R. Klavans, K. Börner, Mapping the backbone of science, Scientometrics, 64 (2005) 351–374.

    Article  Google Scholar 

  12. L. M. A. Bettencourt, A. Cintron-Arias, D. I. Kaiser, C. Castillo-Chávez, The power of a good idea: Quantitative modeling of the spread of ideas from epidemiological models, Physica A, 364 (2006) 513–536.

    Article  Google Scholar 

  13. http://library.lanl.gov/lww/

  14. F. Brauer, C. Castillo-Chávez, Mathematical Models in Population Biology and Epidemiology. Texts in Applied Mathematics, 40, New York: Springer-Verlag, 2001.

    MATH  Google Scholar 

  15. K. L. Cooke, D. A. Allers, C. Castillo-Chávez, Mixing patterns in models of AIDS, In: O. Arino, D. Axelrod, M. Kimmel (Eds), Mathematical Population Dynamics, New York: Dekker, 1991, pp. 297–309; C. Castillo-Chávez, K. Cooke, W. Huang, S. A. Levin, The role of long incubation periods in the dynamics of HIV/AIDS, part 1: Single population models, J. Math. Biol., 27 (1989) 373–398.

    Google Scholar 

  16. A. H. Guth, The inflationary universe: A possible solution to the horizon and flatness problems, Phys. Rev. D, 23 (1981) 347–356; A. D. Linde, A new inflationary universe scenario: A possible solution of the horizon, flatness, homogeniety, isotropy, and primordial monopole problems, Phys Lett B, 108 (1982) 389–393; A. Albrecht, P. J. Steinhardt, Cosmology for Grand Unified Theories with radiatively induced symmetry breaking, Phys. Rev. Lett., 48 (1982) 1220–1223.

    Article  Google Scholar 

  17. A. H. Guth, D. I. Kaiser, Inflationary cosmology: Exploring the universe from the smallest to the largest scales, Science, 307 (2005) 884–890.

    Article  MathSciNet  Google Scholar 

  18. T. W. B. Kibble, Topology of cosmic domains and strings, J. Phys. A, 9 (1976) 1387–1398.

    Article  Google Scholar 

  19. A. Vilenkin, E. P. S. Shellard, Cosmic Strings and Other Topological Defects, New York: Cambridge University Press, 1994.

    MATH  Google Scholar 

  20. S. B. Prusiner, Scrapie prions, Annu. Rev. Microbiol., 43 (1989) 345–374.

    Article  Google Scholar 

  21. K. Weigmann, Fashion of the times, EMBO Rep., 5 (11) (2004) 1028–1031.

    Article  Google Scholar 

  22. S. B. Prusiner, Prions, In: Les Prix Nobel 1997, Stockholm: Nobel Foundation, 1998, 262–323. Reprinted in Proc. Natl. Acad. Sci. USA, 95 (1998) 13363–13383.

    Google Scholar 

  23. http://www.who.int/csr/disease/avian_influenza/en/

  24. S. Iijima, Helical microtubules of graphitic carbon, Nature, 354 (1991) 56–58.

    Article  Google Scholar 

  25. T. Braun, A. Schubert, S. Zsindely, Nanoscience and nanotechnology on the balance, Scientometrics, 38 (1997) 321–325.

    Article  Google Scholar 

  26. T. Braun, S. Zsindely, I. Dióspatonyi, E. Zádor, Gatekeeping patterns in nano-titled journals, Scientometrics, 70 (2007) 651–667.

    Article  Google Scholar 

  27. R. P. Feynman, Simulating Physics with Computers, Int. J. Theor. Phys., 21 (1982) 467; Quantum mechanical computers, Found. Phys., 16 (1986) 507.

    Article  MathSciNet  Google Scholar 

  28. D. Deutsch, Quantum Theory, the Church-Turing Principle and the Universal Quantum Computer, Proc. R. Soc. Lond. A, 400 (1985) 97.

    Article  MATH  MathSciNet  Google Scholar 

  29. P. W. Shor, Polynomial time algorithms for prime factorization and discrete logarithms on a quantum computer, Proc. 35th Ann. IEEE Symp. on Foundations of Computer Science, S. Goldwater (Ed.), Los Alamitos, CA: Computer Society Press, 1994; L. K. Grover, A fast quantum mechanical algorithm for database search, Proceedings, 28th Annual ACM Symposium on the Theory of Computing, 212 (1996).

    Google Scholar 

  30. D. G. Cory, A. F. Fahmy, T. F. Havel, Ensemble quantum computing by NMR spectroscopy, Proc Natl. Acad. Sci. USA, 94 (1997) 1634–1639.

    Article  Google Scholar 

  31. L. M. A. Bettencourt, J. Lobo, D. Helbing, C. Kühnert, G. B. West, Growth, innovation, scaling and the pace of life in cities, Proc. Natl. Acad. Sci. USA, 104 (2007) 7301–7306.

    Article  Google Scholar 

  32. See, e.g., C. Mody, How probe microscopists became nanotechnologists, In: D. Baird, A. Nordmann, J. Schummer (Eds), Discovering the Nanoscale, Amsterdam: IOS Press, 2004, pp. 119–133; L. Zucker, M. Darby, Socio-economic impact of nanoscale science: Initial results and NanoBank, National Bureau of Economic Research, Cambridge, MA, Working Paper 11181 (2005); and the special issue of Scientometrics, 70 (2007) 541–880.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luís M. A. Bettencourt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bettencourt, L.M.A., Kaiser, D.I., Kaur, J. et al. Population modeling of the emergence and development of scientific fields. Scientometrics 75, 495–518 (2008). https://doi.org/10.1007/s11192-007-1888-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-007-1888-4

Keywords

Navigation