Skip to main content
Log in

Networks of scientific journals: An exploration of Chinese patent data

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

We apply social network analysis to display the characteristics of the networks resulting from bibliographic coupling of journals by the Chinese patent data of United States Patent and Trademark Office (USPTO) between 1995 and 2002. The networks of journals in all fields, the three strongly science-based fields (i.e. Biotechnology, Pharmaceuticals, and Organic Fine Chemistry), and the three weakly science-based fields (i.e. Optics, Telecommunications, and Consumer Electronics), have been analyzed from the global and the ego views, respectively. We study a variety of statistical properties of our networks, including number of actors, number of edges, size of the giant component, density, mean degree, clustering coefficient and the centralization measures of the network. We also highlight some apparent differences in the network structure between the subjects studied. Besides, we use the three centrality measures, i.e. degree, closeness, and betweenness, to identify the important journals in the network of all fields and those strongly science-based networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahlgren, P., Jarneving, B. (2008), Bibliographic coupling, common abstract stems and clustering: A comparison of two document-document similarity approaches in the context of science mapping, Scientometrics, 76(2): 273–290.

    Article  Google Scholar 

  • Balconi, M., Breschi, S., Lissoni, F. (2004), Networks of invertors and the role of academia: an exploration of Italian patent data, Research Policy, 33: 127–145.

    Article  Google Scholar 

  • Bhattacharya, S., Meyer, M. (2003), Large firms and the science-technology interface: Patents, patent citations, and scientific output of multinational corporations in thin films, Scientometrics, 58(2): 265–279.

    Article  Google Scholar 

  • Callaert, J., Van Looy, B., Verbeek, A., Debackere, K., Thijs, B. (2006), Traces of prior art: An analysis of non-patent references found in patent documents, Scientometrics, 69(1): 3–20.

    Article  Google Scholar 

  • Cantner, U., Graf, H. (2006), Network of innovators in Jena: An application. Research Policy, 35: 463–480.

    Article  Google Scholar 

  • Carpenter, M. P., Narin, F. (1983), Validation study: Patent citations as indicators of science and foreign dependence, World Patent Information, 5: 180–185.

    Article  Google Scholar 

  • Chong, J.-Y., Min, H.-G., Park, M.-C. (2003), Patterns of knowledge production: the case of information and telecommunication sector, Scientometrics, 58(1): 115–128.

    Article  Google Scholar 

  • De Nooy, W., Mrvar, A., Batagelj, V. (2005), Exploratory Network Analysis with Pajek. Cambridge University Press, New York.

    Google Scholar 

  • Egghe, L., Rousseau R. (2002), Co-citation, bibliographic coupling and a characterization of lattice citation networks, Scientometrics, 55(3): 349–361.

    Article  Google Scholar 

  • Godin, B. (1993), The Relationship between Science and Technology: A Bibliometric Analysis of Papers and Patents in Innovative Firms, unpublished D. Phil. thesis. University of Sussex, 1993.

  • Godin, B. (1995), Research and the practice of publication in industries, Research Policy, 25: 587–606.

    Article  Google Scholar 

  • Girvan, M., Newman, M. E. J. (2002), Community structure in social and biology networks. Proc. Natl. Acad. Sci, 99(12): 7821–7826.

    Article  MATH  MathSciNet  Google Scholar 

  • Glänzel, W., Meyer, M. (2003), Patents cited in the scientific literature: An exploratory study of reverse. citation relations, Scientometrics, 58(2): 415–428.

    Article  Google Scholar 

  • Grupp, H. (1996), Spillover effects and the science base of innovations reconsidered: an empirical approach, Journal of Evolutionary Economics, 6: 175–197.

    Article  Google Scholar 

  • Grupp, H., Mont, G., Schmoch, U. (1996), Assessing different types of patent data for describing hightechnology export performance. In: Innovation, Patents and Technological Strategies (pp. 271–287). Paris: OECD.

    Google Scholar 

  • Guan, J. C., He, Y. (2007), Patent-bibliometric Analysis on the Chinese Science — Technology Linkages, Scientometrics, 72(3): 403–425.

    Article  MathSciNet  Google Scholar 

  • Huang M. H., Chiang L. Y., Chen, D. Z. (2003), Constructing a patent citation map using bibliographic coupling: A study of Taiwan’s high-tech companies, Scientometrics, 58(3): 489–506.

    Article  Google Scholar 

  • Inoue, H., Souma, W. Tamada, S. (2007), Spatial characteristics of joint application networks in Japanese patents, Physica A, 383(1): 152–157.

    Article  Google Scholar 

  • Knoke, D., Kuklinski, J. H. (1982), Network Analysis. Sage University Paper Series on Quantitative Applications in the Social Sciences, Sage, Newbury Park, CA.

    Google Scholar 

  • Latour, B. (1987), Science in Action: How to Follow Scientists and Engineers through Society. Oxford: Oxford University Press.

    Google Scholar 

  • Leydesdorff, L. (2004), The university-industry knowledge relationship: Analyzing patents and the science base of technologies. Journal of the American Society for Information Science & Technology, 55(11): 991–1001.

    Article  Google Scholar 

  • Leydesdorff, L. (2007a), Betweenness centrality as an indicator of the interdisciplinarity of scientific journals. Journal of the American Society for Information Science and Technology, 58(9): 1303–1319.

    Article  Google Scholar 

  • Leydesdorff, L. (2007b), Visualization of the ciatation impact environments of scientific journals: An online mapping exercise. Journal of the American Society for Information Science and Technology, 58(1): 25–38.

    Article  Google Scholar 

  • Leydesdorff, L., Zhou P. (2007), Nanotechnology as a field of science: Its delineation in terms of journals and patents. Scientometrics, 70(3): 693–713.

    Article  Google Scholar 

  • Metcalfe, A. S. (2006), The corporate partners of higher education associations: A social network analysis, Industry and Innovation, 13(4): 459–479.

    Article  MathSciNet  Google Scholar 

  • Meyer, M. (2000), Does science push technology? Patents citing scientific literature. Research Policy, 29(3): 409–434.

    Article  Google Scholar 

  • Meyer, M. (2006), Measuring science-technology interaction in the knowledge-driven economy: the case of a small economy, Scientometrics, 66(2): 425–439.

    Article  Google Scholar 

  • Martinsons, M. G., Everett, J. E., Chan, K. (2001), Mapping the scholarly development of strategic management, Journal of Information Science 27: 101–110.

    Article  Google Scholar 

  • Narin, F., Noma, E. (1985), Is technology becoming science? Scientometrics, 7(3–6): 369–381.

    Article  Google Scholar 

  • Newman, M. E. J. (2001a), Scientific collaboration networks. I. Network construction and fundamental results, Physical Review E, 64: 016131 (8).

    Google Scholar 

  • Newman, M. E. J. (2001b), Scientific collaboration networks.II. Shortest paths, weighted networks, and centrality, Physical Review E, 64: 016132 (7).

    Google Scholar 

  • Newman, M. E. J. (2001c), The structure of scientific collaboration networks, Proc. Natl. Acad. Sci, 98: 404–409.

    Article  MATH  Google Scholar 

  • OECD (2004), Compendium of Patent Statistics, OECD, Paris.

    Google Scholar 

  • Otte, E., Rousseau, R (2002), Social network analysis: a powerful strategy, also for the information sciences, Journal of Information Science, 28(6): 441–453.

    Article  Google Scholar 

  • Pavitt, K., Soete, L. (1980), Innovation activities and export shares: Some comparisons between industries and countries, In: Technical Innovation and British Economic Performance, K. Pavitt (Ed.), Macmillan, London.

    Google Scholar 

  • Tijssen, R. J. W., Buter, R. K., Van Leeuwen, Th. N. (2000), Technological relevance of science: an assessment of citation linkages between patents and research papers, Scientometrics, 47(2): 389–412.

    Article  Google Scholar 

  • Van Looy, B., Debackere, K., Callaert, J., Tijssen, R., Van Leeuwen, T. (2006), Scientific capabilities and technological performance of national innovation systems: An exploration of emerging industrial relevant research domains, Scientometrics, 66(2): 295–310.

    Article  Google Scholar 

  • Van Looy, B., Zimmermann, E., Veugelers, R., Verbeek, A., Mello, J., Debackere, K. (2003), Do science-technology interactions pay off when developing technology? An exploratory investigation of 10 science-intensive technology domains, Scientometrics, 57(3): 355–367.

    Article  Google Scholar 

  • Verbeek, A., Debackere, K., Luwel, M., Andries, P., Zimmermann, E., Deleus, F. (2002), Linking science to technology: Using bibliographic references in patents to build linkage schemes, Scientometrics, 54(3): 399–420.

    Article  Google Scholar 

  • Wasserman, S., Faust, K. (1994), Social Network Analysis: Methods and Applications. Cambridge, NY: Cambridge University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiancheng Guan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, X., Guan, J. Networks of scientific journals: An exploration of Chinese patent data. Scientometrics 80, 283–302 (2009). https://doi.org/10.1007/s11192-007-2013-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-007-2013-4

Keywords

Navigation