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Abstract

We have developed a method to obtain robust quantitative bibliometric indicators
for several thousand scientists. This allows us to study the dependence of bibliometric
indicators (such as number of publications, number of citations, Hirsch index...) on
the age, position, etc. of CNRS scientists. Our data suggests that the normalized
h index (h divided by the career length) is not constant for scientists with the same
productivity but differents ages.

We also compare the predictions of several bibliometric indicators on the promo-
tions of about 600 CNRS researchers. Contrary to previous publications, our study
encompasses most disciplines, and shows that no single indicator is the best predictor
for all disciplines. Overall, however, the Hirsch index h provides the least bad correla-
tions, followed by the number of papers published. It is important to realize however
that even h is able to recover only half of the actual promotions. The number of
citations or the mean number of citations per paper are definitely not good predictors
of promotion.

1 Introduction

A former president of the German Research Foundation declared in 1989: “When I came to
Göttingen in 1931, everyone there knew who were the great scientists among the professors
[...] and the best young scientists, those with a great future. [...] I still find no fault in
this system [of evaluation]. But I know that today it can no longer work effectively...
it is an informal system which requires unselfishness and self-criticism on the part of its
main participants. This renders it defenseless against suspicion – one cannot say: “I
am honest so you must believe me”” (my emphasis) [Leibnitz(1989)]. Prof. Leibnitz
nicely summarizes the permanent tension between an expert – partially subjective – way
of evaluating research and a more objective way, based on (bibliometric) quantitative
indicators.

This tension has known renewed interest lately thanks to the introduction of a promis-
ing bibliometric indicator, h, called the Hirsch index after physicist J. Hirsch who intro-
duced it in 2005 [Hirsch(2005)]. The h index is defined as the highest number of papers of a
scientist that received h or more citations each, while the other papers have not more than
h citations each. He suggests that his index reduces several well-known problems of other
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indices such as the number of articles or the number of citations. Hirsch also introduced
the normalized index hy. It represents h divided by the “scientific age”, i.e. the career
length of the scientist, which by convention starts the year of his first publication. This
normalization takes into account the fact that h automatically increases with time, and
implicitly assumes that h increases linearly in time, an assumption which is not supported
by our data (section 4).

In this paper, we present a method to extract bibliometric indicators for several thou-
sand scientists. This allows us to study average trends of academic productivity from most
scientific domains. Our large dataset also allows us to test empirically two fundamental
questions for bibliometry: is h better than the other quantifiers of academic activity in
predicting promotions of CNRS researchers to senior positions? Second: if h is the best
predictor, is it actually good? By this we mean: what is the proportion of promotions
that are predicted by h?

Our study significantly improves preceding empirical studies carried out on small sam-
ples for technical reasons (difficulty of obtaining large sets of robust bibliometric indica-
tors). Moreover, these studies were generally limited to a subdiscipline: physics [Hirsch(2005)],
biomedicine [Bornmann and Daniel(2005), Bornmann and Daniel(2007)], information sci-
ence [Cronin and Meho(2006)], business [Saad(2006)] and chemistry [Raan(2006)].

On a more general note, our paper wants to contribute empirically to the old discussion
of the relevance of bibliometric indicators to account for scientific merits. To be schematic,
there are two opposing positions. First, science experts argue that the only way to judge
scientists’ works and merits, in order to hire or promote them, is through subjective ex-
pertise by insiders. Second, some argue that these experts cannot be trusted and promote
an “objective” science evaluation through the use of well-defined, quantitative operations.
Before entering the empirical part of our paper, we think that it important to put this
debate into context.

2 Context : the temptation of mechanical objectivity

2.1 In society

There is a general tendency in modern society to quantify aspects of life, to be able to
grasp them more easily. This has been summarized long ago in A. N. Whitehead’s fa-
mous quote: “Civilization advances by extending the number of important operations
which we can perform without thinking about them. Operations of thought are like cav-
alry charges in a battle – they are strictly limited in number, they require fresh horses,
and must only be made at decisive moments”[Whitehead(2007)]. Besides scientists’ Top
100 [Web of Science], examples of this tendency include sports players (baseball, basket-
ball...) or chief executive officers according to their fortune. Summarizing complex systems
by homogeneous quantities allows a simpler (but controversial) mathematical treatment
of complex questions, as when economists transform pollution or time gains into money.
As sociologist Bruno Latour points out: “The universal yardstick of fortune – money –
simplifies extremely complex social relations. To account for rank hierarchies between
Swann and madame Verdurin, one needs all the subtlety of Marcel Proust. Instead, to
rank contemporary millionaires, a Fortune journalist will do”[Latour and Lépinay(2007)].

2.2 Porter’s interpretation

It is tempting to interpret this trend towards quantification as a linear progress towards
more powerful and more objective scientific methods. However, this view forgets that
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quantification is intimately related to expertise, and that expertise is a relation between
scientific experts and public officials [Porter(1995)]. Therefore, in order to understand
quantification, it is important to look at the social basis of authority of the experts.

In our modern society, expertise based on mere intuition and judgement seems obscure
and potentially undemocratic. This is because for non experts, a valid judgement and a
subjective bias are difficult to distinguish. Therefore, one solution is to ban subjectivity
altogether, even if this leads to throw away (part of) the baby with the bath water:
mechanical objectivity, i.e. knowledge based on explicit rules, necessary for quantification,
is never fully attainable. As Porter argues, “The appeal of numbers is especially compelling
to bureaucratic officials who lack the mandate of a popular election. Quantification is a
way of making decisions without seeming to decide. Objectivity lends authority to officials
who have very little of their own” [Porter(1995)].

2.3 CNRS quantification temptations

When working on bibliometric indicators, one should keep in mind the diffuse back-
ground of mistrust in peer evaluation of research. For example, Hirsch’s original pa-
per [Hirsch(2005)] concludes by: “I suggest that this index may provide a useful yardstick
to compare different individuals competing for the same resource when an important
evaluation criterion is scientific achievement, in an unbiased way” (my emphasis). This
resonates with the ambition of science administrators to find a single indicator to select
and/or promote scientists, without having to rely on more or less uncontrollable com-
missions. This tension has been going on for years in France, where peer evaluation
commissions defend their expertise against various attempts from CNRS administration
to implement “objective” promotions based on bibliometric indicators. But this tension
is of course more general than its CNRS version, as exemplified by the discussions around
the Shanghai ranking of universities (see a short presentation of the obvious shortcomings
of such a ranking in [Butler(2007)]).

Here are some of the arguments offered by the defenders of the “expert subjective
judgement”. In hard or social sciences, any quantifier supposes a theory that gives meaning
to it. And, clearly, citation theory is not one of the strongest! If a significant fraction of
citations received by a paper acknowledges its importance for the community, there exist
many other well-established reasons to cite a work. For example, Mathew’s effect (the
more cited get more citations) or the fact that one can cite a paper to criticize it. We
refer the reader to [Brooks(1996)] for one of the rare empirical studies of citers’ motivations
and [Kostoff(1998), Leydesdorff(1998), Liu(1993)] for reviews. Scientists know many ways
to improve their citation record, and will develop many more if this indicator becomes
crucial for their career. For example, a team can decide to include all its members in all
publications (since nor the citation record nor h takes into account the number of authors
of a paper) and refer to their own publications extensively. They might even focus their
citations on those papers which are a few citations short of counting for their h. Therefore,
it is unfair to suggest, as Hirsch does [Hirsch(2005)], that only peer committees can be
biased. Bibliometric indicators are also biased, although in different and, arguably, more
systematic ways.

It is surprising that bibliometric indicators can be uncritically taken as giving the
“true” value of scientific merits, transforming in “errors” any deviation of peer judgment
from the h ranking: “Even though the h indices of approved [...] applicants on average
(arithmetic mean and median) are higher than those of rejected applicants (and with this,
fundamentally confirm the validity of the funding decisions), the distributions of the h
indices show in part overlaps that we categorized as type I error (falsely drawn approval)

3



or type II error (falsely drawn rejection)” [Bornmann and Daniel(2007)]1.
Needless to say, even if bibliometric indicators could account for academic achievement,

they ignore many dimensions of scientists’ work which should be taken into account for a
proper evaluation : conceptual innovation capacity, risk taking, industrial collaborations,
teaching abilities, popularization activities, team management, etc. [Larédo et al.(1992),
Nowotny et al.(2003)].

3 Methods : obtaining reliable bibliometric indicators for

several thousand scientists

Briefly stated, our method uses the “Author search” of the Web of Science (WoS) [Web of Science]
on the subset of 8750 scientists having filled out the CNRS report the last three years2. We
exclude researchers in Social Sciences (their bibliographic record is not well documented
in the WoS) and in High Energy Physics (too few records in the CNRS database), leading
to 6900 names. After filtering records suspected to be erroneous, we obtain a database
of 3659 scientists with reliable bibliometric indicators, as checked by close inspection of
several hundred records. A summary of the subdisciplines encompassed by our database,
together with some characteristic average values, is shown in table 1. The different posi-
tions of CNRS scientists are, by increasing hierarchical importance : “Chargé de Recherche
2e classe” (CR2), “Chargé de Recherche 1re classe” (CR1), “Directeur de Recherche 2e

classe” (DR2), “Directeur de Recherche 1re classe” (DR1) and “Directeur de Recherche
de Classe Exceptionnelle” (DRCE).

3.1 Detailed description of our procedure

In the following, we detail our procedure to obtain a large but reliable sample (≃ 3 500
records) of bibliometric indicators (number of publications, citations and h index). The
difficulty lies in the proper identification of the publications of each scientist. Two opposite
dangers arise. The first one consists in including extra publications because the request
is not precise enough. For example, if only surname and name initials are indicated to
WoS, the obtained list may contain papers from homonyms. The second one consists in
missing some papers. This can happen if scientists change initials from time to time, or if
the surname corresponds to a woman who changed name after marriage. But this can also
happen when one tries to be more precise to correct for the first danger, by adding other
characteristics such as scientific discipline or French institutions for CNRS scientists. The
problem is that both the records and the ISI classifications are far from ideal: the scientific
field can be confusing for interdisciplinary research, the limitation to French institutions
incorrect for people starting their career in foreign labs, etc.

Basically, our strategy consists in guessing if there are homonyms (see below how we
manage to get a good idea on this). If we think there are no homonyms, then we count all
papers, for any supplementary information (and the resulting selection) can lead to miss
some records. If we guess that there are homonyms, then we carefully select papers by
scientific domain and belonging to French institutions. After all the bibliometric records
have been obtained in this way, we filter our results to eliminate “suspect” records by two
criteria: average number of publications per year and scientist’s age at the first publication.

1Note that this citation is a clear example of undeserved “bibliometric” credit...
2We use data from the annual “Comptes Rendus Annuels des Chercheurs (CRAC)” kindly communi-

cated by CNRS Human Resources Department.
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3.1.1 Evaluate the possibility that there exist homonyms

For this, compute the ratio of the number of papers found for the exact spelling (for
example JENSEN P.) and all the variants proposed by WoS (JENSEN P.*, meaning P.A.
P.B., etc.). If this ratio is large (in our study, larger than .8), then the studied surname
is probably not very common and the author might be the single scientist publishing.
To get a more robust guess, we use the scientist’s age. We look at the total number of
papers and compare it to a “maximum” normal rate of publishing, taken to be 6 papers
a year (see figure 2). If the publishing rate is smaller than our threshold, this is a further
indication that there is a single scientist behind all the records. Actually, our strategy
can be misleading only when there are only homonyms with the same initial and all the
homonyms have published very few papers.

3.1.2 Obtain the bibliometric records

No homonyms If we guess that there is a single scientist behind the publications ob-
tained for the surname and initials (which happens for about 75% of the names), we record
the citation analysis corresponding to all associated papers.

Homonyms If we estimate that there are homonyms, we try to eliminate them by using
supplementary data we have. We refine the search by scientific field (“Subject category”
in WoS terms, but one can select only one) and by selecting only French institutions3.

3.1.3 Eliminate suspect records

Finally, once all the data has been gathered according to the preceding steps, we eliminate
“suspect” results by two criteria related to the scientist’s age. For a record to be accepted,
the age of the first publication has to be between 21 and 30 years (see figure 1), and
the average number of publications per year between 0.4 and 6 (see figure 2). After this
filtering process, we end up with 3659 records out of the 6900 initial scientists, i.e. an
acceptance rate of 53%.

Can we understand why half of the records are lost? First of all, let us detail how
the different filters eliminate records. Deleting scientists who published their first paper
after 30 years old eliminates 1347 “suspect” names, which are probably related to errors
or missing papers in the WoS database, to married women for whom me miss the first
papers published under their own surname and to people who started their career in
non French institutions and had homonyms. Deleting scientists who published their first
paper before 21 years old eliminates 1235 additional “suspect” names, which are probably
related to errors in the WoS database, to scientists with older homonyms which we could
not discriminate. Deleting scientists whose record contained less than .4 papers per year
in average leads to the elimination of 121 names. These wrong records can be explained
by the method missing some publications, as in the case “first publication after 30 years
old”. Deleting scientists whose record contained more than 6 papers per year in average
leads to the elimination of further 178 names. These wrong records can be explained
by the presence of homonyms we could not discriminate. Finally, to make our database
more robust, we decided to eliminate records suspect of containing homonyms even after
selection of discipline and institution. This is done by eliminating the 359 scientists for
which the number of papers kept after selection is smaller than 20% of the total number

3Unfortunately, WoS allows the selection to be made only on the institutions of all coauthors as a whole.
So we might retain articles of homonyms that have coauthored a paper with a French scientist.
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of papers for the same surname and initials. In those cases, we do not trust enough our
selection criteria to keep such a fragile record.

3.2 A robust bibliometric database

In summary, our method leads to a reliable database of around 3500 scientists from all
“hard” scientific fields. It only discriminates married women having changed surname. It
also suffers from the unavoidable wrong WoS records4. We stress that the main drawback
of the elimination of half the records is the resulting difficulty in obtaining good statistics.
But at least we are pretty sure of the robustness of the filtered database.

Our filtering criteria are based on homonym detection, age of first publication and
publication rate. The first criteria correlates only with scientist’s surnames, therefore we
can expect that it introduces no bias except for married women. Actually, there is a lower
woman proportion after filtering: 24.9% women in the 3659 selection, against 29.6% in
the 6900 database. This is consistent with the preferential elimination of married women
who changed surnames and have an incomplete bibliographical record.

The two other criteria could discriminate scientific disciplines with lower publication
rates or underrepresented in WoS. For example, we see in the following table that more
scientists from the Engineering Department have been eliminated in the filtering. The
mean age is somewhat lower in the filtered database (46.4 years) to be compared to 46.8
in the whole dataset, probably because the records from older scientists have a higher
probability of containing errors.

Discipline Physics Engineering Chemistry Earth
Sci-
ences

Life sci-
ences

% in 6900 database 16.6 15.6 22.6 10.2 34.7
% after filtering 18.2 13.7 23.1 9.9 34.8

However, overall, the filtered database is very similar to the initial one. For example,
the percentage of candidates to senior positions (see below, section 5) is 16.0% in the 3659
selection, against 16.4% in the 6900 database, and the respective promoted percentages
are 4.9% and 5.0%. The proportions of scientists from each position (see section 3) is also
similar (Table below): none of the small differences between the filtered and unfiltered
values is statistically significant.

Position CR2 CR1 DR2 DR1 DRCE

% in 6900 database 6.0 51.8 31.9 9.1 1.0
% after filtering 6.4 50.9 32.6 9.0 0.8

As noted previously, the robustness of our filtered database is validated by the sig-
nificantly better indicators found for scientists in higher positions. An even stronger test
(because the effect is subtler) resides in testing the correlations of the scientist’s age at
his(her) first publication with several variables : age, position (the reference being DR2,

4For a noticeable fraction of scientists, WoS records start only in the 1990s, even if there exist much
older publications, which can be found for example by Google Scholar.
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see section 3), subdiscipline (Table 1) and gender. The results of a simple linear regression
are shown below :

variable coefficient sd p-value

(Intercept) 22.6 0.401936 < 2e-16 ***
age 0.055 0.0067 2.3e-16 ***
sex (M) 0.17 0.075 0.023 *
CR2 0.63 0.16 7.8e-05 ***
CR1 0.41 0.08 1.9e-07 ***
DR1 -0.53 0.12 1.1e-05 ***
DRCE -0.79 0.34 0.022 *

We see a progressive decrease of the age of first publication when a scientist has a higher
position (all things being equal, for example scientist’s age), an effect that is intuitively
appealing but certainly small. The fact that we can recover such a subtle effect is a
good indication of the robustness of our procedure. We also recover the intuitive effect
of scientist’s age (older scientists have begun their career later). The gender effect (men
publish their first paper 2 months later than women, all other things being equal) is more
difficult to interpret, since it mixes many effects : our discrimination (in the filtering
procedure) of married women, the unknown effects of marriage and children on scientists’
careers, etc.

We end this section by a brief comment on the influence of gender in our statistics.
First, it should be noted that there is a methodological negative bias in our filtering
procedure, since married women having changed surname (and not detected by our filters)
have a systematically lower publication record (we miss all their publications under her
lady’s surname). It comes therefore as no surprise that we find lower publication rates or hy
for women. For example, a linear regression on bibliometric indicators (with the following
explanatory variables : sex, age, position and subdiscipline) yields an effect of being a
woman equal to -5.3 papers or -1 in h. The interpretation of this result is difficult, because
of our systematic methodological bias. The effects on scientific productivity of marriage
or raising children are moreover under debate for both women and men [Sax et al.(2002),
Bordons et al.(2003)]. Therefore, we include gender as an explanatory variable in all our
regressions to avoid artifacts, but presently, our data cannot shed light on gender effects
on scientific productivity.

4 Trends of academic productivity

We now take advantage of our large database to study average trends in the academic
productivity of CNRS scientists.

4.1 Age dependence of academic productivity

First, a word of caution. Our data should be interpreted with care, since they mix two
effects. First, the evolution with scientists’ ages and, second, a “generation” effect. For
example, the generaion aged 50 today started the career in the 80’s, when pressure for
publication was smaller than today: therefore we could expect lower average publication
rates for these scientists.

However, the “generation” effect does not seem so important when one looks at the
evolution of the number of publications per year as a function of age (figure 3). The figure
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shows that the average (cumulated) publication rate is remarkably constant with scientist
age, and close to 2.2 (see also figure 2). Therefore, our data suggests that scientists produce
papers at a steady rate over the course of their careers. Moreover, after a short transient
, the mean number of citations per paper is also remarkably constant around 21 citations
per paper (figure 4). This suggests that the scientists produce papers of similar impact
over the course of their careers.

The time evolution of the average hy is quite different. Remember that hy represents h
divided by the “scientific age”, i.e. the career length of the scientist. Figure 5 shows that
the average hy decreases as scientist’s age increases, irrespective of scientist’s position.
This decay is also observed irrespective of scientific field, as shown in figure 6. If one
follows the suggestion by Hirsch [Hirsch(2005)] that hy is a good measure to compare
scientists of different seniority, it would be tempting to conclude that CNRS scientist’s
scientific impact decreases with age. For, according to [Hirsch(2005)], a constant hy should
be observed “for scientists that produce papers of similar quality (sic) at a steady rate
over the course of their careers”. In the following, we show that this interpretation may
not be correct, as it assumes a hidden hypothesis which is not born out by bibliometric
studies.

To obtain a constant hy, Hirsch [Hirsch(2005)] assumes that ”the [average] researcher
publishes p papers per year and each published paper earns c new citations per year
every subsequent year.” Then it is easy to show that the combined effect of these two
cumulative phenomena (more papers each year, each receiving more citations) leads to a
square increase in the total number of citations and a linear increase of h. However, the
assumption of a constant citation rate unlimited in time is not supported by bibliomet-
ric data [McCain and Turner(1989)], as exemplified by the well-known cited and citing
half-lifes calculated by the WoS [Web of Science]. Instead, if one assumes a constant pub-
lication rate and a constant average impact of these papers (as suggested by our data)
but a limited citation lifetime for the average paper, it is easy to show that hy decreases
after a constant transient, basically when h reaches the average number of citations per
paper. Therefore, the decrease of hy observed in our data does not necessarily mean that
the impact of CNRS scientists decrease with age. We are currently developing a more so-
phisticated model based on quantitative citation lifetimes, which could take into account
some generation effects to fit quantitatively our data. Therefore, as a first-order approxi-
mation, our data suggests that generation effects are negligible and that CNRS scientists
productivity is constant in time.

5 Testing bibliometric indicators for career prediction

There are two issues here: first, comparing the ability of different indicators to predict
scientists promotions (i.e. relative performance). Second, comparing the predicted promo-
tions based on the bibliometric indicators to the actual promotions (i.e. absolute predictive
performance). In summary, there are two questions: which of the indicators is the best in
predicting promotions? Second: is it a good predictor?

5.1 A brief account of CNRS promotions mechanisms

Before discussing our results, a brief summary on the CNRS promotion mechanisms may
be welcome. The typical CNRS career is as follows. Young scientists enter CNRS around
25-30 years old as “Chargé de Recherche 2e classe” (CR2). Then, four years later, they get
promoted, almost automatically, “Chargé de Recherche 1re classe” (CR1). A significant
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fraction end their career in that same position, some 35 years later. Around 35-45 years old
(depending on the scientific field), CNRS scientists (in the CR1 positions) start candidating
to a senior position : “Directeur de Recherche 2e classe” (DR2). This is the most important
career step in CNRS, at least in terms of quantity of scientists involved, and is the main
focus of our paper. Each year, less than 10% of the candidates are promoted. Scientists
who have reached the DR2 position can start candidating to “Directeur de Recherche
1re classe” (DR1) positions. A few succeed, at a mean age of 52 years, and a handful
of CNRS scientists (less than 1%) end their career as “Directeur de Recherche de Classe
Exceptionnelle” (DRCE), the top CNRS position.

5.2 Bibliometric differences between promoted and non-promoted

First, let us look at the average differences between promoted and non promoted scien-
tists. Table 2 shows the main differences. We find that all the standard bibliometric
indicators strongly correlate with the promotion probability. It has recently been sug-
gested [Iglesias and Pecharromán(2007)] that the quantity h/art could be a good quan-
tification of the quality of the research. Basically, this fraction indicates the proportion
of “important” papers produced by the scientist. However, this indicator is not even sig-
nificant in predicting the promotions, probably because the number of papers is itself too
strong a (positive) indicator of promotion.

5.3 A binomial regression model for the promotion probability

To test the relevance of the different bibliometric indicators, we analyze the correlation
between the promotions of CNRS researchers to senior positions (“Directeur de Recherche
2e classe”, DR2) and bibliometric quantitative indicators. We add other potentially im-
portant variables in our possession, such as subdiscipline (see table 1), gender and age.
Specifically, we have the list of candidates to senior positions (DR2) over 2004–2006 and
the list of promoted scientists. We explain the variable “promotion” (1 for the 179 pro-
moted, 0 for the 407 non promoted) for the 586 candidates with a logit model.

Table 3 confirms the importance of bibliometric indicators: except for the mean number
of citations per paper, they are all highly significant. The age has a small influence : for a
45-years old scientist (i.e. the average age for candidates), being a year older increases its
promotion probability by only 0.5%. Note also that, since we control for scientist’s age,
we expect similar results for both h and hy.

5.4 Comparing the relative relevance of the bibliometric indicators

5.4.1 Overall relevance of the bibliometric indicators

To compare the different bibliometric indicators, the standard tools are the likelihoods of
the different fits. These give (table 3) comparable goodness of fit for h or hy, both signifi-
cantly better than the fit using the number of articles published or the other indicators. A
standard JTest or a CoxTest [Davidson and MacKinnon(1981)] indicate that the models
with h or hy produce a significantly better fit than the model with the number of articles:
the p-values are respectively 0.002 (**) and 0.00002 (***).

5.4.2 Relevance of the bibliometric indicators for different disciplines

By lack of data, previous studies have focused on a single discipline. Table 4 examines the
relevance of the different indicators for the different fields, the corresponding coefficients
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being indicated in table 5. We see that h is the best predictor for all disciplines but
Engineering, where the number of papers is more relevant.

5.5 Testing the absolute predictive power of the best bibliometric indi-

cator

We have shown that, overall, h is the best bibliometric indicator to account for CNRS
promotions. We now want to calculate how good it is, i.e. the absolute performance in
accounting for the promotions.

There are many ways to do this. First, one can rank candidates by their bibliometric
indicators, promote the top of the list and compare to the actual promoted list. This has
to be done by subdiscipline (table 1) since promotions are decided at this scale. We find
that h ranking leads to 48% of “correct” promoted scientists, while ranking by number
of citations gives 46% and ranking by number of published papers only 42%. These
figures should be compared to a “random” ranking which would achieve 30% of “correct”
promotions (i.e. the proportion of promoted scientists in a random sample).

Alternatively, one can calculate the average promotion probabilities for promoted and
non-promoted: for the h binomial model (table 3), these are 0.396 and 0.266, while for
the number of papers model, we find 0.386 and 0.270. In both cases, promoted have a
significant higher probability according to the model, and differences are clearer with h,
which is consistent with its higher likelihood. Finally, one could estimate the proportion
of correct promotion predictions by the binomial model (table 6) as compared to a purely
random model: we improve the proportion of correct predictions from 57.6% to 71%. Note
however that half of the actually promoted candidates are not promoted by the binomial
model.

As a conclusion, bibliometric indicators do much better than randomness to predict
promotions but there remains significant differences. For example, a “mechanical objectiv-
ity” procedure, which ranks candidates by their h would disagree with actual promotions
for half of the promoted people, a very significant difference.

5.6 Test on DR2 to DR1 promotion

We end by studying the promotion to the highest CNRS positions, “Directeur de Recherche
1re classe” (DR1). We have data on 67 scientists promoted over 376 candidates. The mean
age of candidates is 53 years, with a mean number of publications of 74.6, and a mean h
of 18.6 (giving a mean hy = .7). The promoted scientists are 52 years old, with a mean
number of publications of 88.6, and a mean h of 22 (giving a mean hy = .83). Table 7
shows the log-likelihood of the binomial fits as a function of the selected bibliometric
indicator. Note that the scarcity of the data does not allow a meaningful fit by discipline,
as performed in the DR2 case (table 4). Our data shows that the most relevant predictor
of promotion is the number of papers published by the candidate.

J or Cox tests [Davidson and MacKinnon(1981)] give a high significance to the log-
likelihood difference between number of articles and h (p-values of 0.01688 * and 0.000665
*** respectively).

6 Discussion, Conclusions

Thanks to a new filtering method, we have obtained a large database of scientists’ bib-
liometric records. We have been able to determine the average trends of bibliometric
indicators as a function of scientists’ ages, positions and disciplines. Our main result is
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that generation effects seem negligible, since the mean publication rate or the mean num-
ber of citations per paper do not vary significantly with scientists’ ages. However, the
average normalized Hirsch index hy does decrease with age, a trend that seems related to
the very definition of hy and not to a decrease of scientific activity.

Our large database has also allowed us to study the relative relevance of bibliomet-
ric indicators to predict promotions to senior positions. We find that, overall, h shows
the best performance, while the number of papers is second and accounts better for pro-
motions of scientists from the engineering department and for promotions to the highest
CNRS positions (“Directeur de Recherche 1re classe”). Incidentally, the good prediction of
promotions by the bibliometric indicators confirms that our large database of bibliometric
records is robust.

To conclude, let us come back to our inital controversy on ”mechanical objectivity”,
i.e. the idea of deciding promotions automatically, on the basis of bibliometric indicators.
Our study shows that the consequences would be dramatic, changing roughly half the
promotions every year. The same order of magnitude for the difference between h and
peer committees’ rankings can be guessed from Ref. [Bornmann and Daniel(2007)]. Fur-
ther studies are needed to understand the differences of the two rankings, which may be
surprising since h is already used to evaluate scientists in many CNRS subdisciplines. One
could argue that promotion is also determined by scientists’ activities which are not taken
into account in the bibliometric indicators (see above, 2.3). However, in a forthcoming
paper [Jensen et al. (2008)], we show that dissemination activities (industrial collabora-
tions, popularization and teaching) are practically irrelevant for peer committees’ decisions
about promotions. The differences could then be explained by the consideration of ad-
ditional activities (team management, risk taking . . . ), by unsatisfactory peer evaluation
(preferential promotion of friends, visible colleagues. . . ) or by the opposite : human ex-
pertise capable to judge whether automatic measures are really meaningful. Automatic
ranking appears as a clear political choice, selecting some of the scientists’ activities and
distrusting peer committes.

We acknowledge illuminating discussions with Y. Langevin and S. Bauin from CNRS,
J. LeMarec from Ecole Normale Supérieure-Lettres et Sciences Humaines and P. Kreimer
from Universidad de Quilmes (Argentina). The data have been kindly provided by CNRS
Human Resources administration: it is a pleasure to thank Y. Demir, A. Pes and F.
Godefroy for their precious help.
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Figure 1: Histogram of the scientists age at first publication as calculated from scientist’s
birth date and publication year of the oldest WoS record retained for that scientist. Clearly,
there is a peak at correct ages (i.e. more than 20 and less than 35). Fixing precise
thresholds is somewhat arbitrary, but the histogram shows that limits of 20 and 31 years
old are not absurd. The results presented here are not qualitatively changed by changing
the limits by a few years.

13

http://scientific.thomson.com/index.html


publication rate

fr
eq

ue
nc

y

0 5 10 15

0
10

0
20

0
30

0
40

0

Figure 2: Histogram of the scientists publication rate. The rate is calculated as the ratio
between the number of publications retained at step (2) and the scientist’s career length.
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Figure 3: Average publication rate as a function of scientist age, on average and for
different positions. arty is obtained by counting the number of papers and dividing by the
scientist’s career length.
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Figure 4: Average number of citations per paper as a function of scientific age (i.e. from
publication of the first paper). We cumulate all the citations received by the paper since
its publication, which disadvantages young scientists with young publications (scientific
age less than 7). These data correspond to a mean for all CNRS fields but engineering
and mathematics, because the bibliometric characteristics of these fields are relatively
different. However, their effect in the means shown here would be negligible.
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Figure 5: Average evolution of hy as a function of age for different positions.
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Table 1: Overview of the CNRS subdisciplines.
Subdiscipline

S
ec
ti
o
n Population

after
filtering

Avg.
nb of
articles

Avg.
hy

Avg.
age

P
h
y
si
ca
l
sc
ie
n
ce
s

Mathematics 1 113 24.79 0.4 42.25
Physics, theory and method 2 111 50.05 0.77 48.35
Interactions, particles and
strings

3 Not included in our study

Atoms and molecules,
lasers and optics

4 150 58.23 0.78 46.24

Condensed matter:
organization and dynamics

5 144 49.71 0.71 46.50

Condensed matter: structure 6 130 61.99 0.74 47.01

E
n
g
in
ee
ri
n
g

Information science
and technology

7 103 25.85 0.47 41.79

Micro and nano-technologies,
electronics and photonics

8 148 48.95 0.60 44.14

Materials and structure
engineering

9 65 32.82 0.42 46.09

Fluids and reactants:
transport and transfer

10 156 36.01 0.48 46.52

C
h
em

is
tr
y

Super and macromolecular sys-
tems, properties and functions

11 133 52.88 0.73 46.44

Molecular architecture synthesis 12 122 53.96 0.71 46.86
Physical chemistry:
molecules and environment

13 141 57.92 0.76 46.89

Coordination chemistry:
interfaces and procedures

14 150 59.64 0.80 46.73

Materials chemistry:
nanomaterials and procedures

15 161 64.37 0.67 46.84

Biochemistry 16 164 56.32 0.73 47.61

E
a
rt
h

sc
ie
n
ce
s,

a
st
ro
p
h
y
si
cs Solar systems and the universe 17 127 52.94 0.81 47.42

Earth and earth plants 18 117 40.40 0.67 45.92
Earth systems: superficial layers 19 80 40.86 0.77 45.89
Continental surface
and interfaces

20 71 37.32 0.69 46.72

L
if
e
sc
ie
n
ce
s

Molecular basis and structure
of life systems

21 153 42.34 0.78 46.64

Genomic organization,
expression and evolution

22 156 40.63 0.79 46.74

Cellular biology:
organization and function

23 133 48.46 0.78 47.67

Cellular interaction 24 144 46.60 0.83 47.07
Molecular and integrative
physiology

25 140 52.81 0.76 48.09

Development, evolution,
reproduction and aging

26 127 40.64 0.73 47.61

Behavior, cognition and brain 27 107 37.05 0.67 45.88
Integrative vegetal biology 28 114 34.78 0.69 47.01
Biodiversity, evolution
and biological adaptation

29 90 47.13 0.81 45.95

Therapy, pharmacology
and bioengineering

30 103 56.89 0.84 45.51

16



Table 2: Differences in average values of bibliometric indicators for promoted and non
promoted candidates to senior positions. The p-values give the statistical significance of
the differences. They are obtained by a standard “Welch Two Sample t-test”. Standard
significance codes for the p-values have been used: 0 “***” 0.001 “**” 0.01 “*” 0.05 and
“.” for 0.1.

Characteristic promoted non promoted p-value

h 15.2 12.7 1.7 10−7 ***
hy 0.85 0.73 1.7 10−4 ***
Number of publications 49 42 4.4 10−5 ***
Number of citations 912 654 3.4 10−5 ***
Mean citations per paper 19 16 0.03 *
h / number of papers .338 .341 .79

Age 44.2 44.2 .96
Women % 26 21 .26

30 40 50 60
age

0.5

1

h
y

average
life sciences
engineering
chemistry
earth sciences
physics
mathematics

Figure 6: Average evolution of hy as a function of age for different disciplines. Engineering
and mathematics have a distinctly lower hy (partly due to low coverage by WoS of their
scientific production), but all the other disciplines have remarkably similar average hys.
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Table 3: Binomial regressions to explain promotions to senior positions (“Directeur de Recherche 2e classe”, DR2) on the 586 candidates from
all scientific disciplines. The explanatory variables are: sex, age, subdiscipline (table 1) and a single bibliometric quantifier (h, hy, number of
papers (art), number of papers per career length in years (arty), number of citations (cit), average number of citations per paper (citart) or
ratio of important papers over all papers (h/art). We also take into account the disciplines (not shown). The columns give the coefficients
of the fit for each scientific domain, together with their significance. The last column gives the log likelihood for each of the bibliometric
quantifiers. Finally, the last line gives the fit obtained with h as bibliometric indicator for all the 1143 candidates in our database (249
promoted), without filtering. The coefficients are similar, although the bibliometric indicator is less significant, which is consistent with the
idea of added noise. Standard significance codes for the p-values have been used: 0 “***” 0.001 “**” 0.01 “*” 0.05 and “.” for 0.1.

Domain intercept sex (M) age age squared biblio logLik

h -40 (535) -.22 (.23) 1.11 (.31) *** -.012 (.0034) *** 0.116 (.022) *** -328.47
hy -48 (535) -.27 (.23) 1.43 (.32) *** -.0147 (.0035) *** 1.98 (.38) *** -329.32
art -41 (535) -.19 (.23) 1.17 (.31) *** -.013 (.0034) *** 0.0237 (.005) *** -332.14
arty -38 (535) -.20 (.23) 1.31 (.30) *** -.0138 (.0033) *** 0.44 (0.095) *** -336.48
cit -38 (535) -.19 (.23) 1.06 (.30) *** -.0115 (.0033) *** 0.00058 (0.00016) *** -336.48
citart -38 (535) -.13 (.22) 1.08 (.30) *** -.0116 (.0033) *** 0.0094 (.0072) -342.91
h/art -38 (535) -.11 (.22) 1.1 (.31) *** -.012 (.0034) *** -1.52 (.97) -342.55

unfiltered, h -16.9 (4.6) *** -.075 (.16) .74 (.19) *** -.0081 (.0021) *** 0.045 (.01) *** -665.1
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Table 4: Discipline-specific binomial regressions to explain promotions to senior positions
(“Directeur de Recherche 2e classe”. The explanatory variables are: sex, age, subdiscipline
(table 1 and a single bibliometric quantifier (h, hy, number of citations (cit), number of
papers (art) or the average number of citations per paper (citart). The figures in the
bibliometric columns refer to the log likelihood of the corresponding regression. To simplify
the presentation, we don’t show their coefficients, since they are always significant.

Domain h hy art cit citart candidates promoted

Physical sci-
ences

-46.4 -45.4 -52.0 -48.3 -51.7 114 30

Life sciences -90.2 -91.7 -94.2 -93.0 -96.1 165 58
Engineering -40.5 -41.2 -38.9 -41.6 -41.3 85 29
Chemistry -78.7 -78.8 -79.1 -80.8 -81.5 150 44
Earth Sciences,
Astrophysics

-32.9 -33.2 -33.3 -34.4 -34.6 72 18

Table 5: Binomial regressions to explain promotions to senior positions. The explanatory
variables are: sex, age, discipline, dissemination activities (taken as a binary variable:
the coefficient refers to “active”) and subdisciplines (see table 1, not shown). We show
the coefficients for the bibliometric indicator which gives the best fit (as defined by the
likelihood, see table 4). Standard significance codes for the p-values have been used: 0
“***” 0.001 “**” 0.01 “*” 0.05 and “.” for 0.1.

Domain sex (M) age age squared biblio

Physical sci-
ences

-1.3 (.7) . 3.3 (1.2) ** -.03 (.01) ** 5.1 (1.3) ***

Life sciences .2 (.4) . .46 (.76) -.006 (.008) .15 (.045) **
Engineering .7 (1) 3.2 (1.4) * -.036 (.016) * .038 (.018) *
Chemistry -.7 (.45) . 1.2 (.56) * -.011 (.006) . 1.8 (.8) *
Earth Sciences,
Astrophysics

.5 (.8) 1.2 (.8) -.018 (.009) .12 (.07) .

Table 6: Number of correct predictions to senior positions promotions. The first two lines
indicate the predictions of the binomial model (table 3), taking as threshold for effective
promotion the probability value .3735, determined to recover the true proportion of pro-
moted scientists (0.305). The random model is obtained by choosing randomly between
promotion (probability .305, to recover the same proportion of promoted scientists) and
non promotion (probability 1 − .305). The proportion of correct promotions is found by
summing the diagonal terms and dividing by the total number of cases.

reality

binomial model
non promoted promoted total

non promoted 322 85 407
promoted 85 94 179

total 407 179 586
non promoted 283 124 407

promoted 124 55 179

total 407 179 586

random model

19



Table 7: Binomial regressions to explain promotions to the highest senior positions (Di-
recteur de Recherche 1re classe, DR1). The explanatory variables are: sex, age and subdis-
ciplines (see table 1, not shown). We show the log-likelihood for the different bibliometric
indicators.

h hy art arty cit citart

-147.4 -148.6 -145.0 -148.0 -152.5 -155.3

Table 8: Binomial regressions to explain promotions to the highest senior positions (Di-
recteur de Recherche 1re classe, DR1). The explanatory variables are: sex, age and subdis-
ciplines (see table 1, not shown). We show the coefficients for the number of articles, which
is the best bibliometric indicator as defined by the log-likelihood. Standard significance
codes for the p-values have been used: 0 “***” 0.001 “**” 0.01 “*” 0.05 and “.” for 0.1.

intercept art sex (M) age age squared

-45 (17) ** 0.025 (0.0057) *** -.67 (.42) 1.66 (.65) * -.016 (.006) **
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