Skip to main content
Log in

Quantitative analysis of collaborative and mobility networks

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

This study proposes a quantitative analysis of researcher mobility (i.e. transfer from one institution to another) and collaborative networks on the basis of author background data extracted from biographical notes in scientific articles to identify connections that are not revealed via simple co-authorship analysis. Using a top-ranked journal in the field of computer vision, we create a layered network that describes various aspects of author backgrounds, demonstrating a geographical distribution of institutions. We classify networks according to various dimensions including authors, institutions and countries. The results of the quantitative analysis indicate that mobility networks extend beyond the typical collaborative networks describing institutional and international relationships. We also discuss sectoral collaboration considering the mobility networks. Our findings indicate a limitation of collaborative analysis based on bibliometric data and the importance of tracing researcher mobility within potential networks to identify the true nature of scientific collaboration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Barabási, A.-L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286, 509–512.

    Article  MathSciNet  Google Scholar 

  • Barabási, A.-L., Albert, R., & Jeong, H. (2000). Scale-free characteristics of random networks: The topology of the world-wide web. Physica A, 284, 69–77.

    Article  Google Scholar 

  • Barabási, A.-L., Jeong, H. N., Néda, Z., Ravasz, E., Schubert, A., & Vicsek, T. (2002). Evolution of the social network of scientific collaborations. Physica A, 411, 590–614.

    Article  Google Scholar 

  • Barjak, F., & Robinson, S. (2007). International collaboration, mobility and team diversity in the life sciences: Impact on research performance. Social Geography Discussion, 3, 121–157.

    Article  Google Scholar 

  • Borgatti, S. P. (2005). Centrality and network flow. Social Networks, 27, 55–71.

    Article  Google Scholar 

  • Bozeman, B., & Corley, E. (2004). Scientists’ collaboration strategies: Implications for scientific and technical human capital. Research Policy, 33, 599–616.

    Article  Google Scholar 

  • Calero, C., Buter, B., Valdés, C. C., & Noyons, E. (2006). How to identify research groups using publication analysis: An example in the field of nanotechnology. Scientometrics, 66, 365–376.

    Article  Google Scholar 

  • Calero, C., van Leeuwen, T. N., & Tijssen, R. J. W. (2007). Research cooperation within the bio-pharmaceutical industry: Network analyses of co-publications within and between firms. Scientometrics, 71, 87–99.

    Article  Google Scholar 

  • Cardillo, A., Scellato, S., & Latora, V. (2006). A topological analysis of scientific coatuhtorship networks. Physica A, 372, 333–339.

    Article  Google Scholar 

  • D’Este, P., & Patel, P. (2007). University-industry linkages in the UK: What are the factors underlying the variety of interactions with industry. Research Policy, 36, 1295–1313.

    Article  Google Scholar 

  • Etzkowitz, H., & Leydesdorff, L. (2000). The dynamics of innovation: From national system and “mode 2” to a triple helix of university-industry-government relations. Research Policy, 29, 109–123.

    Article  Google Scholar 

  • Fontana, R., Geuna, A., & Matt, M. (2005). Factors affecting university-inductry R & D projects: The importance of searching, screening and signalling. Research Policy, 35, 309–323.

    Article  Google Scholar 

  • Freeman, L. C. (1977). A set of measures of centrality based on betweenness. Sociometry, 40, 35–41.

    Article  Google Scholar 

  • Gay, B., & Dousset, B. (2005). Innovation and network structural dynamics: Study of the alliance network of a major sector of the biotechnology industry. Research Policy, 34, 1457–1475.

    Article  Google Scholar 

  • Goh, K.-I., Oh, E., Jeong, H., Kahng, B., & Kim, D. (2002). Classification of scale-free networks. Proceedings of National Academy of Sciences, 99, 12583–12588.

    Article  MATH  MathSciNet  Google Scholar 

  • Guimerà, R., Uzzi, B., Spiro, J., & Amaral, L. A. N. (2005). Team assembly mechanisms determine collaboration network structure and team performance. Science, 308, 697–702.

    Article  Google Scholar 

  • Jonkers, K., & Tijssen, R. (2007). Chinese researchers returning home: Impacts of international mobility on research collaboration and scientific productivity. Scientometrics, 77(2), 309–333.

    Article  Google Scholar 

  • Laudel, G. (2002). Collaboration and reward. Research Evaluation, 11, 3–15.

    Article  Google Scholar 

  • Leydesdorff, L., Dolfsma, W., & van der Panne, G. (2006). Measuring the knowledge base of an economy in terms of triple-helix relations among ‘technology, organization, and territory’. Research Policy, 35, 181–199.

    Article  Google Scholar 

  • Newman, M. E. J. (2001). The structure of scientific collaboration networks. Proceedings of National Academy of Sciences, 98(2), 404–409.

    Article  MATH  Google Scholar 

  • Newman, M. E. J. (2004). Coauthorship networks and patterns of scientific collaboration. Proceedings of National Academy of Sciences, 101(suppli.1), 5200–5205.

    Article  Google Scholar 

  • Otte, E., & Rousseau, R. (2002). Social network analysis: A powerful strategy, also for the information sciences. Journal of Information Science, 28, 441–453.

    Article  Google Scholar 

  • Palla, G., Barabási, A.-L., & Vicsek, T. (2007). Quantifying social group evolution. Nature, 446, 664–667.

    Article  Google Scholar 

  • Perianes-Rodríguez, A., Olmeda-Gómez, C., & Moya-Anegón, F. (2010). Detecting, identifying and visualizing research groups in co-authorship networks. Scientrometrics, 82, 307–319.

    Article  Google Scholar 

  • Tijssen, R. J. W. (2001). Global and domestic utilization of industrial relevant science: Patent citation analysis of science—technology interactions and knowledge flows. Research Policy, 30, 35–54.

    Article  Google Scholar 

  • Tijssen, R. J. W. (2004). Is the commercialization of scientific research affecting the production of public knowledge? Global trends in the output of corporate research articles. Research Policy, 33, 709–733.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takao Furukawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Furukawa, T., Shirakawa, N. & Okuwada, K. Quantitative analysis of collaborative and mobility networks. Scientometrics 87, 451–466 (2011). https://doi.org/10.1007/s11192-011-0360-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-011-0360-7

Keywords

Navigation