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Abstract We introduce an indicator to measure the diffusion of scientific research.

Consistent with Stirling’s 3-factor diversity model, the diffusion score captures not only

variety and balance, but also disparity among citing article cohorts. We apply it to

benchmark article samples from six 1995 Web of Science subject categories (SCs) to trace

trends in knowledge diffusion over time since publication. Findings indicate that, for most

SCs, diffusion scores steadily increase with time. Mathematics is an outlier. We employ a

typology of citation trends among benchmark SCs and correlate this with diffusion scores.

We also find that self-cites do not, in most cases, significantly influence diffusion scores.

Keywords Knowledge diffusion � Integration score � Diffusion score � Citation patterns �
Self-citations � Subject category behavior

Introduction

Interdisciplinary research (‘‘IDR’’) is widely hailed as desirable, even essential, to

accomplish meaningful science. Chubin and Connolly (1982) showed that research con-

strained within disciplinary bounds can be inbred to the point of irrelevance. Many hold

that generating important scientific advances and solving complex societal problems

demands interdisciplinarity. We do not attempt a broad review of studies of interdisci-

plinary processes here, but note an active literature (c.f., Wagner et al. 2011; Klein 1996).

Wagner et al. (2011) pose key challenges to those who would measure interdisciplinary

research, noting needs to address multiple facets, including:
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• Inputs, process attributes, and outputs

• Shorter and longer term impacts

• Social and cognitive phenomena

• Aggregate (global) and particular (local) features

Over the years, the community of scholars studying interdisciplinary research and how

to facilitate it has identified many additional attributes of potential interest e.g., definitions,

antecedent factors, interplay of organizational structures and IDR processes, funding and

infrastructure roles, and network dynamics (Jurkovick and Paelincer 1984; Chubin et al.

1986; Porter et al. 2006; Stokols et al. 2003; Wagner et al. 2011).1 Notable current

initiatives include strengthening knowledge about, and resources for, ‘‘team science.’’2

This paper keys on the ‘‘impacts’’ of research as evidenced by citing patterns.

A key to this attention to IDR is the belief that it can make a difference—that IDR can

contribute importantly to solving complex societal problems and generating meaningful

innovations. That draws us toward the challenge prompting this indicator development—

can we devise a useful measure of research knowledge diffusion? If so, that should aid in

IDR assessment, as well as general study of research knowledge transfer processes. The

‘‘Diffusion score’’ that we present is an ‘‘impact’’ measure—i.e., it purports to address the

influence of a piece, or body, of research. It is a bibliometric indicator based on citation

patterns—with attendant strengths and weaknesses inherent in citation practices and data.

Before turning to those matters, we describe the genesis of the Diffusion score, considering

other diffusion approaches and the ‘‘Integration score.’’

A large amount of existing research on knowledge diffusion has focused on patent

citation analyses (De Bellis 2009). According to De Bellis, such analysis provides

‘‘quantitative evidence of a complex character in matters of impact, quality, and knowledge

diffusion.’’ Citation analyses indicate that knowledge diffusion tends to occur first and

foremost at the local level, and that knowledge spillovers can be and are hampered by

international borders (De Bellis 2009). She also makes the point that there often exist a

small number of patents that are cited time and again that take the ‘‘lion’s share in the

knowledge diffusion process.’’ This handful of patents seems to command a dispropor-

tionate influence in driving knowledge diffusion.

Using network theory and visualization techniques, patent citation studies emphasize

the growth and evolution of patent citation networks over time (Chen and Hicks 2004).

Patent citation analyses have found that knowledge embedded in public research patents

tends to diffuse more quickly than knowledge embedded in corporate patents (Bacchiocchi

and Montobbio 2009). Similar studies also find that the knowledge diffusion process is

asymmetric in that it tends to occur more rapidly within, than between, fields (Yu et al.

2010). However, a 2010 study suggests that a number of research areas are converging, and

the diffusion of knowledge across fields is a major force facilitating this process (Liu and

Rousseau 2010). Li and Meng (2010) caution that patent and publication citation

1 ‘‘INTERSTUDY’’ was a professional association with such a focus that held a series of conferences and
issued proceedings books (c.f., Birnbaum-More et al. 1990).
2 The ‘‘Science of Team Science’’ initiative is active with various resources, including an e-mail list (list-
serv@list.nih.gov), annual conference (//scienceofteamscience.northwestern.edu/scits-2011-conference),
resources (e.g., Collaboration Team Science: A Field Guide at the National Institutes of Health – https://ccrod.
cancer.gov/confluence/download/attachments/47284665/TeamScience_FieldGuide.pdf?version=2&modific
ationDate=1285330231523; a Team Science Toolkit website under development), ongoing research assess-
ments – e.g., on transdisciplinary tobacco use research centers (TTURCs) (Masse et al. 2008; Stokols et al.
2003).
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processes, while sharing important features, also differ importantly—in particular, in the

inherent purposes of citation.

Research on diffusion has found that physical and technological proximity enhances

knowledge diffusion (MacGarvie 2005). For this reason, it has been argued that technology

policy towards a given industry should take into account the role of inventor mobility in

facilitating the flow of ideas across space and innovating organizations (Stolpe 2002).

Similar studies point to the role of collaborative networks to measure knowledge flows

within the context of geographic localization and firm boundaries (Singh 2005; Autant-

Bernard et al. 2007). Results of these studies indicate that knowledge flows within regions

or firms are stronger than those which cross regional or firm boundaries, but that boundary

effects diminish once interpersonal relationships are accounted for (Singh 2005). Chen

et al. (2009) presents an intriguing case that the pattern of citation to an article is predictive

of special importance (e.g., future Nobel prizes). He makes the case that widespread, rapid

citation in multiple fields is the indicator. Intrigued by this, we pursue our Diffusion

measure for publications, based on citing patterns to them.

Different types of new knowledge can diffuse across different types of domains. Our

Georgia Tech group has been pursuing a series of assessments of nanotechnology research

patterns. In the ‘‘nano’’ context, we can distinguish the diffusion of various forms of

knowledge, such as:

• A vision’s influence—Drexler’s (1986) tome that popularized nanotechnology as

potentially world-changing, traceable through a bifurcated research community where

some cited his work heavily and some avoided it (Porter and Cunningham 1995)

• Enabling technology—the scanning tunneling microscope that allowed researchers to

see and manipulate molecular interactions (for which Binning and Rohrer received the

1986 Nobel Prize in Physics)

• New material forms—the buckyball, carbon nanotube, and graphene (2010 Nobel prize

in Physics to Geim and Novoselov)

New knowledge can spread along many dimensions, such as:

• Across disciplines [our primary interest, with disciplines operationalized as Web of

Science (‘‘WOS’’) subject categories (‘‘SCs’’)]

• Over time (of particular interest here as well)

• From science to technology (as evidenced, for instance, in patents citing non-patent

literature)

• Through space (geographical diffusion–e.g., among countries, from ‘‘North to South’’)

• Among organizations (a special concern in intellectual property regimes)

Several studies have emphasized techniques with which to measure the ‘‘integration’’ of

academic disciplines. These analyses seek to assess how an author or publication weaves

previously disparate knowledge into one fabric. The ‘‘Integration score’’ calculates the

diversity of a set of references based upon the journals in which they were published. It

relies upon the WOS SCs, used to classify journals (Porter et al. 2007, 2008). For example,

if a given publication cites multiple references from a broad array of academic disciplines

it is said to be integrative. In that our diffusion scoring is an analogy to the Integration

score, we expound upon that in the ‘‘Methodology’’ section.

Integration scores are backward-oriented from the perspective that they measure

diversity among the publications upon which a given author or publication has drawn.

The present inquiry moves in the opposite direction by introducing a metric for assessing

diversity among publications that cite a given author or body of research. This metric
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incorporates Stirling’s (2007) three concepts of diversity—variety (by accounting for the

number of citing disciplines), balance (by accounting for the distribution of cites among

disciplines), and disparity (by accounting for how similar or dissimilar these categories

are). We measure knowledge diffusion based on publication citations. The diffusion

score is forward-oriented in that it takes a given publication, author, or stream of

research as its starting point and measures the propagation of knowledge from that

vertex.

Our analyses illustrate the application of this metric to six benchmark WOS SCs to

assess papers’ degree of utility, influence, or popularity, among external disciplines. The

six are:

• Biotechnology & Applied Microbiology [Biotech]

• Engineering, Electrical & Electronic [EE]

• Mathematics [Math]

• Medicine—Research & Experimental [Med-R&E]

• Neurosciences [Neurosci]

• Physics—Atomic, Molecular & Chemical [Phy-AMC]

This benchmark dataset, which was first built and used by Porter and Rafols (2009a),

was constructed in a manner consistent with the US National Academies’ interests in

science, engineering, and medicine. The analysts sought benchmark data on how inter-

disciplinary research is across a sample of fields, in support of evaluation of the National

Academies Keck Futures Initiative [www.keckfutures.org]. They compiled samples at

10-year intervals (1975–2005). Sample size reflected tradeoffs to be large enough that

Integration score averages would be robust, with manageable sampling effort. Sizes varied

about an evolving target of *1,000 publications per SC as some SCs contained fewer

articles in particular years and some with more were easier to take all than to sample.

Variety in terms of traditional versus emergent, and basic versus applied research, domains

was a sampling criterion. Porter and Rafols (2009a) describe the sampling methodology

used to build the above dataset in detail. Appendix A contains detailed descriptions of

these 6 SCs from WOS.

As will become apparent in the research that follows, different SCs exhibit different

levels of diffusion. The present study seeks to measure and explain these differences. Of

particular interest is whether diffusion scores tend to increase over time since publication

or level off asymptotically. Exploring differences in benchmark diffusion scores between

fields yields insights into the diffusion process. Coming to terms with the forces underlying

the process can advance understanding of research knowledge transfer processes.

Methodology

Since diffusion can be thought of as integration in reverse, a proper understanding of the

measurement should be grounded in the basic mechanics of integration scoring. Drawing

on a National Academies report (2005), integration can be defined as follows:

IDR is a mode of research by teams or individuals that integrates:

• perspectives/concepts/theories and/or

• tools/techniques and/or

• information/data

from two or more bodies of specialized knowledge or research practice.
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The WOS SCs suit this definition well (and are commensurate in scope with the

examples offered by the National Academies study, such as ‘‘operations research’’).

The formula for integration is:

I ¼ 1�
X

i;j

sijpipj

where pi is the proportion of cited references corresponding to the SC i in a given paper.

The summation is taken over the cells of the paper’s cited SC x cited SC matrix. sij is the

cosine measure of similarity between SCs i and j for cross-citation in WOS for the year

2007. In their 2007 paper, Porter et al. considered using the Pearson correlation, but

favored the cosine measurement instead, citing multiple studies on its goodness of fit with

their newly introduced Integration measure.3 To maintain consistency with the Integration

score, we likewise use the cosine identity:

P
i

xiyið Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i

x2
i

P
i

y2
i

r

where x and y represent observations (counts) used to calculate the cosine (i.e. these

represent subject classifications within a correlation matrix that measures the distance

between SCs).

To generate the sij values, Loet Leydesdorff obtains the WOS journal-to-journal cross-

citation matrix from Thomson Reuters. He applies a thesaurus that associates each journal

to one or more WOS SCs to convert this to an SC-to-SC citation matrix. Ismael Rafols

factor analyzes that SC-to-SC cosine matrix from Leydesdorff to extract factors used in

science overlay maps – 18 in the version that encompasses both science (Science Citation

Index—SCI) and social science (Social Science Citation Index—SCI) (Rafols et al. 2010).

They label those ‘‘Macro-Disciplines’’ (groups of SCs) to describe the group’s emphasis,

based on judgment. [See also discussion in the section on visualizing diffusion.]

We add a few cautionary notes. Our methods depend on the WOS Subject Categories.

Publications in other than WOS-indexed journals are not addressed. Use of SCs as the unit

of classification means that an article’s journal, not its content, determines its categori-

zation. Assignment of journals to SCs is based on a combination of citation patterns and

editorial judgment at the Institute for Scientific Information (ISI)—it is not unambiguous.

However, deviations tend to be ‘‘nearby’’—i.e., the preferred SC is usually very close to

the WOS-assigned one (in our science overlay maps), so analyses with large numbers (e.g.

above 100 papers for a first approximation), such as presented in science overlay maps, are

quite robust (Rafols and Leydesdorff 2009; Klavans and Boyack 2009). This does imply

that fine distinctions should not be emphasized. Katz and Hicks discuss the difficulties

inherent to achieving a standardized journal classification scheme and offer their own

approach for classifying SCI journals (1995).

3 See notes 17 and 18 of Porter et al 2007—the version of the Integration score used in this reference was
based on co-citation of SCs in a sample of some 30,000 WOS papers. Conceptually, co-citation is very
appealing. However, this resulted in a relatively sparse (not so robust) similarity matrix. Since then we have
changed to using cross-citation, as noted here. This has the advantages of a much larger sample (a full year
of WOS publications) and heartier SC similarity matrix. As a result, however, the recalibrated Integration
scores are considerably lower. The new scores correlate extremely highly with the earlier Integration scores
(Porter and Rafols 2009a, b).
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Integration score corresponds to (1—Stirling’s diversity measure) (Rafols and Meyer

2010). Integration scores range from 0 to 1, with higher scores indicative of greater

interdisciplinarity.

The diffusion score is analogous, with pi pertaining to the citing papers’ SCs:

D ¼ 1�
X

i;j

sijpipj:

As is the case with Integration scores, Diffusion scores range from 0 to 1, with higher

scores indicative of greater infiltration into external disciplines. We illustrate by devising

this metric for six benchmark SCs, derived from 1995 WOS publications (based on Porter

et al. 2009). Table 1 (below) provides summary statistics for this dataset, including sample

sizes and mean cited reference and times cited counts. A citation extraction macro,

developed by the authors, was then applied to these benchmarks. After citing articles were

downloaded, scores were calculated for each and used to inform much of the following

discussion.

Benchmarking integration versus diffusion scores

Figure 1 provides a visual for mean Integration scores among the 1995 benchmark SCs.

Integration scores were calculated for those publications with 3 or more CSC instances

(i.e., this could be 3 cites of the same SC). We observe that Neuroscience and medical

research and experimentation show the highest integration, followed closely by three SCs,

while Math stands apart as the least integrative of the disciplines examined in this paper.

These scores show modest increase over time, for benchmark samples in 1975, 1985, 1995,

and 2005 (Rafols and Leydesdorff 2009).

Figure 2a provides mean aggregate diffusion scores for the 1995 benchmarks. This

figure is a corollary to Fig. 1. We note, however, that unlike integration scores (which are

based on a fixed list of cited references), diffusion scores can change over time. Hence, if

we re-plotted Fig. 2a (which reflects citation data through the end of 2010) in ten years’

time the influence of additional citations would most likely change its shape. Comparing

this figure with its predecessor, we observe that diffusion scores are larger than integration

scores for Biotech, EE, Med-R&E and Neuroscience, while the converse is true for Math

Table 1 Mean Statistics for 1995 Benchmark SCs

Subject
category

Sample
size

Cited
refs.
(mean)

Times
cited
(mean)

Integration
score
(mean)

Diffusion
score
(mean)

Integration
versus cited
refs. (Pearson
correlation)

Diffusion
versus times
cited (Pearson
correlation)

Neuroscience 1,910 42.53 43.46 0.43 0.46 -0.05 0.04

Med-R&E 664 33.65 59.72 0.42 0.47 -0.07 0.10

Physics-AMC 1,017 33.40 32.52 0.40 0.38 -0.10 0.09

Biotech 840 31.23 27.37 0.37 0.44 -0.07 0.15

EE 1,719 18.40 13.51 0.35 0.37 0.24 0.14

Math 658 17.90 9.11 0.19 0.19 0.22 0.13

Total 6,808 30.43 30.54 0.37 0.40 0.20 0.13
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and Physics-AMC. As noted previously, however, diffusion scores are not static. Fig-

ure 2b, which plots diffusion scores by individual citing year, considers changes in these

scores over time.

The scores in Fig. 2b are calculated on an annual basis (i.e. citing articles were analyzed

based on their publication year and results were therefore mutually exclusive, as opposed

to cumulative). It will be emphasized that we only calculate Diffusion scores for those

publications with 3 or more citing SC instances (CSCs).4 One reason for this rule is that our

coverage of SCs is not perfect (i.e. while our journal-subject category thesaurus covers

significant ground, and continues to improve, it does not capture every journal indexed by

WOS). If a given publication was cited by a single SC, its diffusion score would be 0. We

make room for the possibility, however, that publications that our macro indicates are cited

rarely may actually have more citations–they may have been referenced by external

knowledge sources (e.g. dissertations, websites, conferences), or by articles in non-WOS

journals or in a WOS journal not captured in our thesaurus. For this reason, we believe it to

be the lesser of two evils to not calculate diffusion scores for articles with fewer than 3

CSCs instances (i.e., classifying a publication on the basis of 1 or 2 CSCs leaves an

uncomfortable amount of room for deviation from its ‘‘true’’ Diffusion score). We note that

the greater the number of CSCs instances, the smaller the expected deviation from a

publication’s true diffusion score becomes. However, if we set our CSC threshold too high,

we drop an undesirably large number of publications from our analysis. We note also that

this rule may result in a given publication being included in the mean annual diffusion

4 That is, as an extreme case, suppose that only one paper cites a given 1995 paper in the sample. If that
citing paper appeared in a journal that WOS associates with 3 or more SCs, it would meet this criterion to be
included. Or, suppose that a given 1995 paper were cited by exactly 3 papers in a given year, and that all 3
appeared in journals categorized in the same SC. This would also just reach the threshold of 3 instances (of
one) SC.

Fig. 1 Mean integration scores for 1995 benchmark sample articles
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score for year x, but not included in the mean annual diffusion score for a subsequent year.

For an analysis of the percentage of publications with at least 3 CSCs instances, by

benchmark, see Appendix B. We anticipate that most analyses would consolidate citing for

all years, reducing sensitivity to the exclusion of papers cited fewer than 3 times.

We note from Fig. 2b that, as was the case in Fig. 1, Neuroscience and Medical R&E

assume leadership positions. Math is noticeably different from the other SCs analyzed. The

difference in how knowledge flows for Math and other fields, a difference which can

Fig. 2 a Annual diffusion scores for 1995 benchmark sample articles. b Mean annual diffusion scores for
1995 benchmark sample articles
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possibly yield insights into the basic mechanics of the diffusion process itself, is discussed

below. Diffusion scores for most SCs seem to mildly increase over time since publication.

Before undertaking the effort required to calculate myriads of diffusion scores it might

seem natural to wonder if a simpler approach would suffice. For example, might an

analysis of external citations (i.e. citations from outside the field of analysis) measure a

similar set of phenomena? Pursuant to this idea, Fig. 3 charts the percentage of external

citations over time, for each of the 1995 benchmark SCs.

We note that each of the benchmarks exhibit a steep initial ascent over the first couple

of years post-publication. We also see that the 1995 Math paper set has the lowest per-

centage of external citations (or highest percentage of internal cites). Also, the percentage

of Math’s external citations remains fairly constant over time. This finding is in keeping

with trends in integration and diffusion scores for Mathematics. We notice a difference in

the distance between the benchmarks for Figs. 2 and 3, as well as a greater degree of

variation over time in the former figure, especially for the Math benchmark. Importantly,

percentage of external citations does not inform us about the degree of variety, balance or

diversity present in the citing article datasets (Stirling, 2007). Unique properties of the

diffusion score are further elucidated below.

Visualizing diffusion

Subject overlay maps provide a complementary way to gain additional perspective on

diffusion of research knowledge (Leydesdorff and Rafols 2009; Rafols et al. 2010; Rafols

and Meyer 2010; Rafols and Leydesdorff 2009). These maps overlay SCs of articles citing

our benchmark dataset on a base map of science. As was the case with the previous

analyses, the cohorts in this section reflect citation data through the end of 2010. Lines

connecting nodes reflect associations between SCs, with line thickness reflecting strength

of association. Node sizes are proportional of the number of publications within a given

Fig. 3 Percentage external citations for 1995 benchmark sample articles over time
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SC. This technique can be applied to visualize publication distribution for a given CSC

cohort. The following analysis starts with a base map of SCs based on a year of cross-

journal citation data. They build on the same year 2007 data covering the WOS SCI and

SSCI used to generate the similarity matrix used in calculating the integration and diffusion

scores.5 The labels in the maps are the Macro-disciplines from factor analyzing the SC-by-

SC cross-citations.

The science overlay maps locate research activity for particular SCs (i.e., based upon

the journals in which papers appear). These maps offer a sense of the level of diffusion of a

given benchmark (by the number of citing SCs on a given map), and they also impart a

sense of which SCs cite a given benchmark with the greatest intensity (it is impossible to

determine this from Figs. 2a or 2b). Figures 4, 5, 6, 7, 8 and 9 illustrate for our sample

data.6

From the preceding science overlay maps we observe that Fig. 6 (publications citing

1995 Math benchmark papers) is the most sparsely populated, and Fig. 7 (publications

citing Med-R&E benchmarks) is the busiest. This result is in keeping with Figs. 2a and 2b.

We note also that Neuroscience seems to have the largest number of cites, shown by node-

size, from within its own field.

5 Loet Leydesdorff and Ismael Rafols have updated so that we now have a 2009 base map available at
http://www.leydesdorff.net/overlaytoolkit. Ken Riopelle has generated a fine step-by-step process to pro-
duce one’s own such maps (manual available at the previous website). We also offer papers on measuring
and mapping interdisciplinarity, and an easy way to generate maps, at www.idr.gatech.edu/.
6 The macro-disciplines that appear in Figs. 4, 5, 6, 7, 8 and 9, which are mapped using a network
visualization tool called Pajek, are color-coded and based on factor analysis. Vertices appear in Pajek’s
default size of 2.0.

Fig. 4 Publications citing 1995 Biotechnology & Applied Microbiology (‘‘Biotech’’) benchmark sample
articles
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Mathematics: a subject category unto itself

From Fig. 2b we see that mean diffusion scores for medical R&E, Neuroscience, Biotech,

EE, and Physics all generally reside within a range of 0.3 to 0.45. Math, by contrast, has a

mean diffusion score of 0.21, and its mean annual diffusion scores seem to behave more

Fig. 5 Publications citing 1995 Engineering, Electrical & Electronic(‘‘EE’’) benchmark sample articles

Fig. 6 Publications citing 1995 Mathematics benchmark sample articles
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erratically over time, especially in earlier years (i.e. 1996 to 2000). Math diffusion scores

also appear to decline from 2005 onwards, whereas the other research areas edge slightly

upward. We discuss possible interpretations for Math’s unique behavior later

One might expect that if a given paper or discipline was cited more, that its Diffusion

score would be higher, on average (i.e. aggregate trends for all benchmarks indicate that

Fig. 7 Publications citing 1995 Medical Research & Experimentation benchmark (‘‘Med-R&E’’) sample
articles

Fig. 8 Publications citing 1995 Neuroscience benchmark sample articles
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the more citations a given publication has, the more likely it is have diversity among its

CSCs, on average—see Table 1). Using parallel logic, it might seem natural to equate

higher cited reference counts with higher Integration scores. Exploring these hypotheses a

bit further, Table 1 provides summary statistics for mean cited reference counts and times

cited, and their correlation with integration and diffusion scores.

We observe from Table 1 that the correlation between diffusion and times cited is more

consistent in terms of producing positive values than what we see between integration and

cited references. However, the overall correlation coefficient for integration versus cited

references (0.20) is larger than the same for diffusion versus times cited (0.13). The

correlation coefficients (in the last two columns of Table 1) for individual benchmarks are

not large (i.e. cited reference and times cited counts in the 1995 benchmark dataset do not

wield a strong respective influence on integration and diffusion scores). The point is made

that diffusion scores are calculated from a variety of inputs and cannot be estimated on the

basis of citation counts. From Table 1 we see that citation rates among the benchmarks

differ noticeably (i.e. the mean times cited is 59.72 for Med R&E but 9.11 for Math). We

also see that mean cited reference counts and times cited values are fairly similar for EE

and Math. Hence, lower citation rates, in and of themselves, do not fully explain the

differences in integration and diffusion scores between Math and the other SCs under

consideration in this study.

To verify the normality of the above integration and diffusion scores we plotted their

distribution for each benchmark SC dataset. Integration and diffusion score distributions

for all of the benchmarks, except Math, assumed a bell shape. Most of the Math integration

and diffusion score data-points, by contrast, concentrated at relatively low values. the

sample distribution for Math was not normal. Because integration and diffusion scores for

the sample of 658 Math papers, was not normally distributed, we conclude that the dis-

tribution of integration and diffusion scores for the larger population is not normally

distributed either. Math is truly a unique field in terms of the distribution, size, and

variation among its integration and diffusion scores.

To investigate factors underlying the behavior of Math diffusion scores, we queried

several Mathematicians. One respondent, who requested anonymity, indicated that Math

diffusion scores may be lower because higher-level research in Mathematics is particu-

larly difficult for individuals without a strong quantitative background to understand. For

this reason, Mathematicians are typically the only individuals who understand (and cite)

one another. Scholars have noted, for example, that ‘‘Einstein’s work did not receive

immediate recognition due to its…Mathematical sophistication’’ (Small 2010). Moreover,

the degree of precision required by Math also make this subject a difficult one for

outsiders to understand and cite. Additionally, Math is an older discipline and its prob-

lems are very well-studied, making its higher-level research much more focused and/or

refined. Surprising to us, the point was also made that Math papers are of longer than

average length,7 making it again a more challenging discipline to approach from outside

of its own boundaries. Finally, the case can be made that Math has more of a pure

research focus, whereas the other SCs in this analysis are more applied in nature. These

and similar factors may make Math citation patterns different than those of other

disciplines.

7 The mean length for Math papers from our dataset was 19.43, which is significantly longer than Biotech
(7.94), EE (8.15), Med-R&E (8.11), Neuroscience (9.61) and Physics-AMC (9.42).
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Controlling for self-cites

The preceding analyses calculated diffusion scores on the basis of all publications citing a

given article. The question asked in this section, however, is: do self-citations impact

diffusion scores? That is, how do diffusion scores change if we remove self-citations from

total citations? To address this question we developed a macro that lists all authors for a

given cited article, as well as all of the articles citing it. If any names appear in both lists,

the citing article(s) affiliated with the common name is dropped from the dataset and a

diffusion score is then calculated on the basis of the remaining articles.

Calculating diffusion scores without self-citations for the 1995 benchmark dataset

produces interesting results. Before discussing these, however, we note that the difference

in diffusion score between citing article datasets with and without self-cites is not expected

to be overwhelming because (a) not all of the benchmark papers receive self-cites, and

(b) among those that do, self-cites usually do not constitute a large percentage of total cites.

Because of its unique diffusion properties, we discuss the influence of self-cites on the

Math 1995 dataset first.

Figure 10 plots average annual diffusion scores, with and without self-cites, for the

Math 1995 benchmark dataset. We see that when self-cites are removed, mean annual

diffusion scores increase, on average. More specifically: mean annual diffusion scores

increased for 12 of the 15 years plotted, held steady for one year, and decreased (by 0.01)

for two of the years shown in Fig. 10. We note that the preponderance of the impact of self-

citations for the Math 1995 dataset was greatest in the first four years and began to taper off

after that. Mean diffusion scores increase, on average, when self-cites are removed because

Math articles tend to get cited primarily by other Math articles (see Fig. 3), and if a given

Math publication is already being cited by other Math publications, removing a self-cite

will not meaningfully influence SC diversity among the publication’s citing article dataset

Fig. 9 Publications citing 1995 Physics, Atomic, Molecular & Chemical (‘‘Physics-AMC’’) benchmark
sample articles
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(e.g. if a Math publication was cited by four Math publications, including itself, and one

Physics publication, dropping self-cites would not radically alter diversity among CSCs).

The removal of self-cites will, however, decrease the total number of citing article

instances. Hence, when self-cites for Math are dropped, the ratio of SC diversity to total

cites (i.e. SC diversity per article for the citing article dataset) will increase, on average,

putting upward pressure on mean diffusion scores. We note, however, that the mean

Diffusion score for all years plotted in Fig. 10 is 0.21 with self-cites and 0.22 without—a

modest overall increase.

As can be seen in Figs. 2 and 3, Med R&E and Math 1995 benchmarks fall at the

opposite end of citation and diffusion spectrums. We therefore next calculate mean annual

diffusion scores, with and without self-citations, for 1995 Med R&E benchmarks. These

appear in the following figure.

We see that the two lines in Fig. 11 almost perfectly overlap, indicating that the

influence of self-cites on mean diffusion scores for this dataset is miniscule. We note that

self-citations form a small fraction of total citations here, and that after self-cites are

removed the SC diversity among the citing article dataset is relatively unaffected. Because

this outcome is typical of the remaining benchmarks, we do not present similar figures for

them here.

Discussion

In this study, we have introduced a new metric for measuring the propagation of knowl-

edge. It incorporates Stirling’s (2007) notions of variety, balance and disparity among

Fig. 10 Mean annual 1995 Math diffusion scores
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citing article cohorts. This provides a richer depiction of dispersion than do simpler

measures, such as percentage of citations from outside the field of the journal in which an

article is published.

This diffusion score is analogous to Integration score in its formulation. Integration

score has proven to be a useful metric in evaluation of National Academy Keck Futures

Initiative activities. It has also been helpful in gauging the research outputs of funding

support that purports to be interdisciplinary:

• National Science Foundation (NSF) Human and Social Dynamics Priority Area (Garner

and Porter, to appear)

• NSF Research on Learning and Education Program (Porter et al. 2010)

• NSF Research Cooperation Networks (Garner et al., under revision)

• National Institutes of Health Transdisciplinary Tobacco Use Research Centers

(TTURC) Program (internal report)

Yegros–Yegros et al. (2010) used Integration scoring in studying whether such papers

have higher impact (we would now suggest calculating the Diffusion score as part of such

investigation). We offer this relatively simple metric as a new research assessment aid.

In this paper we report on the formulation of diffusion score and on initial applications.

We focus on ‘‘benchmark’’ sample article sets to help establish the behavior of this

measure. In the process, we find quite interesting results in their own right. Diffusion score

differences among the six SC sample sets studied manifest not only in absolute terms, but

also in terms of rates of change, variance and movements with interrelated benchmark

variables.

Fig. 11 Mean annual 1995 Med R&E diffusion scores
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For most SCs, diffusion scores increase with the passage of time (at least for our 1995

benchmark dataset), Math behaving differently. Diffusion results for Math challenge the

image of it as a ‘‘foundational research area.’’ That image would have others citing Math

relatively more than Math cites other fields. Here we observe Math tending to both mainly

cite research in Math or closely associated fields, and to be cited mainly by papers in Math

or closely associated fields. Other fields do not draw very heavily on Math research, at least

directly. It could be interesting to pursue further analyses to see if one can track significant

‘‘second generation’’ citing (e.g., fields like statistics or operations research heavily cite

Math, and then other fields heavily cite them).

We hope that other researchers will explore the behavior and merits of the diffusion

score. We recognize that issues abound. Table 1 calls attention to differences in citation

intensity among the six SCs studied. Research has shown that citation motivation and

practices are highly field dependent (Li and Meng 2010), making field normalization

important for fair comparison of results in bibliometric studies (Zitt et al. 2005).

Research has also shown that different journals have different average citation counts

per paper, pointing to the need for the normalization of journal citation impact mea-

sures (Moed 2010). Study of the behavior of Integration and diffusion scores for a

wider set of research fields, possibly enriched by visualizations such as science overlay

maps, would be valuable. In-depth analyses of selected papers, possibly enriched by

discussion with the authors, could illuminate the bases of integration and diffusion

scores.

Appendix A: WOS subject category descriptions8

Biotechnology and applied microbiology

Description Biotechnology and applied microbiology includes resources that cover a

broad range of topics on the manipulation of living organisms to make products or solve

problems to meet human needs. Topics include genetic engineering; molecular diagnostic

and therapeutic techniques; genome data mining; bioprocessing of food and drugs; bio-

logical control of pests; environmental bioremediation; and bio-energy production. This

category also covers resources that deal with the related social, business, and regulatory

issues.

Engineering, electrical and electronic

Description Engineering, electrical and electronic covers resources that deal with the

applications of electricity, generally those involving current flows through conductors, as

in motors and generators. This category also includes resources that cover the conduction

of electricity through gases or a vacuum as well as through semiconducting and super-

conducting materials. Other relevant topics in this category include image and signal

processing, electromagnetics, electronic components and materials, microwave technol-

ogy, and microelectronics.

8 As they appear in: http://science.thomsonreuters.com/mjl/scope/scope_scie/
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Mathematics

Description Mathematics covers resources having a broad, general approach to the field.

The category also includes resources focusing on specific fields of basic research in

Mathematics such as topology, algebra, functional analysis, combinatorial theory, differ-

ential geometry and number theory.

Medicine, research and experimental

Description Medicine, research and experimental includes resources describing general

medical research with a particular emphasis on extremely novel techniques and clinical

interventions in a broad range of medical specializations and applications, including

vaccine development, tissue replacement, immunotherapies, and other experimental

therapeutic strategies. Resources in this category reflect clinical interventions that are in

early stages of development, using in vitro or animal models, and small-scale clinical

trials.

Neurosciences

Description Neurosciences covers resources on all areas of basic research on the brain,

neural physiology, and function in health and disease. The areas of focus include neuro-

transmitters, neuropeptides, neurochemistry, neural development, and neural behavior.

Coverage also includes resources in neuro-endocrine and neuro-immune systems,

somatosensory system, motor system and sensory motor integration, autonomic system as

well as diseases of the nervous system.

Physics, atomic, molecular and chemical

Description Physics, atomic, molecular and chemical includes resources concerned with

the Physics of atoms and molecules. Topics covered in this category include the structure

of atoms and molecules, atomic and molecular interactions with radiation, magnetic res-

onances and relaxation, Mossbauer effect, and atomic and molecular collision processes

and interactions.

Appendix B: Cited papers within each benchmark that have at least 3 CSCs

We note from this figure that Math, once again, is the outlier. The remaining five

benchmarks display a similar pattern: they increase modestly from for the first citing

year or two, and then steadily decrease from that point onward (i.e. these benchmarks

tend to get cited less over time). Figure 12a plots data for individual citing years. If we

include all citing years for each benchmark, however, a different picture emerges (see

Fig. 12b).

We note from this figure that the percentage of cited papers with at least 3 CSCs is

noticeably higher than what is seen in Fig. 12a. This can be attributed to the fact that, when

all citing years are included, cited papers, on average, have more papers (and hence more

CSC instances) citing them.
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