Skip to main content
Log in

Explore the new relationship between patents and market value: a panel smooth transition regression (PSTR) approach

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

This paper is the first research applying the new approach, panel smooth transition regression (PSTR) model, in the field of patent analysis. This study uses PSTR model to verify whether there is a single threshold effect of Herfindahl–Hirschman Index of patents (HHI of patents) on the relationship between patents and market value in the American pharmaceutical industry. The results demonstrate that HHI of patents moderates the relationship between market value and patent performance, patent counts/assets and patent citations/assets. When HHI of patents is less than or equal to the threshold value, 0.3220, the positive relationship between patent performance and market value is lower. Once HHI of patents is more than the threshold value, 0.3220, the positive relationship between patent performance and market value is higher. This study points out that the second regime is optimal because the extent of the positive relationship between patent performance and market value is higher.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bhat, V. N. (2005). Patent term extension strategies in the pharmaceutical industry. Pharmaceuticals Policy and Law, 6(1), 109–122.

    Google Scholar 

  • Cardinal, L. B., & Hatfield, D. E. (2000). Internal knowledge generation: The research laboratory and innovative productivity in the pharmaceutical industry. Journal of Engineering and Technology Management, 17(3–4), 247–271.

    Article  Google Scholar 

  • Chen, Y.-S. (2011). Using Patent Analysis to Explore Corporate Growth. Scientometrics, 88(2), 433–448.

    Article  Google Scholar 

  • Chen, Y.-S., & Chang, K.-C. (2009). Using Neural Network to Analyze the Influence of the Patent Performance upon the Market Value of the US Pharmaceutical Companies. Scientometrics, 80(3), 637–655.

    Article  Google Scholar 

  • Chen, Y.-S., & Chang, K.-C. (2010a). The relationship between a firm’s patent quality and its market value—The case of US pharmaceutical industry. Technological Forecasting and Social Change, 77(1), 20–33.

    Article  Google Scholar 

  • Chen, Y.-S., & Chang, K.-C. (2010b). Exploring the Nonlinear Effects of Patent Citations, Patent Share, and Relative Patent Position on Market Value in the US Pharmaceutical Industry. Technology Analysis & Strategic Management, 22(2), 153–169.

    Article  Google Scholar 

  • Chen, Y.-S., & Chang, K.-C. (2010c). The Nonlinear Nature of the Relationships between the Patent Traits and Corporate Performance. Scientometrics, 82(1), 201–210.

    Article  Google Scholar 

  • Chen, Y.-S., & Chang, K.-C. (2010d). Analyzing the Nonlinear Effects of Firm Size, Profitability, and Employee Productivity on Patent Citations of the US Pharmaceutical Companies by Using Artificial Neural Network. Scientometrics, 82(1), 75–82.

    Article  Google Scholar 

  • Chen, Y.-S., & Chang, K.-C. (2012). Using the entropy-based patent measure to explore the influences of related and unrelated technological diversification upon technological competences and firm performance. Scientometrics, 90(3), 825–841.

    Article  Google Scholar 

  • Chen, Y.-S., & Shih, C.-Y. (2011). Re-examine the relationship between patents and Tobin’s q. Scientometrics, 89(3), 781–794.

    Article  Google Scholar 

  • Deng, Z., Lev, B., & Narin, F. (1999). Science and Technology as Predictors of Stock Performance. Financial Analysts Journal, 55(3), 20–32.

    Article  Google Scholar 

  • Duguet, E., & MacGarvie, M. (2005). How Well do Patent Citations Measure Flows of Technology? Evidence from French Innovation Survey. Economics of Innovation and New Technology, 14(5), 375–393.

    Article  Google Scholar 

  • Ernst, H. (1998). Patent portfolios for strategic R&D planning. Journal of Engineering and Technology Management, 15(4), 279–308.

    Article  MathSciNet  Google Scholar 

  • Fok, D., van Dijk, D., & Franses, P. (2004). A multi-level panel STAR model for US manufacturing sectors. Working Paper, Rotterdam: University of Rotterdam.

    Google Scholar 

  • Gebhart, F. (2006). Major drugs lose patent protection in 2006. Drug Topics, 150, 8–10.

    Google Scholar 

  • Gilbert, R. J., & Newbery, D. M. G. (1982). Preemptive patenting and the persistence of monopoly. American Economic Review, 72(3), 514–526.

    Google Scholar 

  • Gonzàlez, A., Teräsvirta, T., & van Dijk, D. (2005). Panel Smooth Transition Regression Models. Working Paper Series in Economics and Finance, No. 604, Stockholm: Stockholm School of Economics, Government Finance Statistics.

  • Griliches, Z. (1981). Market value, R&D, and patents. Economics Letters, 7, 183–187.

    Article  Google Scholar 

  • Hall, B. H., Jaffe, A., & Trajtenberg, M. (2005). Market value and patent citations. Rand Journal of Economics, 36(1), 16–38.

    Google Scholar 

  • Hansen, B. E. (1996). Inference when a nuisance parameter is not identified under the null hypothesis. Econometrica, 64, 413–430.

    Article  MATH  MathSciNet  Google Scholar 

  • Hansen, B. E. (1999). Threshold effects in non-dynamic panels: Estimation, testing, and inference. Journal of Econometrics, 93(2), 345–368.

    Article  MATH  MathSciNet  Google Scholar 

  • Harhoff, D., Narin, F., Scherer, F. M., & Vopel, K. (1999). Citation frequency and the value of patented inventions. Review of Economics and Statistics, 81(3), 511–515.

    Article  Google Scholar 

  • Henry, G. (2002). Patents, innovation, and access to new pharmaceuticals. Journal of International Economic Law, 5(4), 849–860.

    Article  Google Scholar 

  • Hirschey, M., & Richardson, V. J. (2001). Valuation effects of patent quality: A comparison for Japanese and U.S. firms. Pacific-Basin Finance Journal, 9(1), 65–82.

    Article  Google Scholar 

  • Hirschey, M., & Richardson, V. J. (2004). Are scientific indicators of patent quality useful to investors? Journal of Empirical Finance, 11(1), 91–107.

    Article  Google Scholar 

  • Hu, M.-C. (2008). Knowledge flows and innovation capability: The patenting trajectory of Taiwan′s thin film transistor-liquid crystal display industry. Technological Forecasting and Social Change, 75(9), 1423–1438.

    Article  Google Scholar 

  • Jaffe, A. B. (1986). Technological opportunity and spillovers of R&D: evidence from firms’ patents, profits, and market values. American Economic Review, 76(5), 984–1001.

    Google Scholar 

  • Jude, E. (2010). Financial development and growth: A panel smooth regression approach. Journal of Economic Development, 35(1), 15–33.

    Google Scholar 

  • Lee, Y. G., Lee, J. D., Song, Y. I., & Lee, S. J. (2007). An in-depth empirical analysis of patent citation counts using zero-inflated count data model: The case of KIST. Scientometrics, 70(1), 27–39.

    Article  Google Scholar 

  • Leydesdorff, L. (2008). Patent classifications as indicators of intellectual organization. Journal of the American Society for Information Science and Technology, 59(10), 1582–1597.

    Article  Google Scholar 

  • Liu, D. R., & Shih, M. J. (2011). Hybrid-patent classification based on patent-network analysis. Journal of the American Society for Information Science and Technology, 62(2), 246–256.

    Article  Google Scholar 

  • Nagaoka, S. (2005). Determinants of high-royalty contracts and the impact of stronger protection of intellectual property rights in Japan. Journal of the Japanese & International Economies, 19(2), 233–254.

    Article  Google Scholar 

  • Park, G., & Park, Y. (2006). On the measurement of patent stock as knowledge indicators. Technological Forecasting and Social Change, 73(7), 793–812.

    Article  Google Scholar 

  • Prahalad, C. K., & Hamel, G. (1990). The core competence of the corporation. Harvard Business Review, 68, 79–91.

    Google Scholar 

  • Rijamampianina, R., Abratt, R., & February, Y. (2003). A framework for concentric diversification through sustainable competitive advantage. Management Decision, 41(4), 362–371.

    Article  Google Scholar 

  • Shortridge, R. T. (2004). Market valuation of successful versus non-successful R&D efforts in the pharmaceutical industry. Journal of Business Finance & Accounting, 31(9–10), 1301–1325.

    Article  Google Scholar 

  • Stock, M., & Stock, W. G. (2006). Intellectual property information: A comparative analysis of main information providers. Journal of the American Society for Information Science and Technology, 57(13), 1794–1803.

    Article  Google Scholar 

  • Su, F. P., Lai, K. K., Sharma, R. R. K., & Kuo, T. H. (2009). Patent priority network: Linking patent portfolio to strategic goals. Journal of the American Society for Information Science and Technology, 60(11), 2353–2361.

    Article  Google Scholar 

  • Teece, D., & Pisano, G. (1994). The dynamic capabilities of firms: An introduction. Industrial and Corporate Change, 3(3), 537–556.

    Article  Google Scholar 

  • Teece, D. J., Pisano, G., & Shuen, A. (1997). Dynamic capabilities and strategic management. Strategic Management Journal, 18(7), 509–533.

    Article  Google Scholar 

  • Toivanen, O., Stoneman, P., & Bosworth, D. (2002). Innovation and the market value of UK firms, 1989–1995. Oxford Bulletin of Economics and Statistics, 64(1), 39–61.

    Article  Google Scholar 

  • Trajtenberg, M. (1990). A penny for your quotes: Patent citations and the value of innovations. Rand Journal of Economics, 21(1), 172–187.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ching-Hsun Chang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, YS., Shih, CY. & Chang, CH. Explore the new relationship between patents and market value: a panel smooth transition regression (PSTR) approach. Scientometrics 98, 1145–1159 (2014). https://doi.org/10.1007/s11192-013-1110-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-013-1110-9

Keywords

Navigation