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Abstract 

Using the possible synergy among geographic, size, and technological distributions of firms in 

the Orbis database, we find the greatest reduction of uncertainty at the level of the 31 provinces 

of China, and an additional 18.0% at the national level. Some of the coastal provinces stand out 

as expected, but the metropolitan areas of Beijing and Shanghai are (with Tianjin and 

Chongqing) most pronounced at the next-lower administrative level of (339) prefectures, since 

these four “municipalities” are administratively defined at both levels. Focusing on high- and 

medium-tech manufacturing, a shift toward Beijing, Shanghai, and Tianjin (near Beijing) is 

indicated, but the synergy is on average not enhanced. High- and medium-tech manufacturing is 

less embedded in China than in Western Europe. Knowledge-intensive services “uncouple” the 

knowledge base from the regional economies mostly in Chongqing and Beijing. Unfortunately, 

the Orbis data is incomplete since it was collected for commercial and not for administrative or 

governmental purposes. However, we provide a methodology that can be used by others who 

may have access to higher-quality statistical data for the measurement. 
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1. Introduction 

 

Mutual information in three (or more) dimensions can be derived from Shannon’s (1948) 

formulas of information theory (e.g., McGill, 1954; Abramson, 1963: 131 ff.), but it can no 

longer be considered as Shannon-type information because it is a signed information measure 

that can also be negative (Krippendorff, 2009a; Yeung, 2008: 59f.). Any two sources of variance 

in the three- (or more-)way interaction may spuriously correlate given a third variable because of 

mutual overlaps in the expected information contents of the distributions. The overlaps can be 

considered as repetitions and therefore redundant or, alternatively, these non-linearities may be 

considered as loops that are incompatible with the linear framework of Shannon’s theory 

(Krippendorff, 2009b).  

 

Leydesdorff & Ivanova (in press) have recently shown that the information in the overlaps 

should be counted twice—as in the case of pure sets—so that the total information content is 

enlarged, and consequently the complementary relation between information and redundancy is 

shifted in the favor of the redudancy. Unlike Krippendorff’s (2009a) interaction information 

(IABC→AB:AC:BC), mutual information in more than two dimensions can then be considered 

consistently as a measure of redundancy or reduction of the uncertainty that prevails at the 

systems level (Ivanova & Leydesdorff, in preparation).  

 

Leydesdorff (2003) used this measure first as an operationalization of the possible reduction of 

uncertainty in the Triple Helix of university-industry-government relations (Park et al., 2005; cf. 

Leydesdorff & Sun, 2009; Park & Leydesdorff, 2010; Ye & Leydesdorff, in press). When all 
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relations are in place, an overlay may reduce uncertainty for the individual players at the systems 

level. This configurational effect cannot be attributed to specific links or nodes, but is a result of 

the interaction. These studies used co-authored publications as units of analysis, and considered 

possible relations as attributes of these units. 

 

In another series of studies of European innovation systems we used three (or more) attributes of 

firms as a potential source of synergy in the economy. Storper (1997) hypothesized that the 

relational interaction among technology, geography, and organization can generate synergy in 

what he called a “Holy Trinity.” We operationalize geography as the distribution in terms of 

geographical addresses, technology in terms of the OECD classification of firms according to the 

“Nomenclature générale des Activités économiques dans les Communautés Européennes” 

(NACE),
1
 and organizational size in terms of numbers of employees. Can a latent construct 

among the three (or more) attributes be indicated that potentially reduces uncertainty in the 

configuration? 

 

In the Netherlands (Leydesdorff et al., 2006) and Sweden (Leydesdorff & Strand, in press), we 

found a regional pattern with surplus value at the national level, measurable as a between-

regional reduction of uncertainty. In Germany (Leydesdorff & Fritsch, 2006) such national 

synergy was not found, but the surplus is realized at the level of the federal states, whereas the 

Hungarian system seems to consist of a western part integrated with neighboring EU-countries, a 

metropolitan center around Budapest, and an eastern part in which the old (state-led) system still 

prevails (Lengyel & Leydesdorff, 2011).  

                                              
1 The NACE code can be translated into the International Standard Industrial Classification (ISIC) that is used, for 
example, in the USA. 
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Most interestingly, Strand & Leydesdorff (2013) have found that the synergy in the Norwegian 

economy is concentrated along the shore in relation to marine and maritime (offshore) industries, 

whereas the university centers of the country (e.g., in Trondheim and Oslo) have not been 

integrated into the economy, but remain at a distance. In Sweden, 45.3% of the synergy was 

highly concentrated in the three metropolitan regions of Stockholm, Gothenburg, and 

Malmö/Lund.  

 

Our design is based on using firms as units of analysis, and the following three variables and 

their interactions as attributes: 

1. geographical addresses as an indicator of regional or other geographic provenance; 

2. size in terms of number of employees as a proxy of economic organization (e.g., small 

and medium-sized companies); 

3. NACE codes of the OECD as a technological classification. 

In each study, however, we had to make compromises because of possible imperfections in the 

sample data. In Hungary, for example, we did not have NACE codes for all firms, and Statistics 

Sweden uses its own classification system. In these various studies, the data about numbers of 

employees was not always as fine-grained as it was in the original study of the Netherlands 

(Leydesdorff et al., 2006). 

 

In this further study we make an attempt to analyze the knowledge-based economy of China. 

Recently we obtained access to the database Orbis of the Bureau van Dijk (BvD; available at 

https://orbis.bvdinfo.com) containing the necessary data given our design. Although organized at 

https://orbis.bvdinfo.com/version-201357/home.serv?product=orbisneo
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the firm level and in considerable detail, this data is collected worldwide for commercial 

purposes and not for administrative or governmental purposes such as by a national bureau of 

statistics.  

 

The data collection is based on more than one hundred information providers, or, as the BvD 

claims: “We’re experts in company information and business intelligence. We integrate 

information from numerous sources to create Orbis and complement it with our own research. 

We combine this unique dataset with our software to create a dynamic global research tool.”
2
 

The encompassing database covers company information for more than 100 million firms 

(including banks) worldwide. The three variables that are core to our research question 

(addresses, NACE codes, and numbers of employees) are also included. 

 

Orbis provides information collected during the past ten years, but with a continuously moving 

window retrospectively from the current date. Regional databases are derived from Orbis (such 

as Amadeus for Europe), but contain approximately the same data only for the most recent year 

(and are therefore cheaper). The update frequencies of either database, however, are not specified 

precisely and may vary among countries and firms. In a study of the coverage of Orbis, Ribeiro 

et al. (2010) concluded that this coverage is poor, can vary among countries and sectors, but 

precise estimates were not provided. In any case, self-employed entrepreneurs are usually not 

covered, whereas these firms (e.g., startups) may be most interesting from the perspective of 

innovation policies. A further issue may be that headquarters and research centers are not always 

                                              
2 “Orbis: Company Information around the Globe”; available at http://www.bvdinfo.com/About-BvD/Brochure-
Library/Brochures/ORBIS-brochure. 

http://www.bvdinfo.com/About-BvD/Brochure-Library/Brochures/ORBIS-brochure
http://www.bvdinfo.com/About-BvD/Brochure-Library/Brochures/ORBIS-brochure
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located in the same place, but we have the impression that Orbis tries to correct for such 

problems. 

 

In a recent study of the Italian innovation system (Cucco & Leydesdorff, in preparation) an 

almost perfect correlation was found (Pearson r = 0.98; Spearman’s ρ > 0.99) between the 

distributions of our synergy values based on 462,316 valid observations using Orbis data versus 

4,480,473 firms registered by Statistics Italy in 2007. This gives us some confidence in the 

representativeness of the Orbis data and its usefulness as a sample for our purpose of estimating 

synergy as a systems property. In this study, we explore the usefulness of this data as a sample 

for investigating the important question of how to measure the knowledge base of China in terms 

of Triple-Helix relations at the level of firm data. In any case, this study provides a methodology 

that can be improved if the complete data set for the population is made available. 

 

We asked the National Bureau of Statistics of China for the complete set, but, for legal reasons, 

data is made available by this office only on the aggregated level at 

http://219.235.129.58/welcome.do#. Since no other data is readily available for China, we 

decided to explore Orbis as a source and thus harvested all firm data for China on December 14, 

2012. With the caveat that this data is an incomplete sample because collected for business 

purposes as different from administrative purposes (such as governmental statistics), the domain 

enables us nonetheless to address in considerable detail the research question of where synergy is 

generated in the Chinese economy in terms of relations between geographical addresses, 

company sizes, and NACE codes. 

 

http://219.235.129.58/welcome.do
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2. Methods and materials 

 

2.1 Data 

Retrieval from Orbis provided us with 768,949 records with a Chinese address of which 768,948 

could be downloaded. Figure 1 shows the yearly distribution of this data. (As noted, Orbis 

accumulates data for the last ten years.) 

 
Figure 1:  Yearly distribution of firm data for China from ORBIS (Dec. 14, 2012; N = 768,948). 

 

Figure 1 teaches us that data collection in China did not begin until 2006, and that the data for 

2011 were not yet included at the time of this download (Dec. 2012).
3
 We focus on the data for 

2008-2010, comprising 402,604 records (52.4%), of which 379,026 contained valid information 

in the three fields of interest: city name, NACE code (Rev. 2; 4 digits), and firm size. 

                                              
3 When we returned to the database on May 20, 2013, the retrieval was 1,612,309. 
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The attribution of city names to 31 provinces was fully standardized and made complete in terms 

of name variants, etc., by one of us. Name variants of cities were additionally standardized on the 

basis of computer routines that, for example, relabeled “Beijing Capital City” as equivalent to 

“Beijing”, etc. As could be expected, the distribution of the firms included varies widely by 

region: from 67 for the province of Xizang (that is, the autonomous region of Tibet) to 62,805 

for the heavily industrialized region of Jiangsu on the east coast (Figure 2). The distribution 

accords with the conventional wisdom that China is both industrialized and in large parts also 

rural. 

 Figure 2: Geographical distribution of the firms (years 2008-2010; N = 379,026). 
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Using SPSS v21 for the geographic mapping, we imported a shapefile for the administrative 

organization of China from the Internet at http://www.diva-gis.org/datadown. The database of 

this file distinguishes three authoritative layers within China, of which the 31 provinces are the 

first, and 2,410 locations (city names) the third. The in-between level 2 contains 339 units 

(prefectures). Using dedicated routines, we were able to establish 330,897 records of firms 

(87.3%) additionally with this information at level 2.  

 

For the size distribution in terms of numbers of employees, we used the same categories as those 

used in the first study of Dutch data (Leydesdorff et al., 2006). Table 1 shows this distribution. 

As could be expected, medium-sized firms dominate the pattern; the relative absence of very 

small firms (0.9%) can be considered as an artifact of the data collection by the Bureau van Dijk 

(Ribeiro et al., 2010). As noted, these missing values probably constitute the main shortcoming 

of this data because one would expect this class of firms to be relatively large. 

 

Size class N % 

0, 1, or n.a. 3,761 0.9 

2-4 1,003 0.2 

5-9 4,027 1 

10-19 19,938 5 

20-49 95,949 23.8 

50-99 110,662 27.5 

100-199 83,469 20.7 

200-499 58,271 14.5 

500-749 10,676 2.7 

750-999 4,870 1.2 

> 1000 9,978 2.5 

Total 402604 100 

 

Table 1: Size classes in terms of numbers of employees. 
 

http://www.diva-gis.org/datadown
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In 10,074 records (2.5%), the NACE-codes at the 2-digit level were not valid; these records were 

excluded from the analysis. Orbis uses Revision 2 of the NACE code at the four-digit level. 

Using the further classification of Eurostat/OECD (2009, 2011) in terms of high- and medium-

tech manufacturing and knowledge-intensive services, 28,659 (or 7.1%) of the firms can be 

classified as high-tech manufacturing and 105,604 (26.2%) as medium-tech. We analyze this 

33.3% of the records in a separate run of the data (Section 3.2). The NACE-categories of 

knowledge-intensive services, however, were populated only with 4,604 records (1.1%), and 

therefore less extensively analyzed.  

 

2.2. Methods 

As noted above, mutual information in more than three dimensions—the Triple-Helix indicator 

to be used here—is a signed information measure (Yeung, 2008), and therefore not a Shannon-

information (Krippendorff, 2009a and b). However, this measure is derived in the context of 

information theory and follows from the Shannon formulas (e.g., Abramson, 1963; Ashby, 1964; 

McGill, 1954).   

 

According to Shannon (1948) the uncertainty in the relative frequency distribution of a random 

variable x (
x

xp ) can be defined as 
x

xxX ppH 2log . Shannon denotes this as probabilistic 

entropy, which is expressed in bits of information if the number two is used as the base for the 

logarithm. (When multiplied by the Boltzman constant kB, one obtains thermodynamic entropy 

and the corresponding dimensionality in Joule/Kelvin.  Unlike thermodynamic entropy, 

probabilistic entropy is dimensionless and therefore yet to be provided with meaning when a 

system of reference is specified.)  
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Likewise, uncertainty in a two-dimensional probability distribution can be defined as


x

xyxy

y

XY ppH 2log . In the case of interaction between the two dimensions, the 

uncertainty is reduced with the mutual information or transmission:
XYYXXY HHHT  )( . If 

the distributions are completely independent 
YXXY HHH  , and consequently 0XYT .  

 

In the case of three potentially interacting dimensions (x, y, and z), the mutual information can be 

derived (e.g., Abramson, 1963: 131 ff.) as:  

 

XYZYZXZXYZYXXYZ HHHHHHHT    (1) 

 

The interpretation is as follows: association information can be categorized broadly into 

correlation information and interaction information. A spurious correlation in a third attribute, 

for example, can reduce the uncertainty between the other two. The correlation information 

among the attributes in a data set can be interpreted as the total amount of information shared 

among the attributes. The interaction information can be interpreted as multivariate dependencies 

among the attributes.  

 

Compared with correlation, mutual information can be considered as a parsimonious measure for 

the association. The multivariate extension to mutual information was first introduced by McGill 

(1954) as a generalization of Shannon’s mutual information. This signed information measure 

(Yeung, 2008: 59f.) is similar to the analysis of variance, but uncertainty analysis remains more 

abstract and does not require assumptions about the metric properties of the variables (Garner & 
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McGill, 1956). Han (1980) developed the concept further; positive and negative interactions 

were also discussed by Jakulin (2005), Leydesdorff & Ivanova (in press); Sun & Negishi (2010), 

Tsujishita (1995), and Yeung (2008: 59 f.).  

 

One of the advantages of entropy statistics is that the values can be fully decomposed. As with 

the decomposition of probabilistic entropy (Theil, 1972: 20f.), mutual information in three 

dimensions can be decomposed into groups as follows:  

 


G

G
G T

N

n
TT 0

 (2) 

 

Since we will decompose in the geographical dimension, T0 connotes between-region 

uncertainty; TG  the uncertainty prevailing at a geographical scale G; nG is the number of firms at 

this geographical scale; and N the total number of firms in the whole set.  

 

The between-group uncertainty (T0 ) can be considered as a measure of the dividedness. A 

negative value of T0   indicates an additional synergy at the higher level of national 

agglomeration among the lower-level geographical units. In the Netherlands, Norway, and 

Sweden, for example, a surplus was found at the national level; in Germany, this surplus was 

found at the level of the federal states (Länder). Note that one cannot compare the quantitative 

values of  T0 across countries—because these values are sample-specific—but one is allowed to 

compare the dividedness in terms of the positive or negative signs of T0 and as a percentage of 

the total synergy for each country. All values of the contribution of subsets to the knowledge-

based economy are based on normalization on the total set (that is, nG/N in Eq. 2). 
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3. Results 

 

3.1  Decomposition at the provincial level of China 

We run the analysis for all firms in the whole set and then for each of the 31 provinces 

separately. This leads to values for T and TG, respectively, that can be used in Eq. 2; the values of 

N and nG are known from the download. Normalized values of the contributions of provinces to 

the national synergy (ΔT = 
  

 ⁄    ) and the between-provinces synergy (T0) can then be 

derived. 

 

 

Figure 3: Synergies in the knowledge-based economy of China at the provincial level (years 
2008-2010; N = 379,026).  
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Figure 3 provides a map of China with the 31 provincial units colored according to their 

respective contributions to the synergy in the knowledge-based economy. The total synergy for 

the nation is –196.48 mbits of information, of which 18.0% (35.46 mbits) is realized at the 

above-provincial level.  This is more than we found in the case of Norway (11.7%), but less than 

for the Netherlands (27.1%) or Sweden (20.4%). As said, we found no additional synergy in 

Germany and Hungary at the national level (for different reasons). China thus functions very 

much as a unified nation state.  
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 All sectors 
High and medium 

tech  
KIS 

Province 
(a) 

N of 
firms 

(b) 

ΔT 
(mbit) 

(c) 

N of 
firms 

(d) 

ΔT  
(mbit) 

(e) 

 
 
 

%contr. 
[(e)/(c)] 

(f) 

N of 
firms 

(g) 

ΔT 
(mbit) 

(h) 

Jiangsu 62,805 -12.48 1,783 -3.19  25.6 49 0.03 

Shandong 35,152 -12.23 10,862 -2.66  21.7 346 0.01 

Guangdong 44,692 -10.99 15,986 -1.75  15.9 90 -0.01 

Zhejiang 50,699 -10.92 17,265 -2.33  21.4 24 0.05 

Beijing 17,490 -8.68 6,665 -2.41  27.8 339 0.08 

Hunan 12,019 -8.38 3,811 -1.80  21.5 218 -0.12 

Shanghai 23,049 -7.93 10,164 -2.37  29.9 17 0.01 

Hubei 8,969 -7.39 2,512 -1.66  22.5 181 -0.02 

Sichuan 7,807 -7.34 1,930 -1.47  20.0 161 -0.04 

Liaoning 15,565 -7.25 556 -1.44  19.8 748 -0.01 

Anhui 13,275 -6.98 4,260 -1.61  23.0 130 -0.01 

Henan 10,899 -6.62 3,088 -1.46  22.0 112 0.01 

Heilongjiang 9,993 -5.99 3,174 -1.22  20.4 137 0.04 

Hebei 7,062 -5.82 1,737 -1.22  20.9 760 0.00 

Chongqing 6,015 -5.70 2,287 -1.38  24.3 92 0.11 

Fujian 16,001 -5.59 3,344 -1.17  21.0 187 -0.03 

Jilin 6,190 -5.09 4,768 -1.12  21.9 145 0.02 

Jiangxi 5,790 -4.01 1,977 -0.98  24.3 140 -0.02 

Guangxi 3,888 -3.33 1,112 -0.65  19.7 89 -0.07 

Shanxi 2,363 -2.72 698 -0.72  26.7 75 0.01 

Tianjin 6,132 -2.69 2,774 -0.83  30.8 13 0.00 

Nei Mongol 2,605 -2.37 24,823 -0.28  11.6 147 -0.01 

Guizhou 1,695 -2.11 433 -0.23  10.8 31 0.03 

Xinjiang Uygur 1,625 -2.05 270 -0.11  5.6 87 0.07 

Shaanxi 2,868 -1.92 971 -0.45  23.4 96 0.02 

Gansu 1,510 -1.82 374 -0.21  11.7 33 0.05 

Yunnan 1,707 -1.72 419 -0.15  8.4 49 0.00 

Hainan 431 -0.54 111 -0.05  9.9 12 0.01 

Ningxia Hui 409 -0.29 127 -0.02  8.4 1 0.00 

Qinghai 254 -0.08 81 0.00  - 2 0.00 

Xizang (Tibet) 67 0.01 12 0.00  - 6 0.01 

Σ =  
 

  
     

-161.02  -34.95  17.7  0.23 

China 379,026 -196.48 128,374 -41.75  21.2 4,517 -1.07 

T0 
 

-35.46 
 

-6.80  19.2 -1.30 

Table 1: 31 Provinces of China sorted by their contribution to synergy (column c); all sectors 

(columns b-c; N = 379,026); high- and medium-tech manufacturing (column d-f; n = 128,374); 
knowledge-intensive services (columns g-h; n = 4,517). Total values of China and between-

province values T0 are added in the bottom rows. The four municipalities are boldfaced. 
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In Table 1, the 31 provinces are sorted in terms of their contributions to the overall synergy 

(column c). Since the number of firms in a region (nG) is a factor in Eq. 2, the correlations with 

the number of firms are high, and therefore the relatively smaller provinces of Beijing and 

Shanghai (in terms of total numbers of firms) figure less prominently than one might perhaps 

expect. We return to this issue in Section 3.3 when we analyze the data at the next-lower level of 

aggregation. However, we first turn to the decomposition of the set in terms of high- and 

medium-tech manufacturing (columns d and e in Table 1), and knowledge intensive services 

(columns f and g) in the next section by using the NACE codes (Table 2). 

Table 2: NACE classifications (Rev. 2) of high- and medium-tech manufacturing, and 
knowledge-intensive services. 
High-tech Manufacturing 

 
21 Manufacture of basic pharmaceutical products and 
pharmaceutical preparations 
26 Manufacture of computer, electronic and optical products 
30.3 Manufacture of air and spacecraft and related machinery 

 
 
Medium-high-tech Manufacturing 
 
20 Manufacture of chemicals and chemical products 
25.4 Manufacture of weapons and ammunition  
27 Manufacture of electrical equipment,  
28 Manufacture of machinery and equipment n.e.c.,  
29 Manufacture of motor vehicles, trailers and semi-trailers,  
30 Manufacture of other transport equipment  

 excluding 30.1 Building of ships and boats, and  

 excluding 30.3 Manufacture of air and spacecraft and 
related machinery 

32.5 Manufacture of medical and dental instruments and 

supplies 

Knowledge-intensive Sectors (KIS) 
 
50 Water transport,  
51 Air transport 

58 Publishing activities,  
59 Motion picture, video and television programme 
production, sound recording and music publishing 
activities,  

60 Programming and broadcasting activities,  
61 Telecommunications,  
62 Computer programming, consultancy and related 
activities,  
63 Information service activities  
64 to 66 Financial and insurance activities  
69 Legal and accounting activities,  
70 Activities of head offices; management consultancy 
activities,  
71 Architectural and engineering activities; technical testing 
and analysis,  
72 Scientific research and development,  
73 Advertising and market research,  
74 Other professional, scientific and technical activities,  
75 Veterinary activities  
78 Employment activities 
80 Security and investigation activities 

84 Public administration and defence, compulsory social 
security  

85 Education  

86 to 88  Human health and social work activities,  
90 to 93 Arts, entertainment and recreation 
 
Of these sectors, 59 to 63, and 72 are considered high-tech 
services. 

Sources: Eurostat/OECD (2009, 2011); cf. Laafia (2002, p. 7) and Leydesdorff et al. (2006, p. 

186). 
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3.2 Sectorial decomposition 

3.2.1 High- and medium-tech manufacturing 

 

Let us first turn to the subset of 134,263 firms (33.3% of the data) which are classified with the 

NACE codes (Rev. 2) as high- and medium-tech manufacturing (Table 2). The columns d and e 

of Table 1 provide the corresponding figures, and in column f, the values of ΔT for this subset (in 

column e) are compared with those in column c for all sectors. Columns c (for the total set) and e 

(for high- and medium-tech manufacturing) are highly correlated: Pearson r = .962 [p < .01]; 

Spearman’s ρ = .984 [p < .01]; N = 31. However, the relative contribution of high- and medium-

tech to the nation provides only 21.2% of the synergy, while 33.3% of the firms were classified 

as such. 

 

The contributions are most pronounced in the regions of Beijing (27.9%), Shanghai (29.9%), and 

Tianjin (30.8%). The latter is a province between Beijing and the coast. In the next section, we 

shall see that these three provinces are also considered as municipalities with Chongquing as a 

fourth one. However, the knowledge base of this latter province is not so strongly enhanced 
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given this focus on high- and medium-tech manufacturing.

 

Figure 4: Synergies in high- and medium-tech manufacturing at the provincial level of China 

(years 2008-2010; N = 128,374).  
 

 

3.2.1 Knowledge-intensive services 

 

We found an uncoupling of the knowledge-intensive services from the regional economy in the 

Western-European countries studied previously because a knowledge-intensive service can be 

provided from any location near a railway station or airport; the geographical location 

(“rooting”) is thus less relevant in the case of knowledge-intensive services. This effect is 

attenuated when R&D facilities are needed (“high-tech knowledge-intensive services”) because 

these activities may require laboratories that are grounded. Since our data is thin in this domain 
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(column g), we did not pursue a further decomposition within the category of knowledge-

intensive services.  

 

Column h shows that Chongquing is strongest in terms of this uncoupling effect with Beijing at 

the second place. The synergy indicator in these instances is positive which means that one adds 

to the uncertainty with a localized focus on these provinces. However, this is not the case for all 

provinces. Shanghai, for example, does not seem to play a role from this perspective (although 

the data is extremely poor; N = 17). Guandong which is represented with 346 of these services, 

however, does not perform any better on this indicator (ΔT = 0.01 mbit). 

 

In summary, the decomposition in terms of sectors most relevant to the knowledge-based 

economy did not show the strongly enhanced role of high- and medium-tech manufacturing that 

could be expected on the basis of previous studies (for European nations), but the uncoupling 

effect of knowledge-intensive services was confirmed for administrative centers such as 

Chongqing and Beijing. A further decomposition in terms of high-tech might be interesting, but 

we were hesitant to pursue this further given the limitations in this data.  

 

3.3 The second administrative level 

 

Figure 5 shows the pronounced contribution to the synergy at the second administrative level of 

four units (Beijing, Shanghai, Tianjin, and Chongqing) that have the special status of 

“municipalities” directly managed by the central government of China. Table 3 provides the 

numerical breakdown amd shows that the data is also mainly collected from these municipalities 
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and the prefecture of Dezhou (neighboring to Tianjin, but in the province of Shandong) that 

follows at a next-lower level. However, Cangzhou—south of Tianjin—is larger in terms of the 

number of firms, but indicated as much less synergetic in terms of the three dimensions studied 

here. 

 

 
Figure 5: The distribution of 339 second-level administrative units in the PRC compared in 
terms of their contribution to the synergy among technology, geography, and organization. 

 

 

 
ΔT in mbits n of firms 

Shanghai -3.91 12,742 

Chongqing -3.65 13,488 

Beijing -3.32 4,394 

Tianjin -2.60 6,316 

Dezhou -1.46 6,630 

Nanping -0.96 1,823 

Yantai -0.90 3,127 

Cangzhou -0.82 7,628 

Zhangzhou -0.75 4,830 

Chongqing 

Beijing 

Shanghai 

Tianjin 
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Fuzhou -0.72 2,894 

Tieling -0.67 2,349 

Weifang -0.58 4,427 

Yuncheng -0.51 735 

Zhengzhou -0.51 1,900 

Hengyang -0.47 998 

Deyang -0.44 913 

Luohe -0.44 2,994 

Yichun -0.43 765 

Luoyang -0.41 1,675 

Yanbian Korean -0.38 227 

(...)   

Σ -40.84 310,974 

China (adm_2) -183.42  

H0 -142.58  

 

Table 3: Administrative units at the second level sorted in terms of their contribution (ΔT) to the 
synergy among technology, geography, and organization.  

 

Because we can evaluate only 87.3% of the data at this level, the reduction of uncertainty at the 

national level is -183.42 as against -196.48 mbits in Table 1 (93.4%). Table 3 shows that only 

22.3% of this synergy (40.84 mbits) is found at the second level of the administration. The 

provinces (at level 1) are thus the relevant units for studying the synergy in the Chinese 

economy, but the role of the national level is considerable. The country is far more centralized 

than, for example, Norway; but the distribution is less skewed towards the metropolitan centers 

than in Sweden. 

 

Discussion 

 

As noted, the major point for discussion is the data collection by the Bureau van Dijk that fills 

the Orbis database on the basis of information provided by more than one hundred information 

suppliers and by its own research. The methods of data-collection are discretionary since the 
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information is controlled by the companies in question. This data, therefore, provides an 

incomplete sample. However, the selection of journals for example by Thomson-Reuters and 

Elsevier for their databases (Web of Science and Scopus, respectively) is also not public. Thus, 

such a state of affairs is more common when using commercial databases for scientometric 

research. 

 

The main remaining question concerns the extent to which one can expect biases in the data-

collection to influence the results. We noted that small-sized enterprises are under-represented in 

this data, and that self-employed entrepreneurs seem not to be included at all. Consequently, 

startups are presumably not included. This may bias the results against university-based 

entrepreneurship that may not be distributed equally across the country. However, the 

industrialized provinces of China all have a considerable number of universities with potentially 

industrial activities of graduates. This effect, however, may disfavor the largest metropolitan 

areas such as Beijing and Shanghai. (Hong Kong is not included in this data.) 

 

The synergy indicator is not an output but a structural indicator, although—as noted—the 

number of firms is also registered in Eq. 2 as the units of analysis. Most governmental (OECD) 

statistics are (linear) output indicators (e.g., Schaaper, 2009). For example, we found a report 

entitled “High-tech statistics China 2012” on the website of the National Bureau of Statistics
4
 

which provides a table (1-7) with “Gross Industrial Output value of high-tech industries by 

region” (in RMB ¥100 million). Not surprisingly, this indicator correlates significantly with our 

indicator using the first-administrative level of 31 provinces; Spearman’s ρ = 0.867 (p < .01). All 

distributions over the Chinese provinces are skewed and tend therefore to be correlated.  

                                              
4 Available at http://www.sts.org.cn/sjkl/gjscy/data2012/data12.pdf . 

http://www.sts.org.cn/sjkl/gjscy/data2012/data12.pdf
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If we focus within the data only on high- and medium-tech, Spearman’s ρ further increases only 

marginally to .879. However, the regions indicated as most productive in terms of output are 

different from the ones signaled by our methods, namely Jangsu and Guangdong. These latter 

regions are among those with the largest numbers of firms in our set: 62,805 and 44,692 firms, 

respectively. Zhejiang (50,699 firms in our data), however, is categorized with Beijing, 

Shanghai, and Shandong in the second group by this report, and with Chongqing among the third 

category.  

 

As against these rankings in terms of size, our indicator is a measure of synergy or resonance 

among the distributions in three (or more) dimensions. The decomposition in terms of sectors 

and levels taught us that the four municipalities carry a specific function in the knowledge-based 

economy that was not anticipated. High- and medium-tech is more concentrated in and around 

the metropolitan areas of Beijing and Shanghai, but setting this filter does not lead to a higher 

synergy across the provinces (as we had expected on the basis of previous studies). The roles of 

Chongqing and Beijing as centers of knowledge-intensive administration are notable. In other 

words, the design allows us to fine-tune in terms of the three relevant dimensions (technology, 

geography, and size) as different projections of the three-dimensional data. The quality of this 

data, however, remains beyond our control. 
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Conclusion 

 

Most synergy is generated in the knowledge base of the Chinese economy at the provincial level 

(administrative level 1), but the national level adds a substantial contribution (>18%). The level 

of the prefectures seems much less relevant except in the case of Shanghai, Beijing, Chongqing, 

and Tianjin as “municipalities” that are defined also at the (first) level of the provinces. In 

general, the synergy is generated above the city level; that is, at the level of regions. 

 

A focus on high- and medium-tech manufacturing shows that the differences in terms of this 

selection can be between 20 and 30 percent for provinces. Tianjin joins Beijing and Shanghai as 

the “winners” when taking this perspective, whereas large industrial regions (such as Guandong) 

may be less profiled in terms of high- and medium-tech firms. Decomposition in terms of 

knowledge-intensive services is based on relatively small sets, but BvD claims that services are 

also included in Orbis and thus this data suggests that the Chinese economy is more 

manufacturing than service-oriented. The knowledge-intensive services are geographically 

located in the administrative centers (and perhaps associated to the government; cf. 

Perevodchikov et al., 2013).  

 

Acknowledgement 

We thank Inga Ivanova, Fred Y. Ye, and two anonymous referees for comments on a previous 

version of this manuscript. The study was supported by the National Natural Science Foundation 
of China (NSFC) with grant number 71073153. 

 

 

  



25 

 

References 

Abramson, N. (1963). Information Theory and Coding. New York, etc.: McGraw-Hill. 

Ashby, W. R. (1964). Constraint analysis of many-dimensional relations. General Systems 
Yearbook, 9, 99-105.  

Eurostat/OECD. (2009). ‘High-technology’ and ‘knowledge based services’ aggregations based 
on NACE Rev. 2 (January 2009); available at 

http://epp.eurostat.ec.europa.eu/cache/ITY_SDDS/Annexes/htec_esms_an3.pdf .  
Eurostat/OECD. (2011). High technology and knowledge-intensive sectors,  December 2011; 

available at 
http://epp.eurostat.ec.europa.eu/cache/ITY_SDDS/Annexes/hrst_st_esms_an9.pdf . 

Garner, W. R., & McGill, W. J. (1956). The relation between information and variance analyses. 
Psychometrika, 21(3), 219-228.  

Han, T. S. (1980). Multiple mutual information and multiple interactions in frequency data. 
Information and Control, 46(1), 26-45.  

Ivanova, I. A., & Leydesdorff, L. (in preparation). Redundancy Generation in University-
Industry-Government Relations: The Triple Helix Modeled, Measured, and Simulated; 

available at http://arxiv.org/abs/1308.3836  
Jakulin, A. (2005). Machine learning based on attribute interactions. Unpublished PhD Thesis, 

Ljubljana: University of Ljubljana; available at 
http://stat.columbia.edu/~jakulin/Int/jakulin05phd.pdf . 

Krippendorff, K. (1980). Q; an interpretation of the information theoretical Q-measures. In R. 
Trappl, G. J. Klir & F. Pichler (Eds.), Progress in cybernetics and systems research (Vol. 

VIII, pp. 63-67). New York: Hemisphere. 
Krippendorff, K. (2009). Information of Interactions in Complex Systems. International Journal 

of General Systems, 38(6), 669-680.  
Krippendorff, K. (2009). W. Ross Ashby’s information theory: a bit of history, some solutions to 

problems, and what we face today. International Journal of General Systems, 38(2), 189-
212.  

Laafia, I. (2002). Employment in high tech and knowledge intensive sectors in the EU continued 
to grow. Statistics in Focus: Science and Technology, Theme 9(4), http://www.eds-

destatis.de/en/downloads/sif/ns_02_04.pdf.  
Lengyel, B., & Leydesdorff, L. (2011). Regional innovation systems in Hungary: The failing 

synergy at the national level. Regional Studies, 45(5), 677-693. doi: DOI: 
10.1080/00343401003614274 

Leydesdorff, L. (2003). The Mutual Information of University-Industry-Government Relations: 
An Indicator of the Triple Helix Dynamics. Scientometrics, 58(2), 445-467.  

Leydesdorff, L., & Fritsch, M. (2006). Measuring the Knowledge Base of Regional Innovation 
Systems in Germany in terms of a Triple Helix Dynamics. Research Policy, 35(10), 

1538-1553.  
Leydesdorff, L., & Ivanova, I. A. (in press). Mutual Redundancies in Inter-human 

Communication Systems: Steps Towards a Calculus of Processing Meaning. Journal of 
the American Society for Information Science and Technology.  

Leydesdorff, L., & Strand, Ø. (2013). The Swedish System of Innovation: Regional Synergies in 
a Knowledge-Based Economy. Journal of the American Society for Information Science 

and Technology, 64(9), 1890-1902.  

http://epp.eurostat.ec.europa.eu/cache/ITY_SDDS/Annexes/htec_esms_an3.pdf
http://epp.eurostat.ec.europa.eu/cache/ITY_SDDS/Annexes/hrst_st_esms_an9.pdf
http://arxiv.org/abs/1308.3836
http://stat.columbia.edu/~jakulin/Int/jakulin05phd.pdf
http://www.eds-destatis.de/en/downloads/sif/ns_02_04.pdf
http://www.eds-destatis.de/en/downloads/sif/ns_02_04.pdf


26 

 

Leydesdorff, L., & Sun, Y. (2009). National and International Dimensions of the Triple Helix in 
Japan: University-Industry-Government versus International Co-Authorship Relations. 

Journal of the American Society for Information Science and Technology 60(4), 778-788.  
Leydesdorff, L., Dolfsma, W., & Van der Panne, G. (2006). Measuring the Knowledge Base of 

an Economy in terms of Triple-Helix Relations among ‘Technology, Organization, and 
Territory’. Research Policy, 35(2), 181-199.  

McGill, W. J. (1954). Multivariate information transmission. Psychometrika, 19(2), 97-116.  
Park, H. W., & Leydesdorff, L. (2010). Longitudinal trends in networks of university-industry-

government relations in South Korea: The role of programmatic incentives. Research 
Policy, 39(5), 640-649.  

Park, H. W., Hong, H. D., & Leydesdorff, L. (2005). A Comparison of the Knowledge-based 
Innovation Systems in the Economies of South Korea and the Netherlands using Triple 

Helix Indicators. Scientometrics, 65(1), 3-27.  
Perevodchikov, E., Uvarov, A., & Leydesdorff, L. (2013). Measuring Synergy in the Russian 

Innovation System. Paper presented at the 12th International Conference about the Triple 
Helix of University-Industry-Government Relations, London, UK. 

Ribeiro, S. P., Menghinello, S., & De Backere, K. (2010). The OECD ORBIS Database: 
Responding to the need for firm-level micro-data in the OECD OECD Statistics Working 

Papers, 2010/01. Paris: OECD Publishing; at http://www.oecd-
ilibrary.org/economics/the-oecd-orbis-database_5kmhds8mzj8w-en . 

Schaaper, M. (2009). Measuring China’s innovation system: national specificities and 
international comparisons. Paris: OECD Publishing; at http://www.oecd-

ilibrary.org/science-and-technology/measuring-china-s-innovation-
system_227277262447 . 

Shannon, C. E. (1948). A Mathematical Theory of Communication. Bell System Technical 
Journal, 27, 379-423 and 623-656.  

Storper, M. (1997). The Regional World - Territorial Development in a Global Economy. New 
York: Guilford Press. 

Strand, Ø., & Leydesdorff, L. (2013). Where is Synergy in the Norwegian Innovation System 
Indicated? Triple Helix Relations among Technology, Organization, and Geography. 

Technological Forecasting and Social Change, 80(3), 471-484.  
Sun, Y., & Negishi, M. (2010). Measuring the relationships among university, industry and other 

sectors in Japan’s national innovation system: a comparison of new approaches with 
mutual information indicators. Scientometrics, 82(3), 677-685. 

Theil, H. (1972). Statistical Decomposition Analysis. Amsterdam/ London: North-Holland. 
Tsujishita, T. (1995). On triple mutual information. Advances in applied mathematics, 16(3), 

269-274. 
Ye, F. Y., Yu, S. S., & Leydesdorff, L. (in press). The Triple Helix of University-Industry-

Government Relations at the Country Level, and Its Dynamic Evolution under the 
Pressures of Globalization. Journal of the American Society for Information Science and 

Technology. 
 

http://www.oecd-ilibrary.org/economics/the-oecd-orbis-database_5kmhds8mzj8w-en
http://www.oecd-ilibrary.org/economics/the-oecd-orbis-database_5kmhds8mzj8w-en
http://www.oecd-ilibrary.org/science-and-technology/measuring-china-s-innovation-system_227277262447
http://www.oecd-ilibrary.org/science-and-technology/measuring-china-s-innovation-system_227277262447
http://www.oecd-ilibrary.org/science-and-technology/measuring-china-s-innovation-system_227277262447

