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ABSTRACT 

In this paper the question of returns to scale in scientific production is analyzed using 

nonparametric techniques for multidimensional efficiency measurement. Based on 

survey data for German research groups from three scientific fields it is shown that 

the multidimensional production possibility sets are weakly non-convex and locally 

strictly non-convex. This implies that the production functions for the groups in the 

sample are characterised by increasing returns in some regions and at least 

constant returns to scale otherwise. This has two implications for organization of 

scientific research: first, at least some groups in our sample have suboptimal size 

and could benefit from growing. Second, specialisation on certain tasks in science 

(e.g. transfer-oriented groups vs. research-oriented groups) would increase output of 

the overall system. 

 

 

JEL Code: C14, O30 

 

Keywords: Research Units, Specialisation, Production, Efficiency, Returns to scale, 
DEA 

 
 

 

 

 

 

 

 

Disclaimer: All the opinions expressed in this paper are the responsibility of the individual 

author or authors and do not necessarily represent the views of other CIRCLE researchers. 



Are there Scale Economies in Scientific Production? 

On the Topic of Locally Increasing Returns to Scale 

Torben Schubert 

CIRCLE, Lund University 

Sölvegatan 16 

22100 Lund, Sweden 

Email: torben.schubert@circle.lu.se,  

Fraunhofer Institute for Systems and Innovation Research 

Breslauer Str. 48, 76139 Karlsruhe (Germany) 

Also: Technological University Berlin, Chair of Innovation Economics 

Abstract: In this paper the question of returns to scale in scientific production is ana-

lyzed using nonparametric techniques for multidimensional efficiency measurement. 

Based on survey data for German research groups from three scientific fields it is shown 

that the multidimensional production possibility sets are weakly non-convex and locally 

strictly non-convex. This implies that the production functions for the groups in the 

sample are characterised by increasing returns in some regions and at least constant re-

turns to scale otherwise. This has two implications for organization of scientific re-

search: first, at least some groups in our sample have suboptimal size and could benefit 

from growing. Second, specialisation on certain tasks in science (e.g. transfer-oriented 

groups vs. research-oriented groups) would increase output of the overall system. 

Keywords: Research Units, Specialisation, Production, Efficiency, Returns to scale, 

DEA 

JEL: C14, O30 

mailto:torben.schubert@circle.lu.se


 

2 

1. Introduction 

It is widely believed that efficient regular production systems (e.g. firms or economies) 

are characterised by division of labour. Indeed, this idea is easily put across when look-

ing at the alternative: the subsistence economy, where everybody produces the goods he 

needs by himself without trading goods. Although the absence of trade reduces transac-

tion costs, these gains are certainly outweighed by the losses induced by not reaping the 

benefits of specialisation; in particular, learning effects and accumulation  

Although this idea seems natural in the production of regular goods and services, there 

is little agreement that this insight can be transferred to the production of "scientific 

goods". Many arguments are put forth to support this scepticism. Some of them are 

philosophical (for example, the postulated "unity of research and teaching" by Wilhelm 

von Humboldt, one of the most important university reformers at the beginning of the 

19
th

 century in Germany), while some are at least implicitly based on efficiency argu-

ments. For example, sometimes it is assumed that economies of scope exist (Johnes 

1997, Cohn et al. 1989), which would render specialisation inefficient. 

Many authors have now analysed the question of increasing returns to scale and scope 

in science (among many others Lloyd et al., 1993, Johnes, 1997, de Groot et al., 1991, 

Dundar and Lewis, 1995). Though the results with respect to economies of scope are 

somewhat mixed, the majority of analyses at least at the level of the university demon-

strate the existence of increasing returns to scale. These analyses, however, suffer from 

two limitations. First, most of these studies use aggregated university-level data. Sec-

ond, employed methodologies build on the estimation of parametrically specified cost-

functions which imply not only potentially restrictive functional form assumptions but 

also assume away the possibility that some research units may be inefficient. This may 

lead to biases in estimation. 

With respect to the first objection, only few papers have analysed the production returns 

on lower levels of aggregation. One example is Bonaccorsi and Daraio (2005), who use 

local regression techniques and do not find clear cut evidence of increasing returns to 

scale. Brandt and Schubert (2013) use parametric regression techniques and find with 
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respect to publication output increasing returns on the university level and decreasing to 

constant returns on the level of the research group. This analysis is particularly interest-

ing because it tries to disentangle the production returns on micro and macro-levels of 

analysis. However, their approach is limited not only by the parametric specification but 

also by the assumption that scientific output is uni-dimensional – in this case adequately 

proxied by publications. 

The latter two problems can be avoided by the use of nonparametric envelopment esti-

mators. Further, we will show that creative use of these estimators can identify returns 

to scale characteristics of the production function. Therefore, in this paper we will inte-

grate the neoclassical or parametric understanding of scale economies into a nonpara-

metric framework of efficiency estimation. We analyse whether increasing returns to 

scale (IRS) exist or not.  

If IRS are present, two implications for efficient organisation follow. First, (at least 

some) research groups would benefit from becoming larger. Second, specialisation of 

research groups on certain tasks becomes desirable, because a division of labour leads to 

increased output of the overall system. 

The remainder of this article is organised as follows: in Section 2 we will review the 

literature on returns to scale in science. We will then show under which conditions spe-

cialisation is an optimal strategy. In Section 3 will describe our methodology. Subse-

quently, in Section 4 the estimation results concerning the returns to scale of scientific 

production functions are presented. Section 5 concludes. 

 

2. The Nature of Scientific Production 

2.1 Returns to scale in scientific production 

The literature on returns to scale is largely based on aggregated university level data, 

where most authors in fact find (at least for some outputs) increasing returns to scale. 
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This means that groups with IRS can produce over-proportionately more if their inputs 

are increased.  

For example, Worthington and Higgs (2011) find ray economies of scale up to 120 % of 

the mean in a multi-input, multi-output setting. Comparable results are found by de 

Groot et al. (1991), Sav (2004), Laband and Lentz (2003), Johnes et al. (2008), as well 

as Koshal and Koshal (1995). Glass et al. (1995a, b) observe ray economies, but also 

find product specific economies of scale for undergraduate teaching. Johnes (1999) and 

Izadi et al. (2002) do not detect ray economies of scale but product-specific economies 

of scale for undergraduate teaching, postgraduate teaching and research. This is in line 

with Brandt’s and Schubert’s (2013) result that there are IRS on the level of the univer-

sity.  

However, they also analyse the returns to scale on the level of the research group and 

find no evidence of IRS. Indeed the results on the micro-level are less clear, probably 

also due to the divergence in methods and datasets, where the latter type of analyses is 

necessarily based on the survey data or case studies.  

Van Tunzelmann et al. (2003), who reviewed the existing literature on the level of re-

search groups for size effects on research group productivity, concludes as follows: Ev-

idence across different studies indicates that there appears to be a critical mass threshold 

for group size, at least in some scientific fields, which hovers around six to eight people. 

This ‘critical mass’ threshold may differ among major subject fields, as individual stud-

ies show, but no comprehensive picture has emerged so far. A study by Carayol and 

Matt (2004) focusing on 80 laboratories of the Louis Pasteur University comes to simi-

lar conclusions. With regard to the relationship between research group size and the size 

of the respective department, empirical findings indicate that research groups of suffi-

cient size are able to function well regardless of the size of the department or the univer-

sity they are affiliated with (Tunzelmann et al. 2003). This latter result, in our terms, 

indicates the absence of agglomeration effects, while there may be IRS for very low 

levels of input that turn into DRS if inputs increase. The latter argument would, for ex-

ample, result from an s-curved cost function. This is congruent with Johnston (1994) to 

some extent, who, on the level of universities, finds economies of scale for low output 
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levels and diseconomies of scale for high output levels. The results are mixed, at this 

level in particular. Adams and Griliches (2000) find constant returns to scale, which 

implies that size does not matter at all. The same conclusion is drawn by Narin and 

Hamilton (1996) and by Bonaccorsi and Daraio (2005) for Italian CNR units.  

However, all of the analyses have been based either on a cost function or a production 

function approach. This has the advantage that relatively simple regression techniques 

can be employed but the disadvantage that these techniques suffer from the parametric 

assumptions (with the exception of Bonaccorsi and Daraio (2005), who use locally re-

gression techniques) and the elimination of potential inefficiency that the groups might 

exhibit (with the exception of Johnes (1999) and Izadi et al. (2002), who use parametric 

frontier estimation). Both types of assumptions can lead to severe estimation bias, if 

they are not true. We will therefore reinvestigate the topic of IRS and the research group 

level using more flexible non-parametric frontier estimators, which allow the research 

groups to display inefficiency in their use of resources.  

As argued, the importance of IRS in scientific production derives from two aspects. 

First and relatively obvious, groups with IRS can produce over-proportionately more if 

their inputs are increased. More precisely, if all inputs are increased by a factor 1   

then the outputs increase by a factor    (c.f. Brandt and Schubert 2013 for details). 

Thus, such groups would benefit from growing. More subtly, if IRS exist among re-

search groups (and total inputs over all groups are fixed), aggregate outputs of all re-

search groups would increase, if they specialised on certain outputs, implying for exam-

ple that there are graduate teaching or publication or transfer-oriented research groups. 

Without going into too much technical detail we will explain this latter point now by the 

means of an illustrative exemplification. 

 

2.2 Specialisation in science 

Many authors highlight that scientific production is a process in which manifold inputs 

(e.g., capital equipment, trained scientists, etc.) are transformed into various outputs 
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(e.g., publications, patents, knowledge transfer, etc.) (Rousseau and Rousseau 1997; 

Nagpaul and Roy 2003; Warning 2004; Johnes 2006). This is corroborated for example 

in Jansen et al. (2007), Schmoch et al. (2010) and Schubert (2009) who show that dis-

tinct profiles of production are present in scientific production. In particular, the authors 

find that research groups fall into characteristic clusters which focus on publication, 

graduate teaching and transfer activities, which closely resembles the three missions of 

the universities. Thus, from a descriptive point of view scientific research groups spe-

cialise in certain activities. 

From a normative point of view of course the question is whether specialisation is a 

desirable feature in the sense that it makes best possible use of the available resources. It 

will turn out that the question of optimality is closely linked to the characteristics of the 

returns to scale.  

To gain intuition for this question of specialisation we present a very simple illustrative 

framework, which consists of just two scientific units which may produce either of two 

outputs with the help of one input. Each output is produced according to the same pro-

duction function. The units are identical, both in their technology and in the input 

equipment. The question then is the following: Should the first unit, say UNIT 1, pro-

duce Output 1 but not Output 2 (and UNIT 2 vice versa) or should any of the units pro-

duce a bit of both, i.e. should they specialise or not? 
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Figure 1: Specialisation benefits and curvature of the production function 

 

Looking at Figure 2, the answer on the question of optimality of specialisation crucially 

depends on the shape of the production function. Here it is assumed that the production 

functions display strictly increasing returns to scale (they are bowed towards the y-axis). 

In this case, increasing the input by some constant factor increases output by an amount 

strictly higher than that factor (see also Section 3.1). For example, assume that if UNIT 

1 and UNIT 2 decide to spend 50% of their input on producing Output 1 and 50% on 

producing Output 2, then the aggregate production of Output 1 and 2 are 11 12

US USY Y  and 

21 22

US USY Y . If instead UNIT 1 specialised in Output 1 and UNIT 2 in Output 2, then the 

aggregate production would be 11

SY  for Output 1 and 22

SY  for Output 2. Since the produc-

tion functions are convex, we have 11 12 11

US US SY Y Y   and 21 22 22

US US SY Y Y  . Therefore, total 

specialisation would increase aggregate output. Obviously, if the production functions 

were concave, then specialisation would be uniformly detrimental calling for a "general-
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ist" strategy. If the production functions were linear, then the specialisation strategy 

would not have any effects.  

This illustrative model is obviously quite simplified of course. But it should be clear 

that the results are fairly robust with respect to several generalisations. First, if the pro-

duction technologies used by each unit are not identical, then this affects only the ques-

tion of who should specialise in which dimension (but not if at all). Second, it is unim-

portant if only two or a multitude of units exists. Third, it is unimportant if we have two 

or more outputs. Fourth, it does not matter if the units have identical input endowment.1  

Summarising, units should specialise in those outputs where their production functions 

exhibit increasing returns to scale. With constant returns to scale any specialisation 

strategy is equally efficient, while decreasing returns argue against specialisation. In 

Section 4 we will show that the production functions are characterised either by increas-

ing returns or constant returns to scale. Before we do so, we will, however, present 

some theory about returns to scale in a neoclassical and a nonparametric understanding. 

The benchmark must be in any case the neoclassical wording, because of the theoretical 

results of this subsection. 

2.3 The hypotheses 

The guiding question of this paper is whether scientific production of research groups is 

characterised by increasing returns to scale in the neoclassical sense. This is the case 

when the production possibility set is non-convex2. Because it was concluded in Section 

2.2 that scientific units should pursue a specialisation strategy, if there are IRS in at 

least some regions and at least constant returns to scale (CRS) everywhere else, a suffi-

                                                

1  Note however , if more than the maximum a certain unit can produce of Output 1, 11

SY , were re-

quired by the society, then one unit would specialise and the other would also produce at least some 

of Output 1, i.e. the second unit would not specialise (unless it produces none of Output 2). Still, in a 

certain sense, we should speak of a specialisation strategy, because at least one unit is required to 

specialise and the other does so to the feasible extent, while still meeting the societal demands. 

2 Convexity of a set means that the linear combination of any two points on the boundary are again part 

of the set. Increasing returns functions do not possess this property as can easily be checked based 

on Figure 1. 
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cient condition is that the production possibility set is strictly non-convex at some points 

and weakly non-convex anywhere else. We thus hypothesise that: 

H0 (decreasing or constant returns to scale everywhere): The production set is weakly 

convex everywhere. 

H1 (increasing returns somewhere and constant returns anywhere else): The production 

set is strictly non-convex at least somewhere and weakly-non-convex anywhere else. 

3. Methodology  

If H1 is true IRS exist. We will test this feature by the use of nonparametric efficiency estima-

tors. These will be explained in the following. 

3.1 Non-parametric efficiency estimators 

The frontier model is explained in the following using the case with one input and one output. 

This is for expositional reasons only, since the general frontier model can handle technology 

frontiers with arbitrary dimensionality. One of the most prominent estimators is the data envel-

opment estimator, which was originally proposed by Charnes et al. (1978). The major limitation 

of this estimator is however, that it can only deal with situations where the production function 

is either characterised by non-increasing (DRS) or constant returns to scale (CRS). A production 

function that is either CRS or DRS can also be said to exhibit non-increasing returns to scale 

(NIRS). If the production function exhibits increasing returns to scale as in Figure 1, the DEA 

estimator is biased. Then the free disposal hull estimator (FDH) must be used. The latter estima-

tor is less efficient but unbiased irrespective of the returns to scale. This property will allow for 

a testing procedure of our hypotheses H0 vs. H1.  

We will now shortly introduce the DEA estimator alongside the general frontier model. We 

leave aside as much as possible mathematical formulations. DEA is the most commonly used 

estimator of the procedures in non-parametric efficiency estimation. The idea of efficiency 

analysis is that a so-called decision-making unit (firms, persons, regions, or research groups) 

commands a set of inputs to produce certain outputs. The efficiency model assumes that, given a 

certain amount of input, there is a technological limit to the production of outputs, i.e. a unit 

cannot produce more than this output. The union of all these maximum points that correspond to 

a specific input amount is called the theoretical frontier. Units falling short of this theoretical 
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frontier are inefficient. Inefficiency is usually quantified by radial measures. If the theoretical 

frontier is observed, the estimation of inefficiency would be a trivial task. However, this is usu-

ally not the case. Instead only a given number of units are observed for which we have sample 

values of inputs and outputs. Using these data points, DEA is one way of estimating the theoret-

ical frontier from the observed data.  

In particular, DEA constructs the estimated frontier as the smallest convex hull "enveloping" all 

data points in the sample. In fact, there are several variants which will be explained later on, but 

expositional reasons let’s start with the so-called VRS DEA frontier (bold line). Consider the 

one-input-one-output-case depicted in the figure below, where the true frontier is given as 

y x . x  is taken to be non-random, and inefficiency is generated by 
exp( | |)obsy y u  

 

with ~ (0,1)u N . The small circles give observed sample coordinates for the units. The small-

est convex hull that envelops all the data points is the DEA frontier. Obviously, the DEA fron-

tier does not coincide with the theoretical frontier, but if more and more units are observed, the 

DEA frontier will converge to it (Kneip et. al, 1998). Using this estimated frontier, it is easy to 

define a measure of inefficiency. In the input-direction this is simply the used input divided by 

the input needed to provide this output level. Looking at the figure given below, and focussing 

on the inefficient point D , this is given by the ratio of the length of line segment AD  divided 

by the length of the line segment AC , whereas the true but unobserved inefficiency measure 

is
/AD AC

.  

Two things are important to note. First, this input-inefficiency measure may take values of 1 and 

above, because 
AC AD

. Second, a value of 1 indicates that the unit is efficient, because 

then the unit is on the frontier. Any value greater than 1 indicates inefficiency. Thus low values 

are desirable. Also note that DEA also works for the multiple-input-multiple-output case. The 

interpretation of the measures remains the same. 

 

Figure 2: Efficiency and productivity estimation in frontier models 
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Indeed there is not only one DEA estimator but several variants. The estimator repre-

sented by the bold line in Figure 2 is called the VRS estimator. The VRS estimator is 

the most general estimator. The most restricted estimator is the CRS estimator, which is 

just a straight line which passes through the origin and the observation that smallest 

convex which can be defined by a line. In Figure 2 it is characterised by the dotted line. 

It is also clear that it largely overestimates the true frontier, if this is exhibits increasing 

returns to scale as in our case. 

The NIRS estimator (dash-dotted line) additionally to the VRS frontier includes the 

origin. This makes it effectively a compromise between the VRS and the CRS estima-
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tor. It is identical to the latter up to the first observation on the frontier defining the CRS 

frontier and beyond that is identical to the VRS frontier.  

 

3.2 Testing for IRS using frontier estimators 

All DEA estimators are too restricted to deal with increasing returns to scale production 

functions, because for DEA to be applicable the production possibility set must be con-

vex. The more general estimator, which can also handle non-convex production possi-

bility sets, is the FDH estimator. Now, under H0 both the FDH and the NIRS-DEA es-

timator are consistent, while under H1 only the FDH estimator is. This implies that un-

der H0 both estimators should not differ markedly, while, if H1 were true, they would. 

Thus our hypothesis from Section 2.3 implies: 

H0a: Both the FDH estimator and the NIRS-DEA estimator are consistent. 

H1a: Only the FDH estimator is consistent. 

If H1a is corroborated, then the production function displays increasing returns to scale 

at least somewhere. However, this does not mean that it has IRS everywhere. For exam-

ple, it may also be characterised by DRS in other regions. This would be the case, if for 

example the production function had IRS for low output levels and DRS for high output 

levels as for example Johnston (1994) claimed. Under these circumstances, the finding 

that there are regions with IRS will practically imply nothing with respect to optimal 

size of the research groups or their specialisation. We thus have to rule out that there are 

regions with DRS. If this was true as well, then the production function would either be 

characterised by IRS or at least CRS.  

Therefore, in the parlance of frontier estimation we have to show additionally that the 

production possibility is weakly non-convex (CRS) in the regions where it is not strictly 

non-convex (IRS), i.e. the efficient boundary is described by constant returns to scales, 

in which case specialisation is at least not detrimental: 

H0b: Both the CRS-DEA estimator and the NIRS-DEA estimator are consistent. 
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H1b: Only the NIRS-DEA estimator is consistent. 

In summary based on H0a-H1b we can distinguish four case. First, when H0a is rejected 

and H0b is not rejected, then the production possibility set is strictly non-convex at least 

somewhere, but there is no evidence that it as strictly convex in other places. Conse-

quently, specialisation will increase overall output. Second, when neither H0a nor H0b 

are rejected, there is no evidence against the hypothesis that the efficient boundary ex-

hibits constant returns to scale everywhere. Both the degree of specialisation as well as 

group size are irrelevant. Third, when H0a is not rejected but H0b is, then there is evi-

dence that the production possibility set is strictly convex at least somewhere and exhib-

its constant returns to scale elsewhere. In that case specialisation strategies lower overall 

output. Fourth, if H0a is rejected and H0b is rejected, then there is evidence that produc-

tion possibility sets have regions where they are strictly concave and others where they 

are strictly convex. In that case now generally recommendations with respect to size and 

specialisation can be drawn. 

 

Table 1: Case definition and recommendations 

Case H0a rejected, 

but H0b is 

not rejected 

H0a is not 

rejected and 

H0b is not 

rejected 

H0a is not 

rejected but 

H0b is re-

jected 

H0a is rejected 

and H0b is re-

jected 

Shape of the  

production  

possibility set 

Strictly non-

convex 

somewhere 

and weakly 

non-convex 

elsewhere 

Both weakly 

non-convex 

and weakly 

convex 

Strictly con-

vex some-

where and 

weakly con-

vex elsewhere 

Both regions 

where it is 

strictly convex 

and strictly non-

convex 

Recommendation Specialisation Specialisation  Specialisation Not generally 



 

14 

beneficial, 

larger groups 

preferable 

and size irrel-

evant 

detrimental, 

smaller 

groups prefer-

able 

valid recom-

mendation pos-

sible 

 

3.3. The Data 

In this analysis we use original data from a large online survey (data from 2007) within a re-

search project funded by the German Research Association (DFG). The sample consists of 473 

research units from the disciplinary fields of astrophysics, nanotechnology, biotechnology, and 

economics. This corresponds to a return rate of approximately 25%, as 1908 research units re-

ceived a questionnaire. With this selection of fields we could guarantee that basic research fields 

from natural sciences (astrophysics), applied disciplines from natural sciences (biotechnology 

and nanotechnology), and a field which has both applied and basic research characteristics from 

the social sciences (economics) is included. The astrophysics makes up about 7% of the sample, 

nanotechnology about 42%, biotechnology 22% and economics 29%, which approximately 

reflect the shares in the population. The main objective of the survey was to determine the ef-

fects of different university governance models on research efficiency. Because the low sample 

share of astrophysics units does not allow reliable estimation. We excluded this group from our 

analysis. 

The survey includes information on inputs and outputs of a research group as well as its organi-

sational respectively its governance setting. The data on input and output is clearly at the focus 

of this paper.  

Against the background of multidimensionality of outputs, we collected a variety of different 

activity indicators, which we regarded as scientific outputs. All in all, we collected the follow-

ing 11 measures: SCI publications per scientist, citations per publication, conference articles per 

scientist, fraction of international co-publications, professorial job offers per scientist, expert 

reports for companies per scientist, cooperation with companies per scientist, membership in 
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advisory boards per scientist, number of doctoral theses per scientist, number of state doctoral 

theses per scientist, editorships per scientist.3 

 

3.4 Definition of the Production Possibility Set 

As argued by Jansen et al. (2007), Schmoch et al. (2010) and Schmoch and Schubert 

(2009), scientific outputs should at least consider the dimension of knowledge genera-

tion, graduate teaching, and knowledge transfer.  

We assume that each of the dimensions, knowledge generation, graduate teaching, and 

knowledge transfer, can be appropriately represented by a single indicator. To be specif-

ic, the indicators number of SCI (bio and nanotech) SCOPUS (economics) publications 

(knowledge generation), number of finished doctoral/PhD theses (graduate teaching), 

and number of advisory services for companies plus cooperation with companies 

(knowledge transfer) were chosen. It was also assumed that the only relevant input is 

number of scientists. Thus our production possibility set is four dimensional (1 input 

and 3 outputs).  

Yet, while the major tenet of nonparametric efficiency estimation is that these estima-

tors can easily deal with this multidimensionality because the assumed production pos-

sibility set is not restricted with respect to the included inputs and outputs. In any case, 

there are at least two problems of the class of estimators with these estimators relevant 

for us.  

Firstly, because non-parametric estimators make few assumptions which could help 

identification, they suffer from the curse of dimensionality. This means that conver-

gence becomes very slow as the dimensionality of the production possibility set in-

creases. Thus, if we include many outputs, we will also lower the precision of estima-

tion drastically. To deal with this, apart from an analysis, where all outputs (see next 

Section) are considered simultaneously, we also run the analyses for each dimension 

                                                

3 The bibliometric data was taken from the ISI Web of Knowledge for biotechnology and nano-

technology and from Scopus for economics due to better coverage. 
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separately. Additionally, this gives a more detailed impression of the production possi-

bility set. 

Secondly, nonparametric efficiency estimators are very sensible to measurement error, 

outliers, and model specification. Since the general classification of outputs into 

knowledge generation, graduate teaching, and knowledge transfer (see Section 2.2) pro-

vides only some insight into a sensible choice of indicators, but is far from providing a 

clear-cut definition we used two alternate sets of indicators.  

In specific, we used number of citations of the SCI/SSCI publications, the number of 

finished habilitation theses, and the number of memberships in scientific advisory 

boards, where knowledge transfer here more commonly refers to politics than to the 

industry. 

Even though the first set provides a better choice, at least in the author’s opinion, if the 

results stemming from the second should are not too different, then the results can be 

deemed quite robust. 

In order to increase the readability of this paper we discuss the exact testing procedures 

in the Appendix. The methodologies build on complex bootstrap algorithms and have 

partly been developed and described in Simar and Wilson (2001, 2002). We will now 

turn to the results. 

4 Results 

Some summary statistics for the core variables are presented in Table 2.  
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Table 2: Core input and output variables 

Variable self-reported Time Period Scale/Unit Mean S.D. Min Max

Research Outputs

Reputation-linked

  WoS/Scopus Publications NO 1998-2003 Count 81.67 150.00 0 900

  Conference Papers YES 2001-2002 Count 29.57 47.31 0 300

  Received Citations per WoS/Scopus Publications NO 1999-2001 Rational 4.52 5.80 0 34

  Fraction of Internationally Co-authored WoS/Scopus Papers NO 1998-2003 Percent 42.22 34.19 0 100

  Received Professorial Job Offers YES 2001-2002 Count 0.51 0.81 0 3

Transfer-Linked

  Advisory Services for Companies YES 2001-2002 Count 0.25 0.86 0 5

  Cooperations with Companies YES 2001-2002 Count 1.94 3.47 0 17

  Memberships in Scientific Advisory Boards YES 2001-2002 Count 3.84 4.86 0 20

Maintenance-Linked

  Doctoral Theses YES 2001-2002 Count 3.10 3.36 0 15

  State Doctoral Theses YES 2001-2002 Count 0.49 0.79 0 3

  Editorships YES 2001-2002 Count 0.58 1.44 0 10

  Conferred Scolarships for Research Group Members YES 2001-2002 Count 2.29 3.24 0 16

Research Inputs and Structural Variables

  Scientists in Fulltime Equivalents YES 2001-2002 Real 13.00 20.17 2 150

  Research Time Spent on Third Party Projects YES 2001-2002 Percent 50.76 34.75 0 100  

 

The estimation results are present in Table 3. We see that for any discipline that H0a is 

rejected and H0b is not rejected. This conclusion hold also holds with the alternative 

operationalisation of the input output set. Thus, we can be somewhat more confident 

that our results are not only due to model specification and should hold in a wider con-

text. 

According to Table 1 this means that the production possibility set is strictly non-

convex somewhere and weakly non-convex elsewhere; or in the language of economics, 

the efficient boundary exhibits increasing returns to scale somewhere and at least con-

stant returns to scale elsewhere. Therefore, specialisation will increase overall output. It 

also means that larger research groups can make better use of their resources. 
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Table 3: Test results of the shape of the production set (full output list) 

H0a against H1a H0b against H1b

Nanotechnology -0.6740** -0.3962

Economics -0.6224** -0.0016

Biotechnology -2.1727** -1.6516

Nanotechnology -1.3013** -0.2307

Economics -0.8314** -0.0423

Biotechnology -0.0140* -1.2252

* significant at 5%-level

** significant at 1%-level

Primary 

Definition

Secondary 

Definition 

(Robustness)

 

When separating this analysis by dimension (Table 4 and Table 5), and having first a 

closer look on our primary definition, we find a comparable structure, especially in the 

case of transfer (H0a is rejected, but H0b is not). This holds also for graduate teaching, 

except for the case of biotechnology, where H0a is not rejected. In knowledge genera-

tion H0a is only rejected for biotechnology but not for the other disciplines. The latter is 

quite in line with the results obtained in Brandt and Schubert (2013), who showed that 

in the case of knowledge generation as measured by publications IRS on the group level 

cannot be detected. 

Turning to these interesting cases, where H0a is not rejected (remember that this implies 

that there is no evidence for regions of the efficient boundary which exhibit increasing 

returns to scale), Table 4 indicates that there is also no evidence for decreasing returns 

to scale. This means that although specialisation will not increase output, it will at least 

not decrease it.  

However, using the second definition to test for robustness, we see also some differ-

ences in Table 4. For example in the case of economics, we cannot detect increasing 

returns to scale anymore, even though we found them in the full model. Partly, this like-

ly to be due to the fact, that Table 3 provides a joint test on all output dimensions, while 

Table 4 provides three separated tests and therefore will have lower power. Further, the 

chosen indicators on graduate teaching and knowledge transfer are unlikely to be a very 

good choice, because they are comparably rare events. Looking also to the other two 
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research fields, we find that although IRS are found for the other disciplines, the dimen-

sions along which they occur are not always the same as in the tests based on the prima-

ry definitions.  

Yet, and this should be stressed, the general result, that there are locally increasing re-

turns to scale but no evidence is found for local decreasing returns, stays the same. So 

again, we can observe robustness of this general result. 

Table 4: Results of the shape of the production set for H0a against H1a (by output di-

mension) 

Knowledge Generation Graduate Teaching Knowledge Transfer

Nanotechnology -0.5264 -0.5760** -0.4413**

Economics -0.1776 -0.3665** -0.4499**

Biotechnology -2.9974** -1.4367 -4.6979**

Nanotechnology -1.0108** -0.0000 -0.3262

Economics -0.0332 -0.0000 -0.0341

Biotechnology -2.1200 -0.1563 -5.4461**

* significant at 5%-level

** significant at 1%-level

Primary 

Definition

Secondary 

Definition 

(Robustness)
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Table 5: Results of the shape of the production set for H0b against H1b (by output di-

mension) 

Knowledge Generation Graduate Teaching Knowledge Transfer

Nanotechnology -0.0565 -0.3471 -0.1286

Economics -0.0000 -0.0000 -0.0000

Biotechnology -0.9079 -1.2775 -0.1491

Nanotechnology -0.0009 -0.0181 -0.0203

Economics -0.0000 -0.0072 -0.0283

Biotechnology -1.8933 0.8123 -0.0000

* significant at 5%-level

** significant at 1%-level

Primary 

Definition

Secondary 

Definition 

(Robustness)

 

Summarising the results from Table 4 and Table 5, we have cases where the efficient 

boundary exhibits increasing returns to scale at least somewhere and constant returns to 

scale elsewhere, which calls for specialisation. We also have cases where the efficient 

boundary is characterised by constant returns to scale everywhere, which implies that 

specialisation is at least not detrimental. Thus, for the analysed research fields we find 

strong evidence the existence of locally increasing returns to scale, while we cannot 

detect locally decreasing returns to scale. Taken together, this calls for an increased em-

phasis on specialisation of scientific research groups. 

 

5. Conclusions 

This paper deals with the optimality of specialisation in science. The empirical method-

ology used is much more robust than in older research in this field because no paramet-

ric production function was "forced upon" the data. Instead, flexible nonparametric es-

timation techniques were used. To make this approach feasible, it was necessary to inte-

grate the parametric notion of returns to scale and that of nonparametric efficiency anal-

ysis. By doing that, it could be shown that the economic intuition which calls for a divi-

sion of labour carries over from usual production of goods and services also to scientific 

goods. Specialisation in science will increase aggregate output. We also found that larg-
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er research groups will make more efficient use of their resources. This result however 

only holds for the graduate teaching and transfer. It does not carry over to knowledge 

generation. This is in line with what has been found in earlier studies (cf. Brandt and 

Schubert 2013). In any case, it should be noted that great emphasis was placed on sys-

tem performance, rather than individual rationality. The derived policy recommendation 

(Increase specialisation!) must still be implemented. Proper measures to achieve that 

were blanked out. So a feasible policy recommendation would be: Foster specialisation 

of scientific DMUs by setting appropriate financial and non-financial incentives (e.g. 

specialisation incentives in indicator-oriented budgeting). 
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Appendix: The Testing Procedure 

The testing procedure for H0b against H1b has been developed by Simar and Wilson 

(2001, 2002). However, for the case of H0a against H1a a new test has to be proposed. 

But once the procedure defined by Simar and Wilson (2001, 2002) for the case of re-

strictions in the DEA model has been explained, it can readily be seen that an immediate 

extension is possible for the case where the alternative includes a production possibility 

set that is (possibly) non-convex.  

Because under H0b both the NIRS-DEA and the CRS-DEA estimator are consistent 

they should be approximately be the same on average, and the test statistic 

 
1

1
0

N
CRS NIRS CRS

i i

i

T D D
N 

    
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where VRS

iD  and CRS

iD  are the respective efficiency estimates (estimated Shepard's dis-

tance function), should tend to zero as the sample size grows large.  

In order to assert that CRST  differs significantly from zero, it is necessary to determine 

its distribution under H0b. One way of doing that is based on the homogeneous boot-

strap of Simar and Wilson (1998), where the homogeneity assumes that the distribution 

of the inefficiency does not depend on the input-output levels. In any case, this assump-

tion can be dropped using subsampling bootstrap, which was done in Schubert and Si-

mar (2009). Since usually differences are small, we leave that topic aside und stick to 

the homogeneity.  

The testing procedure works as follows: 

1. For each DMU compute VRS

iD  and CRS

iD . Compute CRST . 

2. Use a kernel estimator to obtain an estimate of the density CRSf  of CRS

iD .4  

3. Draw random deviates *

i  from CRSf . 

4. Calculate a pseudo-sample as follows  * / ,CRS

i i i ix D y , where / CRS

i ix D  is the 

input-oriented projection on the efficient frontier, when H0b is true.5 

5. From this pseudo-sample calculate *VRS

iD  and *CRS

iD . Also compute *CRST . 

6. Repeat steps 3-5 B  times.  

                                                

4  This will be done by the usual way proposed by Simar and Wilson (1998) to calculate confidence 

intervals for efficiency measures in the DEA-model. The exact procedure is complicated but is im-

plemented in the FEAR-package for R by P. W. Wilson. The function is called dea.resample.  

5  Projecting the observed point onto the efficient frontier when H0b is true ensures that 
*CRST  is 

sampled as if H0b were true. 
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7. From the resulting simulated distribution of *CRST  calculate the approximate 

p-value of the test-statistic CRST  as follows: *

1
1 /

B CRS CRS

jj
pval T T B


    .  

It is readily seen that the test procedure does not make any assumptions about the shape 

of the production possibility set when the null-hypothesis is not true. Therefore it is 

straightforward to obtain a test for H0a against H1a. Simply replace the test statistic by 

1

1
( ) 0

NVRS FDH VRS

i ii
T N D D


   , calculate VRSf  in step 2 instead, form the pseudo-

sample by  * / ,VRS

i i i ix D y , and calculate the p-value as 

*

1
1 /

B VRS VRS

jj
pval T T B


    . Everything else remains unchanged.  

 


