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Abstract Inventor disambiguation is an increasingly important issue for users of patent

data. We propose and test a number of refinements to the original Massacrator algorithm,

originally proposed by Lissoni et al. (The keins database on academic inventors: meth-

odology and contents, 2006) and now applied to APE-INV, a free access database funded

by the European Science Foundation. Following Raffo and Lhuillery (Res Policy

38:1617–1627, 2009) we describe disambiguation as a three step process: clean-

ing&parsing, matching, and filtering. By means of sensitivity analysis, based on Monte-

Carlo simulations, we show how various filtering criteria can be manipulated in order to

obtain optimal combinations of precision and recall (type I and type II errors). We also

show how these different combinations generate different results for applications to studies

on inventors’ productivity, mobility, and networking; and discuss quality issues related to

linguistic issues. The filtering criteria based upon information on inventors’ addresses are

sensitive to data quality, while those based upon information on co-inventorship networks

are always effective. Details on data access and data quality improvement via feedback

collection are also discussed.
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Introduction

Economic studies of innovation have for long made use of patent data (Griliches 1990;

Nagaoka et al. 2010). Assisted by digitalization of records and increasing computational

power, economists and other social scientists have extracted increasing quantities of

information from patent documents, such as the applicants’ identity and location, the

technological contents of the invention, or the latter’s impact, as measured by citations.

More recently, information on inventors has attracted a good deal of attention. Identifying

inventors allows studying their mobility patterns, both in space and across companies

(Agrawal et al. 2006; Marx et al. 2009) as well as their social capital, as measured by their

position in co-inventor networks (Fleming et al. 2007; Breschi and Lissoni 2009; Lissoni

et al. 2010). Inventor data can also be matched to additional information at the individual

level, ranging from professional identities (does the inventor appear also on a list of R&D

employees? or a list of academic scientists?) to other type of archival data on knowledge-

related activities (such as scientific publications; see Azoulay et al. 2009; Breschi et al.

2008; Lissoni et al. 2008).

Identifying inventors within any given set of patent data, as well as matching them to

any other list of individuals, requires the elaboration of complex ‘‘disambiguation’’

algorithms. They are necessary to analyse in a non-trivial way the text strings containing

the inventors’ names, surnames, and addresses. Yet, it is only of late that users of inventor

data have started discussing openly about the disambiguation techniques they employ, and

examine their implications in terms of data quality and reliability of the evidence produced

(Raffo and Lhuillery 2009; Li et al. 2014).

This paper describes and comments upon Massacrator� 2.0, the disambiguation algo-

rithm we elaborated to create the APE-INV inventor database, an open-access initiative

funded by Research Networking Programme of the European Science Foundation (http://

www.esf-ape-inv.eu). The APE-INV inventor database has been conceived as a subset of

the PatStat-CRIOS database (http://db.crios.unibocconi.it/), which contains all patent

applications filed at EPO, as derived from the October 2013 release of the Worldwide

Patent Statistical Information Database (better known as PatStat1). As such, it can be more

generally described as a PatStat-compatible dataset, which addresses the needs of the

increasingly large community of PatStat users.

Massacrator� 2.0 is a revised form of the original Massacrator� algorithm, which was

conceived for the ad hoc purpose of identifying inventors in selected countries, and with

the intent of maximizing precision (that is, minimizing type I errors, or false positives,

Lissoni et al. 2006). Our revision has transformed it into a more general tool, one sus-

ceptible of further improvements and that users can calibrate also to maximize recall

(minimize type II errors, or false negatives) or to obtain any Pareto-optimal combination of

recall and precision (that is, to strike a balance between different types of errors).

In what follows, we first review the relevant literature on disambiguation of inventors

(section. Background literature). We then describe the general workflow (cleaning &

parsing ? matching ? filtering) of the Massacrator� 2.0 algorithm (section An overview

of Massacrator� 2.0). Then, in section Cleaning & Parsing, we present our calibration

1 Access information for PatStat at: http://forums.epo.org/epo-worldwide-patent-statistical-database/ - last
visited: 6/27/2014.
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methodology for the filtering step, which crucially affects the algorithm’s performance. In

section Matching methodology, we perform a validation exercise, based on two ‘‘bench-

mark’’ datasets. In the same section, we move on to apply the validated algorithm to the

entire PatStat data, in order to generate the APE-INV inventor database. Section Filtering

concludes.

Background literature

Name disambiguation (also known as name or entity resolution) is an important operation

within most text mining processes. It consists in assigning a unique identifier to n [ 1

records containing information on the same entity (for example, a patent assignee or

inventor). Such operation can be performed in many different ways, which Torvik and

Smalheiser (2009) classify in four groups, (i) hand-checking of the individual identity; (ii)

wiki-type efforts based on the voluntary contribution of a community of data users; and

algorithm-based approaches, either (iii) supervised or (iv) unsupervised. We focus here on

algorithms.

Following Raffo and Luhillery (2009), a disambiguation algorithms can be described as

a three step process:

1. Cleaning & Parsing: the relevant text strings (in our case, those containing

information on name, surname and address of the inventor) are purged of

typographical errors, while all characters are converted to a standard character set.

If necessary, any relevant string is parsed into a several substrings, according to

various criteria (punctuation, blank spaces, etc.). Typically, the string containing the

inventors’ complete name (e.g. Duck, Prof. Donald) is parsed into name, surname and

title (if any). The address is parsed too.

2. Matching: the algorithm selects pairs of entities who are likely candidates to be the

same person, due to homonymy or similarity of their names (in our case, the entities

are inventors of different patents).

3. Filtering: the selected pairs are filtered according to additional information retrieved

either from the patent documentation or from external sources. Some typical

information from within the patent documentation is the address (e.g. namesakes

sharing the same address are believed to be the same person) or some characteristics of

the patent. The latter included the patent applicant’s name (e.g. homonyms whose

patents are owned by the same company may be presumed to be the same person) or

its technological contents (as derived from the patent classification system or patent

citations).

Supervised and unsupervised algorithms differ in that the former make use of hand-

checked subsets of disambiguated observations, which act as ‘‘training’’ sets for the

algorithm, while the latter do not. The ‘‘training set’’ must not contain any false positive or

negative.

While the cleaning and parsing step are relatively trivial, the matching and filtering

operations may be extremely complex, in terms both of the criteria to be followed and of

computational c requirements (see Smalheiser and Torvik 2009, for a general review of the

literature; and Bilenko et al. 2006, and On et al. 2005, for specific articles on the matching

step).

Concerning the matching step, a consensus exists on the need to avoid trivial matching

strategies such as the exact match of last and first names, or initials. This would lead to the
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exclusion of a non-negligible share of miss-spelled surnames and of the occasional cases of

inversion of name and surname. Better use less naive matching strategies, based on various

measures of lexical distances between the text strings containing names and surnames,

which allow casting a wider net and produce large number of entity pairs, to be passed on

to the filtering step. We come back to such strategies in section Matching methodology.

As for the filtering step, the literature focuses on two main issues:

(1) how to relate each disambiguation exercise to a theoretical background, one that takes

into account both the sources of errors in the data and how they may interact with the

use one wish to make of such data.

(2) how to extract information from metadata in order to find the best criteria for filtering

out negative matches or confirming positive ones.

On the theoretical ground, several scholars propose a Bayesian approach, which avoids

making arbitrary parametric assumptions on the weights to be assigned to the filtering

criteria (Torvik et al. 2005; see Carayol and Cassi 2009, and Li et al. 2014, for applications

to inventor data). A related argument is that many parametric approaches treat filtering

criteria as independent (and therefore add them one to another when calculating similarity

between paired entities), when in fact this is not necessarily the case. For example,

proximity in the physical and technological space may be correlated (due to agglomeration

effects), but several algorithms add them up when deciding whether two inventors on

different patents may be the same person.

An alternative route towards avoiding making such arbitrary assumptions consists in

applying appropriate statistical methodologies based on the identification of latent unob-

served (uncorrelated) variables, or simply in identifying several groups of criteria that can

be more safely assumed to be independent, and then add up filters only when they come

from different groups (Smalheiser and Torvik 2009). For example, one can run simulations

that randomly assign some weights to the available filtering criteria, each set of weight

corresponding to a de facto different algorithm (especially when admitting weights equal to

zero, which amounts to excluding a filter as irrelevant). By computing the precision and

recall2 results of each simulation against a training set, one can then detect which sets of

weights (algorithms) perform better, and retain only a few of them, or just one. Indeed, this

is the approach we follow with Massacrator 2.0.

An overview of Massacrator� 2.0

Massacrator 2.0 is a supervised algorithm with peculiar and distinctive features both in the

matching and in the filtering step.

Disambiguation of inventors consists in assigning a unique code to several inventors

listed on different patents who are homonyms or quasi-homonyms, and share of a set of

similar characteristics (e.g. they have the same addresses or patents with the same tech-

nological content). Inventors with same code are then treated as one individual.

We apply it to 3,896,945 inventors listed on the EPO patent applications contained in

the October 2013 version of PatStat, and implement the three steps as follows:

2 For the definition of ‘‘precision’’ and ‘‘recall’’, see section Cleaning & Parsing.
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Cleaning & Parsing

C&P step 1: characters from an ad hoc list are removed, as well as punctuation and

double blanks. All remaining characters are converted into plain ASCII.3 As a result, a

new field is created (‘‘Inventor’s name’’), which contains the inventor’s surname (pos-

sibly composed of several words, as it happens, for example, with Spanish surnames)

and all of his/her names (including second, third or fourth names, and suffixes, such as

‘‘junior’’, ‘‘senior’’, ‘‘III’’ etc.). Similar steps are followed to create the following fields:

‘‘Inventor’s address’’ (street’s name and the number), ‘‘Inventor’s city’’, ‘‘Inventor’s

county’’, ‘‘Inventor’s region’’, and ‘‘Inventor’s state’’ (to be intended as sub-national

units, as in federal nations such as the US or Germany). ‘‘Inventor’s country’’ is derived

directly from PatStat (ISO_3166-2 country codes).

C&P step 2: The original ‘‘Inventor’s name’’ string from PatStat is parsed in as many

substrings as the number of blanks it contains plus one. In the remainder of the paper we

will refer to these substrings as ‘‘tokens’’. Due to EPO’s conventions in reporting

surnames and names, we can safely assume that the first token always contains the

inventor’s surname (or part of it, in case of double or triple surnames), while the last one

always contains the given name (or part of it, in case of multiple names). Most cases are

easy to manage since they are written in the form ‘‘surname, name’’ so using comma as

separator we can easily parse different components.

Substrings whose contents matches a list of surname prefixes (for example, ‘‘De’’ as

found in Dutch, French or Italian surnames) are re-joined to the Surname string.

Substrings whose contents matches a list of personal titles (such as ‘‘Professor’’ or

‘‘Prof.’’) are stored in a field different from the name (intitle).

Matching methodology

Massacrator 2.0 matches not only inventors with identical names, but also inventors with

similar names, such as those hiding minor misspellings (ex.: ‘‘Duck, Donald’’ and ‘‘Duck,

Donnald’’) as well as those resulting from the omission or inversion of words within the

name or surname (ex.: ‘‘Duck, Donald D.’’ and ‘‘Duck, Donald’’ or ‘‘Duck, D. Donald’’),

for a total of about ten millions matches. In order to do so, it mixes the Token approach just

described with an edit distance approach, in particular one based upon the 2-gram (2G)

distances.

In detail, the algorithm sorts alphabetically all the tokens extracted from the original

PatStat inventor’s name text strings, without distinguishing between surnames and names

(for a total of almost half a million tokens; tokens of two letters or less are discarded). It

then computes the 2G distance between consecutive tokens (e.g. tokens appearing in row n

and n ? 1 in the sorted list). The 2G can be described as the vector distance between two

strings of different lengths, normalized by the total length of the strings. In our case it will

be:

2G ðt1; t2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PzzðNÞ
i¼aa ðG1i � G2iÞ2

q

numðt1Þ þ numðt2Þ ð1Þ

where:

3 See the post ‘‘Converting patstat text fields into plain ascii’’ on the RawPatentData blog (http://
rawpatentdata.blogspot.com/2010/05/converting-patstat-text-fields-into.html; last access: March, 2014).
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– G1ww and G2w are the number of occurrences of the i-th bigram appears in tokens t1

and t2, respectively.

– num(t1) and num(t2) are the number of characters in tokens t1 and t2, respectively.

– N is the number of possible combinations of two consecutive letters (bigrams) in the

alphabet of choice (in our case, plain ASCII, from which Nw = 650)4

Once all 2G(t1,t2) distances are computed, consecutive tokens can be assigned to

‘‘groups’’, on the basis of their reciprocal distance, as follows:

• Starting from the top of the token list, token in row 1 is assigned to group 1.

• Then token in row 2 is also assigned to group 1 if its 2G distance from token in row 1 is

less than or equal to an arbitrary threshold value dw (in the case of Massacrator 2.0:

d = 0.1); otherwise the algorithm creates a new group (group 2).

• The algorithm then proceeds in a similar fashion for all rows n and n ? 1.

Once all groups are defined, the algorithm substitutes to each token the number of its

corresponding group. As a result, each ‘‘Inventor’s name’’ string is now replaced by a

vector of numbers, each of which corresponds to a group of tokens. Any pair of inventors

whose ‘‘Inventor’s name’’ string contains identical group numbers (no matter in which

ordered) are then treated as a match. In case the ‘‘Inventor’s name’’ string are composed of

a different number of tokens, the minimum common number of tokens (groups) is con-

sidered (see Fig. 1 for a practical example). All matches obtained in this way are then

passed on to the filtering step.

Filtering

For each pair of inventors in a match, Massacrator calculates a ‘‘similarity score’’, based

upon a large set of weighted criteria. By comparing this score to a threshold value

(Threshold), Massacrator then decides which matches to retain as valid (positive matches),

and which to discard (negative matches). The criteria considered are 17, grouped in six

families: network, geographical, applicant, technology, citations, and others. Several

criteria are derived from the original Massacrator� and they are quite intuitive, so we do

not discuss them (see Table 15 for a short description). We discuss instead the approxi-

mated structural equivalence (ASE) criterion, which is not present in the original Mas-

sacrator� and is rather complex.

The concept of structural equivalence was first introduced to social network analysis by

Burt (1987). ASE adapts it to networks of patent citation and it was first proposed by

Huang and Walsh (2011) as a method for inventor disambiguation.6 The basic intuition is

that the higher the number of citations two patents have in common, the higher the

probability that any two inventors of such patents are the same person. Consider inventors

I’s and J’s sets of patents:

4 As an example, consider token ‘‘ABCABC’’ as t1 and token ‘‘ABCD’’ as t2. The bigram sets for t1 and t2
will be respectively: (AB,BC,CA,AB,BC) and (AB,BC,CD). Applying Equation 1 returns:

2Gðt1; t2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2 � 1Þ2AB þ ð2 � 1Þ2BC þ ð1 � 0Þ2CA þ ð1 � 0Þ2CD

q

5 þ 3
5 For a definition of patent family, see Martinez (2011).
6 Huang et al.’s original formula was proposed to compare inventors with no more than one patent each. We
have adapted it to the case of inventors with multiple patents.
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Pi ¼ pi;1; pi;2; ::; pi;Ni

� �

Pj ¼ pj;1; pj;2; ::; pj;Nj

� �

Consider also Pcit as the set of all patents in our dataset receiving at least one citation:

Pcit ¼ p1; p2; ::; pNf g
Pi (Pj) and Pcit are then used to compute matrix Di (Dj), which has as lines patents in Pi

(Pj) and as columns the cited patent in Pcit. If a patent in Pi (Pj) cites a patent in Pcit, the

corresponding element in matrix Di (Dj) takes value 1 (Dz [pz, pcit] = 1; z = i,j); if no

citation occurs, it takes value zero (Dz [pz, pcit] = 0; z = i, j). Intuitively, inventors with

similar matrixes are more likely to be the same person (their patents cite the same patents).

Massacrator then calculates weights WCiting and WCited. The former is the inverted

number of citations pi (pj), that is the inverse of the number of citations received by patent

pcit element. These weights allow to give less importance to matrix elements Dz [pz,

pcit] = 1 (z = i,j) corresponding to ‘‘popular’’ patents (that is, patents sending out and/or

receiving many citations).

Finally the algorithm divides the resulting index by the sum of num(Pi) and num(Pj) in

order to normalize for the total number of patents of each inventor in the [I,J] pair (Eq. 2)

Fig. 1 Example of Massacrator ‘‘mixed’’ matching rule
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ASE½I; J� ¼
Ppi;Ni

pi;1¼pi

PpjNj

pj;1¼pj

PpN
pcit¼p1

D½pi; pcit� �Wcitingpi
� D½pi; pcit� �Wcitingp

�Wcitedpcit

numðPiÞ þ numðPjÞ
ð2Þ

The higher the index, the closer inventors I and J are to the ‘‘perfect’’ structural

equivalence (same position in the network of citations).

Massacrator 2.0 find only 291469 non-null ASE[I, J] scores, out of the [10 million

matches analysed. The ASE filtering criterion is then considered satisfied by all these

matches, no matter the score’s exact value.

All the filtering criteria reported in Table 1 are used to compute a similarity score of the

matched inventors as follows:

am ¼
X

17

i¼1

xi;m

where xi,m is a dummy variable that equals 1 if match m meets criterion i, 0 otherwise. The

number of retained (positive) matches depends upon the value assigned to the threshold

variable (Threshold); when the similarity score am is larger than Threshold inventors in

match m are considered to be the same person. This is the most delicate aspect of the

algorithm implementation because values assigned arbitrarily can affect strongly the

algorithm’s performance. For this reason, Massacrator 2.0 relies on a calibration meth-

odology, based upon a MonteCarlo simulation exercise, to which we now move on.

Filtering calibration

The final output of the filtering phase has to consist in a list of inventor pairs:

½m; I; J;Dam
�; I 6¼ J:

where I and J are the two inventors forming pair m. Dam
is a binary variable that takes value

1 if the two inventors in pair m are believed to be the same person (positive match) and 0

otherwise (negative match), based on their similarity score am. and the chosen Threshold

value. Notice that the output varies according to the number of filtering criteria we decide to

use, and the Threshold value we set. Calibration serves the purpose of guiding our selection

of filtering criteria and Threshold value, on the basis of the efficiency of the resulting output.

We measure efficiency in terms of precision and recall:

Precision ¼ tp

tp þ fp

Recall ¼ tp

tp þ fn

where

tp ¼ number of true positives

tn ¼ number of true negatives

fp ¼ number of false positives

fn ¼ number of false negatives

We establish whether a positive (negative) match is true (false) by comparing the algo-

rithm’s results to information contained in two benchmark databases, namely the ‘‘Noise

486 Scientometrics (2014) 101:477–504
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Added French Academic’’ (NAFA) and the ‘‘Noise Added EPFL’’ (NAE). Each bench-

mark database consists of a certain number of inventors, all matched one with the other,

plus hand-checked information on whether the match is negative or positive. NAFA

contains information on 530 inventors from France, 424 of which result affiliated to a

university, the others being homonyms added ad hoc for testing purposes (that is, they

represent added false positives or ‘‘noise’’). NAE contains information on 342 inventors,

312 of which are faculty members at EPFL (the Federal Polytechnic of Lausanne, Swit-

zerland), the others being added noise.7

For any match in the benchmark datasets we define Dcm
analogously to Dam

. It follows:

Dam
¼ 1UDcm

¼ 1) true positives

Dam
¼ 0UDcm

¼ 0) true negatives

Dam
¼ 1UDcm

¼ 0) false positives

Dam
¼ 0UDcm

¼ 1) false negatives

ð3Þ

We expect to observe a trade-off between precision and recall; any identification

algorithm can decrease the number of false positives only by increasing the number of false

negatives and vice versa. The smaller the trad-off, the better the algorithm. However, to the

extent that a trade-off exists, we want to calibrate the algorithm in order to:

– Discard suboptimal sets of filtering criteria, namely those sets which increase recall by

decreasing too much precision (and vice versa).

– Choose among optimal sets, according to the research objectives (some of which may

require precision to be sacrificed to recall, or vice versa).

We proceed in three steps. First, by means of a MonteCarlo simulation exercise, the

algorithm generates a large number of observations, each of which consists of a random set

of weights assigned to the filtering criteria, a Threshold value, and the corresponding

results in terms of precision and recall (Data generation step).

Second, the simulation results are split into two sets (dominant vs dominated), with the

dominant results further split into three regions of interest, each of which is characterized

by a different mix of precision and recall (Mapping step).

Finally, weights are assigned to the filtering criteria, according to the desired results in

terms of precision and recall (Weight calibration). Notice that weights are binary values (0,

1), which amounts to say that our weight calibration consists in including some filtering

criteria (1) and excluding others (0). However, further extensions of Massacrator 2,0 may

be conceived, one based on continuous weights (comprised between 0 and 1) or on discrete

weights, with top values greater than 1.

Sections Cleaning & Parsing, Matching methodology and Filtering describe in details

the three steps.

7 More precisely, NAFA and NAE contain matches between an inventor and one of his/her patents, and
another inventor and one of his/her patents, plus information on whether the two inventors are the same
person, according to information collected manually. Having been hand-checked, the matches in the
benchmark databases are expected to contain neither false positives nor false negatives. Notice that both
NAFA and NAE are based upon the PatStat October 2009 release. A detailed description is available online
(Lissoni et al. 2010).
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Data generation

We generate data for calibration as follows:

1. Vectors of criteria: for each pair of inventors m, a set of k dummy variables xk
mw

(k = 1…17) is generated, each of them corresponding to one of the 17 filtering criteria

described in Section Background literature.3. xk
m takes value 1 if the filtering criterion

is satisfied at least once by the inventors’ pair, zero otherwise. Tables 2 and 3 report

the percentage of pairs satisfying each criterion and the resulting correlation matrix.

2. Vectors of weights and computation of similarity scores: We draw randomly Ww
vectors of weights from a uniform Bernoulli multivariate distribution, where Www is

set to 2000. The dimensions of the multivariate distribution are as many as the number

of variables in vector x (i.e. K = 17). Each draw generates a different vector of

weights xw, where each k-th weight (xk
w) can take value one or zero (i.e. binomial

weight). Each pair of matched inventors from NAFA and NAE benchmark databases is

then weighted as follows:

am;w ¼ xm � xw

where: w=1 … 2000; m={mNAFA, mNAE}; mNAFA=1 …2817; mNAE=1…1011;

and sizes of the matrixes are: xm 1 � 17½ �; xw 17 � 1½ �; am;w½1 � 1�.
Binomial weights can be interpreted as a way to exclude/include randomly the k-th

filtering criterion in the xm set. The product of two vectors xmw and xww returns in the

am;www similarity score of match m, for a specific set w of weights.

3. Threshold value : In order to determine whether a match is positive or negative the

algorithm compares each similarity score amNAFA;wwand amNAE;ww to a Threshold value.

Table 2 Satisfied criteria in
benchmark datasets, xk NAE (EPFL) NAFA

(French academics)

City 0.15 0.24

Province 0.01 0.3

Region 0.02 0.42

State 0.02 0

Street 0.04 0.02

IPC 4 0.32 0.31

IPC 6 0.2 0.19

IPC 12 0.1 0.07

Three Years 0.49 0.44

Applicant 0.22 0.25

Small Applicant 0.06 0.03

Group 0.01 0.02

Coinventor 0.09 0.1

Three Degrees 0.13 0.12

Citations 0.08 0.08

Rare Surname 0.07 0.05

ASE 0.07 0.06
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We treat the latter as a parameter subject to calibration, too. Therefore, we add to each

vector of weights xw, a random threshold value, extracted from a uniform distribution

with upper bound 4 and lower bound zero:

Thresholdw ¼ Uð0; 4Þ

4. Observations: Each vector of weights w generates 2,817 am;w values in case of NAFA

and 1011 am;w values in case of NAE, one for each inventor pair in the dataset. They

come along with a threshold value (Thresholdw), which allows us to define Dam;w
as

follows.

Dam;w
¼ 1; if am;w � Thresholdw

Dam;w
¼ 0; if am;w � Thresholdw

m ¼ fmNAE; mNAFAg
By comparing Dam;w

and Dcm
as in Eq. 3, we then compute the number of true (false)

positives (negatives) obtained by applying different sets of weights and threshold values

[xw, Thresholdw]. That is, we generate 4,000 records (2000 for NAE and 2000 for NAFA),

to be used in our calibration exercise, each record being characterized by a different

combination of precision rate, recall rate, vectors of weights and threshold value.

Figure 2 is a scatter plot for the precision and recall rates, where dots correspond to

observations and dot colors indicate the relative threshold value. The figure shows the

extent of the trade-off between precision and recall. It also shows how the trade-off

depends on the threshold value: higher precision and lower recall for higher thresholds, and

vice versa. Yet, we observe that for different threshold values we can obtain a similar

combination of precision and recall, depending on the values assigned to weights wk

(overlapping regions of dots). Also Fig. 3 is a scatterplot for precision and recall rates; in

this case the dots are grouped according to the benchmark databases they refer to, NAFA

and NAE. We notice that NAFA dots tend to exhibit higher precision rates, given the recall
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.8
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P
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.2 .4 .6 .8 1

Recall

0<t<=1 1<t<=2
2<t<=3 3<t<=4

Fig. 2 Precision and Recall values according to different threshold (t) values (4,000 sets of weights)
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rate, and vice versa; this suggests that our algorithm fares better when applied to NAFA

than to NAE, that is, it is sensitive to the benchmark chosen for calibration.

Mapping

This second step identifies the most efficient combinations of weights with respect to pre-

defined objective regions: high precision, high recall and balanced mix of recall and

precision levels. Outcomes (observations) in each region are first split in two groups:

dominant and dominated. An outcome is dominated whenever another outcome exists

which has both higher precision and higher recall; it is dominant whenever no such other

outcome exists.

Dominant outcomesð�oÞ ! �o : 9= o Precision oð Þ[ Precision �oð Þ \Recall oð Þ[ Recallð�oÞf g

Dominated outcomesðoÞ ! o : 9 �o Precision oð Þ\Precision �oð Þ \Recall oð Þ\ Recallð�oÞf g

Dominant outcomes can be seen in Fig. 3 as dots at the upper frontier of the cloud of

observations. If we consider separately the clouds for NAFA and NAE results, we would

obtain two distinct sets of dominant outcomes, one for each benchmark dataset, as in

Fig. 4.8 Vertical lines in the figure identify nine areas, three of which include outcomes

corresponding to our objectives of high precision, high recall and balanced results. In

particular, the high precision area includes all dominant outcomes with precision rate

higher than 0.7, and recall rate between 0.5 and 0.65; the high recall region includes all

dominant outcomes with a recall rate higher than 0.65, and precision rate between 0.5 and

0.7; the balanced results region includes all dominant outcomes with a recall higher than

0.65 and precision higher than 0.7.

Notice that two other areas of potential interest are ‘‘maximum precision’’ and ‘‘max-

imum recall’’ (see Fig. 4). However, these are not reasonable objectives to pursue, as they
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NAE (EPFL) NAFA (FRENCH ACADEMICS)

Fig. 3 Precision and Recall values according to NAFA and NAE datasets (4,000 sets of weights)

8 The NAFA and NAE frontiers, include not only the most extreme points, but are extended to include all
outcomes with precision and recall values higher than Precision �oð Þ-0.02 and Recallð�oÞ-0.02 for any �o. This
will turn out useful for the ensuing statistical exercise.
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come at too high a cost in terms of recall and precision, respectively (e.g. to achieve max

precision we should stand a recall rate of less than 0.5, which is worse than the result of just

guessing).

We also calculate the number of positive weights characterizing the sets of weights

within the region of interest (AVG nr filtering criteria positively weighted). In the Bal-

anced region for the NAFA benchmark of Fig. 4, we have 132 vectors of weights, one for

each algorithm run falling within the region, having on average 8.77 filtering criteria

positively weighted. However, we count the number of positive weights assigned to criteria

with integer numbers, then we can conclude that the 132 observations are on average

characterized by nine positive weights.

Weight assignment and threshold selection

Once defined the three regions of interest, we assess which of the filtering criteria are over-

represented (or under-represented) within each region, and consequently we select them for

inclusion in the vector of weights representing the calibrated parametrization of the

algorithm. Criterion k is over-represented (under-represented) if the expected value of its

weight E[xk,] in the region of interest is significantly higher (lower) than 0.5.9

We test the over-representation (under-representation) hypothesis by means of one-tail

t tests, with 95 % significance, as follows:

• Over-representation test for criterion k H0: E[x.k] = 0.5 H1: E[x.k] [ 0.5

• Under-representation test for criterion k H0: E[x.k] = 0.5 H1: E[x.k] \ 0.5
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.8
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Recall

NAE (EPFL) NAFA (FRENCH ACADEMICS)

Fig. 4 Dominant Solutions for NAE and NAFA benchmarks

9 Remember that Wxk is a random variable with expected value equal to 0.5. By definition, any sample with
a different mean cannot be randomly drawn, and must be considered either over- or under-represented by
comparison to a random distribution.In case the estimated impact of a criterion is not significantly different
than zero for recall, but positive for precision, then it is desirable to include it in any parametrization, as it
increases precision at no cost in terms of recall. Conversely, any filter with zero impact on precision, but
significantly negative for recall, ought to be excluded from any parametrization, as it bears a cost in the
terms of the latter, and no gains in terms of precision. We have conducted this type of analysis, and found it
helpful to understand the relative importance of the different filtering criteria. We do not report it for reasons
of space, but it is available on request.
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We then proceed by including in the algorithm all over-represented criteria (that is, we

assign them weight xk = 1), and excluding the under-represented ones (assign xk = 0),

depending on the objective region.

Tables 4 and 5 report for each filtering criterion, the sample mean of its weight and the

p values of the one-tail t tests. Separate tests are run for NAFA and NAE benchmark

datasets and for the three regions of interest.

For illustration consider City and State criteria from Table 4 (NAFA dataset) in the

Balanced precision-recall region.10

We observe a sample mean equal to 0.42 for City criterion, which translates into a

rejection of the null hypothesis in the under-representation test (p value = 0.03), but not in

the over-representation test (p value = 0.97). As the City criterion is significantly under-

represented in the observations characterized by Balanced objective, then we exclude it by

assigning to city criterion a zero-weight (xCity = 0).

On the contrary, for the State criterion, the null hypothesis cannot be rejected either in

the under-representation test nor in the over-representation test (p-values being respec-

tively 0.64 and 0.36). This means that t tests do not give a clear (and statistically signif-

icant) evidence to help us deciding whether to include or exclude the State criterion. In this

case we give a positive weight to the State criterion only if it contributes to reach, in the

calibrated parametrization, the average number of positively weighted filtering criteria

characterizing the observations in the objective region. (that is, if the positively weighted

criteria selected in the calibrated parametrization are less than the nine observed on

average in the Balanced case, State is included).

Results of the tests provide us with guidance for choosing the filtering criteria to include

(assign positive weight) in calibrated parametrization of the algorithm, according to the

precision and recall objectives we aim at. For sake of simplicity we identify the positively

weighted criteria with an asterisk in Tables 4 and 5.

In the case of NAFA benchmark, whatever the objective region, network criteria are

always assigned a positive weight. In case of NAE only three degrees is assigned a positive

weight, for all the three regions.

The family of geographic criteria plays an important role in the NAFA benchmark, but

not in the NAE benchmark. This is not surprising given the low quality of geographical

information for Swiss inventors available on PatStat data (see Lissoni et al. 2010).

Applicant and Technology families show a mixed evidence, the choice of weights being

specific to any combination of benchmark dataset and objective regions. The Citation

family does not play any role in NAFA dataset, while it has to be weighted positively in

NAE dataset. Among the remaining criteria (others family), having a rare surname has to

be included in NAFA database when objective regions are Balanced and High precision, as

well as three years in case of NAE benchmark database.

Once defined the vector of weights for the calibrated parametrization of the algorithm, a

threshold value is needed, which we calculate as the average threshold value within each

region. For instance, in the balanced region of the NAFA benchmark, the average

threshold value for the 132 outcomes (dots) is 2.22. It means that the similarity score am,w

must be equal to or higher than 2.22 for any match to be considered positive. As expected,

10 Regression analysis can be applied to the same set of results in order to estimate the marginal impact of
each filtering criterion and the Threshold on either precision and recall, other things being equal. In general,
we expect all filters to bear a negative influence on recall (in that they increase the number of negative
matches, both true and false), and a positive influence on precision (they eliminate false positives).
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the average threshold value is highest in the high precision region and lowest in the high

recall one (see Tables 4 and 5).

Validation and application to PatStat data

Following our calibration exercise, we produce three versions (parametrizations) of

Massacrator 2.0, one for each precision-recall objective, with weights and threshold cal-

culated accordingly. We then check to what extent each of these parametrizations is

satisfying in terms of the precision and recall rates it produces, conditional on its objective.

Precision and recall rates are measured, once again, against the NAFA and NAE

benchmarks.

Parametrization

We run each version of Massacrator�, once for each combination for each benchmark, for

a total of 6 six runs, with the following results:

• NAFA dataset-precision oriented parametrization?Precision:92 % Recall:54 %.

• NAFA dataset-recall oriented parametrization?Precision:56 % Recall:93 %.

• NAFA dataset-balanced parametrization?Precision:88 % Recall:68 %.

• NAE dataset-precision oriented parametrization?Precision:79 % Recall:62 %.

• NAE dataset-recall oriented parametrization?Precision:59 % Recall:85 %.

• NAE dataset-balanced parametrization?Precision:74 % Recall:70 %.

Notice that by calibrating our filtering step on either NAE or NAFA we obtain different

results. This is because each dataset has a number of semantic peculiarities (variety of

names and; quality of information contained in the addresses; variety in the technological

classes and citations of patents), which are mirrored by differences in the number and type

of criteria selected at the calibration stage.

This forced us to choose only one benchmark dataset to perform our final calibration,

the one leading to the production of the APE-INV dataset. Our choice fell on NAFA, which

contains higher quality information for addresses, and more name variety. For the three

alternative parametrizations of Massacrator algorithm we then obtain the following dis-

ambiguation results11:

• NAFA calibrated, precision-oriented parametrization: from 3,896,945 inventors in the

original PatStat database (for EPO patents) we obtain 3,662,515 disambiguated

inventors (unique codes) in APE-INV, that is -7 %.

• NAFA calibrated, recall-oriented parametrization: from 3,896,945 inventors to

2,210,277 unique codes, that is -44 %.

• NAFA calibrated, balanced parametrization: from 3,896,945 inventors to 3,474,891

unique codes, that is -11 %.

11 The figures presented here are the result of further adjustments we introduced in order to solve transitivity
problems. Transitivity problems may emerge for any triplet of inventors (such as I, J, and Z) whenever two
distinct pairs are recognized to be same person (e,g, I & J and J and Z), but the same does not apply to the
remaining pair (I & Z are not matched, or are considered negative matches). In this case we need to decide
whether to revise the status of I & Z (and consider the two inventors as the same person as J) or the status of
the other pairs (and consider either I or Z as different persons than J). When confronting this problem, we
always opted for considering the two inventors the same person, then I,J and Z are the same individual
according to Massacrator.
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As expected the largest reduction in the number of inventors is obtained with the recall-

oriented parametrization, the smallest with the precision-oriented one. More importantly,

when applying data disambiguated with different precision-recall objectives to classic

problems in the economics of innovation or science and technology studies, we will get

different results. As an illustration, consider three classical topics: inventors’ productivity,

mobility, and social networking (on the latter topic, see Borgatti et al. 2009 for technical

vocabulary and basic concepts). Table 6 reports descriptive statistics for each topic, as

resulting from datasets built by using different parametrizations of Massacrator, namely:

• Avg. Patent per inventor: it is the average number of patents per inventor in the whole

dataset.

• Star inventors’ productivity: it is the share of patents belonging to the 1,000 most

prolific inventors in the database.

• International mobility index: It is the share of inventors with at least two different

country addresses, over the total number of inventors with at least two patents

(inventors with only one patent are not considered, as they can have only one address,

by definition).

• Connectedness: it is the percentage of connected nodes over the total number of nodes

in the network of inventors active between 2000 and 2005 in the fields of chemistry and

pharmaceuticals (from now on: Net2000/05)12 Isolated nodes represent individuals

with no co-inventorship relationships over the period considered.

• Centralization-degree: it is a degree-based measure of graph centrality for Net2000/05,

as defined in Freeman (1979). It measures the extent at which the graph structure is

organized around focal points, and it reaches a maximum value for a star graph.

• Density: it is the number of observed ties in Net2000/05, over the maximum number of

possible ties (i.e. the number of ties in a fully connected network with the same number

of nodes). It measures the intensity of connections between inventors.

As expected the productivity index in column (1) is higher for the recall-oriented

parametrization of the algorithm, on the basis of which we treat a larger number of

inventors as the same individual. As similar consideration is valid also for statistics on star

inventors, which are assigned a maximum of 8 % of patents when using a recall-oriented

parametrization and only 3.5 % with a precision-oriented parametrization. As for inter-

national mobility, its index ranges from 0.56 % to 4.92 % according to the parametrization

Table 6 Descriptive statistics of inventorship: Massacrator runs with different parametrizations on the
whole PatStat dataset

(1) (2) (3) (4) (5) (6)

Parametrization Avg Patent
per
inventor

Star
inventors’
productivity

International
mobility
index

Connected
nodes %

Centralization-
degree %

Density
%

Balanced 2.1705 3.56 % 1.02 % 95 % 0.156 0.0034

Recall-oriented 3.0244 8.19 % 4.92 % 95.21 % 0.515 0.0053

Precision-
oriented

2.0381 3.48 % 0.56 % 95 % 0.149 0.0032

12 Fields of chemistry and pharmaceuticals are defined as in Schmoch (2008). We consider only these fields,
and years from 2000 and 2005, for ease of computation. Co-inventorship is intended as a connection
between two inventors having (at least) one patent in common.
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choice. While productivity measures do not change much when moving from the Preci-

sion-oriented parametrization to the Balanced one, the same cannot be said for mobility

measures: in this case, even the modest reduction in precision (increase in recall) intro-

duced by changing algorithm changes considerably the value of the indicator.

As for network measures, Connectedness is not very sensitive to the algorithm

parametrization. The same cannot be said for Centralization and Density, both of which

increase considerably along with recall and decline with precision.

Language- and country-specific issues

An important limitation of Massacrator 2.0 (one shared with most available algorithms)

lies in the generality of the matching rules for names and surnames, as well as in its

dependence, for the calibration of filtering criteria, on a limited set of training (benchmark)

data.

Concerning matching criteria, 2G distances tend to be lower when names and surnames

tend to be shorter, as it is the case in several Asian countries (for example, South Korea and

China; but not Japan). In addition, the probability of matching two entities is higher when a

small number of names and/or surname tend to exhibit a very high frequency within the

population (as it is the case with Asian countries, this time including Japan, too; and, in

Europe, with Scandinavian countries).

As for filtering, the two datasets used for the calibration of Massacrator 2.0, namely

NAFA and NAE, are country specific (respectively, for France and Switzerland). At first

sight, this may suggest that the filtering weights resulting from the parametrization exercise

may also be affected by several language- or country-specific items in the benchmarks,

such as, again, the relative frequency of names and surnames (and the average lexical

distance between them), or the concentration of the population in large cities. Notice

however that, of the 17 filtering criteria considered, only five depend on geography (co-

localization of the matched entities) and just one on the frequency of surnames. All the

other criteria make use of information contained in the patents, such as citations, tech-

nological classification, and co-inventorship.

Ideally, we would like to assemble as many training datasets as the number of inventors’

countries we wish to investigate, and to produce as many versions (parametrizations) of the

Massacrator 2.0 algorithm. At this stage, however, a similar effort would be prohibitively

costly. Besides, it would not solve entirely the problem, as inventors in a certain number of

high-immigration countries, such as the US, Canada, Australia, or several small European

countries (such as Switzerland or the Netherlands) have names and surnames that respond

to different linguistic rules (and we do not know in advance to which linguistic group they

belong to).13

In the absence of a ready solution to these problems, we want at least to quantify the

bias induced by the limitations of our training datasets, for the inventors whose countries of

residence (at the time of the patent filing) coincided with one of the ten countries with the

largest number of patent applications filed at the EPO (namely: US, Japan, Germany,

France, Great Britain, Italy, South Korea, The Netherlands, Switzerland, and Canada).

Table 7 reports the total number of original inventor occurrences for such countries

13 On immigration of inventors, see Miguelez and Fink (2013) and Breschi et al. (2014). Both papers
provide information on ongoing attempts to classify inventors according to their nationality and/or country
of origin (country of birth, or of parents’ or grandparents’ birth). In the near future, it will be possible to use
such information to refine new versions of Massacrator (see Conclusions).
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(Column 2), as well as the reduction in terms of number of disambiguated inventors when

we apply the balanced algorithm (Column 5). Columns 3 and 4 show two intermediate

results of the algorithm at matching and filtering step. We measure the matching result as

the ratio of the number of pairs of inventors generated during the matching step divided by

the total number of possible combination of inventors within the country (Eq. 4 defines the

values in column 3). Then, we measure the outcome of the filtering step as share of pairs

confirmed by the filtering criteria (Eq. 5 defines the values in column 4).

% of pairs ¼ nr of pairs

ððnr of inventorsÞ � ðnr of inventors � 1Þ=2Þ ð4Þ

% of confirmed pairs ¼ nr of confirmed pairs

nr of pairs
ð5Þ

Not surprisingly we find that we are more likely to observe a proliferation of pairs in

Korea and partially in Japan, whose variety of names and surnames is rather low, for

historical reasons (namely, the low level of immigration, the absence of multiple ethnic

minorities, and several linguistic peculiarities; see Yasuda, 1983). For these countries the

filtering criteria play a major role, as it helps rejecting many false positive (it confirms only

a small share of the inventors matched, respectively 2 and 5 %). In some western countries,

on the contrary, the number of pairs generated in the matching step is lower (higher

heterogeneity of names and surnames), and the share of pairs confirmed by filters is notably

higher. For instance, Italy (whose variety of surnames is notoriously high; Barrai et al.

1999) shows a low percentage of pairs (0.00148 %) and the highest share of confirmed

pairs (52 %) in the filtering step: one out of two pairs identified by the matching step is

confirmed by the filtering step. The same applies to France, whose population is large, but

has a long story of immigration, as well as high regional variety in surnames.

All in all, evidence in Table 7 suggests that our matching rules resent heavily of

language- and country-specific biases, but also that our filtering rules do quite a good job in

countering this bias, by validating only a small percentage of matches for countries where

we observe many of them. As a result, the order of magnitude in the reduction of the

number of entities (inventors) due to the disambiguation exercise does not vary much

Table 7 Country specific consequences of applying the Massacrator algorithm (balanced calibration)

Country of
residence*

Nr of
inventors

% of pairs
(matching step)

% of confirmed
pairs (filtering
step)

% reduction of
nr of inventors due to
disambiguation

United States 908,163 0.00051 % 13 % -21 %

Japan 750,534 0.00206 % 2 % -12 %

Germany 445,614 0.00075 % 13 % -17 %

France 198,314 0.00089 % 24 % -15 %

Great Britain 171,203 0.00249 % 25 % -29 %

Italy 83,836 0.00148 % 52 % -21 %

South Korea 82,794 0.00891 % 5 % -12 %

The Netherlands 69,843 0.00229 % 7 % -5 %

Switzerland 57,738 0.00225 % 16 % -9 %

Canada 50,968 0.00334 % 19 % -13 %

* At the time of the patent filing

Scientometrics (2014) 101:477–504 501

123



across countries. The only puzzling case is given by the Netherlands where the number of

pairs generated during the matching step is quite high and the percentage of confirmed

pairs is very low (5 %). It results in the smallest reduction of the number of entities during

the disambiguation exercise.

Conclusions and further research

In this paper we have presented a general methodology for inventor disambiguation, with

an application to EPO patent data. We have argued that producing high quality data

requires calibrating the choice of weights by means of simulation analysis. Calibration is

necessary to:

1. identify ‘‘frontier’’ results, that is the set of efficient weights that maximise the

precision rate, conditional on a given recall rate (or, vice versa, recall conditional on

precisions); in this way, one excludes inefficient sets of weights and make less

arbitrary choices;

2. allow the researcher to choose between precision-oriented and recall-oriented

algorithms, or to combine them into a a balanced one.

Choosing one algorithm over the others may be desirable when the research purposes

require minimization of either errors of type I or errors of type II (respectively, false

positives and false negatives). For example, early research on academic patenting by

Lissoni et al. (2008) was aimed at proving that official estimates of the number of academic

patents (namely, patents signed by at academic scientists) in Europe were wrong by defect,

and thus needed to minimize errors of type I. A more recent study on the same topic, on the

contrary, has produced a longitudinal database of academic patenting in Italy, with the

primary objective of detecting trends Lissoni et al. (2013). With that objective in mind,

there is no reason to prefer minimization of either errors of type I or errors of type II, so the

authors make use of the APE-INV inventor database described in this paper, with balanced

parametrization.

More generally, we have shown how different calibrations lead to different results for

the fundamental indicators of studies on inventors’ productivity, mobility, and networking.

This means that the results of several studies recently published on these topics, which do

not provide details on the disambiguation methods they followed, could turn out not be

robust to the calibration choices presented here (this include some work by one us, such as:

Balconi et al. 2004 on networks; or Breschi and Lissoni 2009, on mobility). For sure, future

research results in these area will have to be screened more closely, and disambiguation

methods made explicit.

Besides conducting robustness test for different disambiguation parametrizations,

authors may also pursue the road of combining the results of different calibrations in order

to increase data quality. This can be done by comparing the results, for each pair of

records, of the different calibrations and choose on the basis of whether a majority of the

algorithms suggest the same results. The combination principles can be extended not only

to different calibration algorithms, but to altogether different algorithms, as discussed by

Maurino et al. (2012).

One last strategy for further data quality improvements can consist in sharing more

openly inventor data and collecting feedbacks from other users. This is an integral part of

the APE-INV project, for which the inventor database described in this paper was produced

and made available online (http://www.ape-inv.disco.unimib.it/). Users who check
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manually the inventor data they download, or match them to other sources of information

on individuals (such as lists of academics or authors of scientific papers) do inevitably find

a number of false negatives or false positives. The same holds if their research requires

contacting the inventors for interview or survey purposes. This user-generated information

is extremely valuable, and we believe it is worth investing in finding ways to collect it. To

this end we have set up the APE-INV User’s Feedback project, which invites users to come

back to the APE-INV data website and upload either their proposed corrections to the

APE-INV inventor dataset, or the results of their own disambiguation exercises based on

the same set of data (for a full description of the project, see Den Besten et al. 2012).

Users may also play a role in assembling country- and language-specific training

(benchmark) datasets, which would possibly result in as many specific versions of the

algorithms, so to overcome the unequal cross-country distribution of precision and recall

rates, of which we suspect the results of Massacrator 2.0 to be affected. Waiting for such

data to be made available, it is worth exploring the possibility to improve the algorithm by

bringing in information on nationality or country of origin of inventors, from the sources

mentioned in section Language- and country-specific issues.
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