Skip to main content
Log in

Evaluating and comparing the university performance in knowledge utilization for patented inventions

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

Although universities have played an important role in knowledge creation, it is also of concern to see how universities perform in knowledge utilization. In the present article, an effective approach is proposed to evaluate and compare university performance in knowledge utilization for patented inventions. Growth trajectories of the cumulative patent citations to scientific publications produced by individual universities are analyzed by using latent growth modeling. Moreover, we examine how the utilization of scientific knowledge created in 1995 and 2005 is affected by research impact and university–industry collaboration among the universities in Europe, North America, and East Asia. The results indicate that not all top 300 research universities in the world perform well in knowledge utilization for patented inventions. Some policy implications are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aiken, L., & West, S. (1991). Multiple regression: Testing and interpreting interactions. Thousand Oaks, CA: Sage.

    Google Scholar 

  • Aksnes, D. W. (2006). Citation rates and perceptions of scientific contribution. Journal of the American Society for Information Science and Technology, 57(2), 169–185.

    Article  Google Scholar 

  • Alexander, F. K. (2000). The changing face of accountability: Monitoring and assessing institutional performance in higher education. Journal of Higher Education, 71(4), 411–431.

    Article  Google Scholar 

  • Bainbridge, W. S., & Roco, M. C. (Eds.). (2006). Managing nano-bio-info-cogno innovations: Converging technologies in society. Berlin: Springer.

    Google Scholar 

  • Blomkvist, K., Kappen, P., & Zander, I. (2014). Superstar inventors—Towards a people-centric perspective on the geography of technological renewal in the multinational corporation. Research Policy, 43(4), 669–682.

    Article  Google Scholar 

  • Bollen, K. A., & Curran, P. J. (2006). Latent curve models: A structural equation perspective. Hoboken, NJ: Wiley.

    Google Scholar 

  • Calero, C., van Leeuwen, T. N., & Tijssen, R. J. W. (2007). Research cooperation within the bio-pharmaceutical industry: Network analyses of co-publications within and between firms. Scientometrics, 71(1), 87–99.

    Article  Google Scholar 

  • Caloghirou, Y., Constantelou, A., & Vonortas, N. S. (2001). Knowledge flows in European industry: Mechanisms and policy implications. London: Routledge.

    Google Scholar 

  • Commission, European. (1995). Green paper on innovation. Bruxelles: European Commission.

    Google Scholar 

  • Ding, C. G., & Jane, T. D. (2012). Using SAS PROC CALIS to fit level-1 error covariance structures of latent growth models. Behavior Research Methods, 44(3), 765–787.

    Article  Google Scholar 

  • Etzkowitz, H., & Leydesdorff, L. (1995). The triple helix university–industry–government relations: A laboratory for knowledge-based economic development. EASST Review, 14(4), 14–19.

    Google Scholar 

  • Etzkowitz, H., & Webster, A. (1998). Entrepreneurial science: The second academic revolution. In H. Etzkowitz, A. Webster, & P. Healey (Eds.), Capitalizing knowledge: New intersections of industry and academia (pp. 21–46). Albany, NY: State University of New York Press.

    Google Scholar 

  • Gittelman, M., & Kogut, B. (2003). Does good science lead to valuable knowledge? Biotechnology firms and the evolutionary logit of citation patterns. Management Science, 49(4), 366–382.

    Article  Google Scholar 

  • Glänzel, W., & Schubert, A. (1992). Some facts and figures on highly cited papers in the sciences, 1981–1985. Scientometrics, 25(3), 373–380.

    Article  Google Scholar 

  • Hagedoorn, J., & Cloodt, M. (2003). Measuring innovative performance: Is there an advantage in using multiple indicators? Research Policy, 32(8), 1365–1379.

    Article  Google Scholar 

  • Henderson, R., Jaffe, A. B., & Trajtenberg, M. (1998). Universities as a source of commercial technology: A detailed analysis of university patenting, 1965–1988. The Review of Economics and Statistics, 80(1), 119–127.

    Article  Google Scholar 

  • Hicks, D., Breitzman, A., Hamilton, K., & Narin, F. (2000). Research excellence and patented innovation. Science and Public Policy, 27(5), 310–320.

    Article  Google Scholar 

  • Hicks, D., Breitzman, T., Olivastro, D., & Hamilton, K. (2001). The changing composition of innovative activity in the U.S.: A portrait based on patent analysis. Research Policy, 30(4), 681–703.

    Article  Google Scholar 

  • Hou, C., & Gu, S. (1993). National Systems supporting technical advance in industry: The case of Taiwan. In R. R. Nelson (Ed.), National innovation systems: A comparative analysis (pp. 76–114). New York: Oxford University Press.

    Google Scholar 

  • Huang, M. H., Chang, H. W., & Chen, D. Z. (2006). Research evaluation of research-oriented universities in Taiwan from 1993 to 2003. Scientometrics, 67(3), 419–435.

    Article  Google Scholar 

  • Jencks, C., & Reisman, D. (1968). The academic revolution. New York: Doubleday.

    Google Scholar 

  • Lemley, M. A., & Sampat, B. (2012). Examiner characteristics and patent office outcomes. Review of Economics and Statistics, 94(3), 817–827.

    Article  Google Scholar 

  • Littell, R. C., Milliken, G. A., Stroup, W. W., Wolfinger, R. D., & Schabenberger, O. (2006). SAS for mixed models (2nd ed.). Cary, NC: SAS Institute Inc.

    Google Scholar 

  • Lundvall, B. Å. (1992). Introduction. In B. Å. Lundvall (Ed.), National systems of innovation: Towards a theory of innovation and interactive learning (pp. 1–17). London: Pinter.

    Google Scholar 

  • McMillan, G. S., Narin, F., & Deeds, D. L. (2000). An analysis of the critical role of public science in innovation: The case of biotechnology. Research Policy, 29(1), 1–8.

    Article  Google Scholar 

  • Meyer, M. (2001). Patent citation analysis in a novel field of technology. Scientometrics, 51(2), 163–183.

    Article  Google Scholar 

  • Meyer, M. (2006). Measuring science-technology interaction in the knowledge-driven economy: The case of a small economy. Scientometrics, 66(2), 425–439.

    Article  Google Scholar 

  • Narin, F., Hamilton, K., & Olivastro, D. (1997). The increasing linkage between US technology and public science. Research Policy, 26(3), 317–330.

    Article  Google Scholar 

  • Nelson, R. R., & Rosenberg, N. (1993). Technical innovation and national systems—Introduction. In R. R. Nelson (Ed.), National innovation systems: A comparative analysis (pp. 3–28). New York: Oxford University Press.

    Google Scholar 

  • Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear models (2nd ed.). London: Sage.

    Google Scholar 

  • Roach, M., & Cohen, W. M. (2013). Lens or prism? Patent citations as a measure of knowledge flows from public research. Management Science, 59(2), 504–525.

    Article  Google Scholar 

  • Roco, M. C., & Bainbridge, W. S. (2002). Converging technologies for improving human performance: Integrating from the nanoscale. Journal of Nanoparticle Research, 4(4), 281–295.

    Article  Google Scholar 

  • Rosenberg, N., & Nelson, R. R. (1994). American universities and technical advance in industry. Research Policy, 23(3), 323–348.

    Article  Google Scholar 

  • Schmoch, U. (1997). Indicators and the relations between science and technology. Scientometrics, 38(1), 103–116.

    Article  Google Scholar 

  • Sorenson, O., & Fleming, L. (2004). Science and the diffusion of knowledge. Research Policy, 33(10), 1615–1634.

    Article  Google Scholar 

  • Tijssen, R. J. W. (2001). Global and domestic utilization of industrial relevant science: Patent citation analysis of science–technology interactions and knowledge flows. Research Policy, 30(1), 35–54.

    Article  Google Scholar 

  • Tijssen, R. J. W., Buter, R. K., & van Leeuwan, T. N. (2000). Technological relevance of science: An assessment of citation linkages between patents and research papers. Scientometrics, 47(2), 389–412.

    Article  Google Scholar 

  • Van Raan, A. F. J. (2004). Measuring science. In H. F. Moed, W. Glanzel, & U. Schmoch (Eds.), Handbook of quantitative science and technology research: The use of publication and patent statistics in studies of S&T systems (pp. 19–50). Dordrecht: Kluwer Academic Publisher.

    Chapter  Google Scholar 

  • Wade, R. (1990). Governing the market: Economy theory and the role of government in East Asian industrialization. Princeton: Princeton University.

    Google Scholar 

  • White, M. J., & White, K. G. (1977). Citation analysis of psychology journals. American Psychologist, 32(5), 301–305.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the reviewer for the constructive comments and suggestions. This research was partially supported by grant MOST 103-2410-H-009-024 from the Ministry of Science and Technology in Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cherng G. Ding.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hung, WC., Ding, C.G., Wang, HJ. et al. Evaluating and comparing the university performance in knowledge utilization for patented inventions. Scientometrics 102, 1269–1286 (2015). https://doi.org/10.1007/s11192-014-1470-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-014-1470-9

Keywords

Navigation