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Abstract 

 

There is a worldwide trend towards application of bibliometric research evaluation, in 

support of the needs of policy makers and research administrators. However the 

assumptions and limitations of bibliometric measurements suggest a probabilistic rather 

than the traditional deterministic approach to the assessment of research performance. 

The aim of this work is to propose a multivariate stochastic model for measuring the 

performance of individual scientists and to compare the results of its application with 

those arising from a deterministic approach. The dataset of the analysis covers the 

scientific production indexed in Web of Science for the 2006-2010 period, of over 900 

Italian academic scientists working in two distinct fields of the life sciences. 
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1. Introduction 

 

Bibliometric instruments are increasingly applied in support of research assessment 

of individuals and institutions, due to their advantages as objective measures in 

comparing the performance of different entities. Research assessment serves many 

purposes, among others: informing research policies at the national and supranational 

levels; informing strategies at the organizational level; stimulating research 

productivity; supporting selective funding; reducing asymmetry in demand and supply 

of new knowledge; demonstrating that investment in research is effective and delivers 

public benefits. Because of the delicate purposes served by research assessment 

exercises, policy makers and research administrators require ever more accurate, robust, 

timely, and inexpensive measures. 

Not surprisingly, recent years have seen proliferation of different bibliometric 

indicators, often with further variations and ever more sophisticated methods for their 

calculation. The assumptions and the limits of application for bibliometrics, and of the 

individual indicators and their combinations in research evaluation, are such as to 

suggest the consideration of a probabilistic rather than the current deterministic 

approach to the measurement of research performance. The aim of this work is to 

propose a multivariate model for the measurement of individual research performance, 

and to compare the results with those derived from a deterministic approach. We expect 

that randomness will be particularly significant for evaluation exercises conducted at the 

level of individual scientists, but decreasing as the levels of analysis are increasingly 

aggregated (research groups, departments, universities). 

The next section of the study illustrates the principal factors that determine 

uncertainty in the measurement of research performance, while Section 3 presents the 

performance indicators adopted, the multivariate model, the field of observation and the 

measurement methodology. Sections 4 and 5 present the results of the application and a 

comparison to the results that would derive from a traditional deterministic approach. 

The paper closes with the authors’ considerations and some suggestions for future 

developments in the research. 

 

 

2. Uncertainty factors in research performance assessment 

 

One of the major areas of difficulty in measuring research performance concerns the 

multi-output character of the research produced. Bibliometrics is not able to measure 

any new knowledge that is not codified, and where new knowledge is indeed codified, 

bibliometricians are still faced with the problem of identifying and measuring its 

various forms. Moed (2005) demonstrated that in the so-called hard sciences, the 

prevalent form of codification for research output is publication in scientific journals. 

Given this, databases such as Scopus and Web of Science (WoS) have been extensively 

used and tested in bibliometric analyses, and are seen as sufficiently transparent in terms 

of their content and coverage. As a proxy of total output in the hard sciences, 

bibliometricians thus simply consider publications indexed in either WoS or Scopus2. 
                                                           
2  Although the overall coverage achieved by the two databases does differ significantly, evidence 

suggests that with respect to comparisons at large scale level in the hard sciences, the use of either source 

yields similar results (Archambault et al. 2009). 



3 

The immediate consequence is that those outputs that are not censused will inevitably 

be ignored. This approximation is considered acceptable in the hard sciences, although 

not for the arts, humanities and a good part of the social sciences. 

Publications embedding new knowledge have different values, measured by their 

impact on scientific advancement. As proxy of this impact, bibliometricians adopt the 

number of citations of the publications (in spite of limits on the indicator, such as 

negative citations and “network” citations) (Glänzel 2008). Because citation behavior 

varies across fields, bibliometricians then standardize the citations of each publication 

with respect to a scaling factor stemming from the distribution of citations for all 

publications of the same year and the same subject category. Different scaling factors 

have been suggested and adopted for the field normalization of citations (average, 

median, z-score of normalized distributions, etc.). Because interdisciplinary work may 

easily suffer in the evaluation from being misplaced in a categorical classification 

system (Laudel & Origgi 2006), few scholars have proposed to normalize citations by 

the number of bibliographic references of the citing paper (Pepe & Kurtz 2012; 

Leydesdorff & Bornmann 2011). However it can be expected that no parametric field-

normalization method will be able to realize the perfect overlapping of citation 

distributions in the case of a substantial number of fields (Zhang et al. 2014; Abramo et 

al. 2012a; Radicchi et al. 2008). Furthermore, given the varying intensity of 

publications across fields (Butler 2007; Garfield 1979), in order to avoid distortions in 

performance rankings (Abramo et al. 2008), evaluation exercises should compare 

researchers within the same field. A prerequisite of any research assessment free of 

distortions would then be the classification of each individual researcher in one and only 

one field. An immediate corollary is that the performance of staff units that are 

heterogeneous for fields of research cannot be directly measured at the aggregate level, 

and evaluators must apply a two-step procedure: first measuring the performance of the 

individual researchers in their field, and then appropriately aggregating this data. The 

classification of researchers in fields, while absolutely necessary, is not an easy task, 

and thus in itself embeds uncertainty. 

Other approximations and limits are seen to apply for the individual bibliometric 

indicators. Abramo & D’Angelo (2014), for example, compare the strengths and 

weaknesses of the most popular performance indicators, such as the new crown 

indicator, the h-index, and fractional scientific strength. The choice of indicators and 

measurement methods cannot be divorced from the objectives and context of the 

assessment exercise, however most bibliometricians agree on the need to adopt some 

form of combination of indicators for the evaluation of individuals and institutions, 

rather than a single instrument. Among the pros of composite indicators, are the facts 

that they: i) are easier to interpret than a battery of many separate indicators; ii) make it 

possible to include more information; iii) enable users to compare complex dimensions 

effectively. Among the points against are: i) the weighting processes applied in the 

combination of variables are arbitrary in nature and may lead to disputes; ii) they may 

send misleading policy messages if poorly constructed or misinterpreted; iii) they may 

lead to simplistic management or policy conclusions. Combining different indicators is 

not an exercise to take lightly, given the number of hidden dangers involved. Without at 

least minimal knowledge of aggregation techniques and properties, as applied in multi-

criteria decision-making (MCDM), evaluators risk the vitiation of their entire exercise. 

A case in point is the Academic Ranking of World Universities, popularly known as the 

“Shanghai ranking”, released annually by the Institute of Higher Education, Jiao Tong 
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University of Shanghai. In adding an MCDM analysis to van Raan’s (2005) previous 

bibliometric critique, Billaut et al. (2010) quickly came to the conclusion that the 

Shanghai ranking is a poorly conceived, “quick and dirty” exercise. They observe that 

the method used to aggregate indicators is flawed and nonsensical, and that no attention 

has been paid to fundamental structuring issues. 

Bibliometric scores are also afflicted by further factors of randomness. Referring to 

the “publication window”, bibliometricians have observed that both the time period 

from a paper’s original submission to a journal and its date of acceptance, and then from 

acceptance to actual publication date, are highly variable within the same discipline. 

This means that the shorter the observation period assessed, the greater the citation 

measures will be affected by a random component external to the excellence of the 

researchers. Publication delays have been noted as particularly evident in certain fields, 

such as mathematics and technical sciences (Luwel & Moed 1998), food sciences (Amat 

2008) and econometrics (Trivedi 1993). Further, the intensity of a scientist’s publication 

production is clearly linked to the type of research taken on, to whether it is more or less 

innovative or in “niche” areas, and to the entire research life cycle: a scientist could 

result as completely unproductive if evaluated during the launch of a new research 

program, while his or her performance would be completely different if evaluated in the 

subsequent stages of “harvesting” the yields from initial investments. Another 

frequently noted temporal effect relates to the length of the “citation window”, another 

source of randomness in bibliometric scores. The reliability of citations to approximate 

the real impact of a publication is clearly higher the wider is the time window for 

citation. 

The decision of any author to cite or not to cite an article is in itself a stochastic 

process. Once cited, the indexing of citations on the part of the major database operators 

then relies on algorithms, and although such indexing processes are constantly 

improved they will never be free of error. The indexing itself typically takes place at the 

beginning or end of a calendar year, so that in measuring impact there is bias in favor of 

publications published earlier. 

We must also admit that the very probability of acceptance for a paper submitted to 

a journal is affected by random factors related to interactions of individuals in the 

reviewing process of the manuscript, and by the fact that the choice of the journal by the 

authors, and of the reviewers by the editors, is not always optimal. 

In spite of the numerous elements of randomness illustrated, traditional bibliometric 

assessments are largely based on deterministic models which perform the same way for 

a given set of initial conditions. Conversely, in a stochastic model, randomness is 

present, and variable states are not described by unique values, but rather by probability 

distributions. The literature does provide several studies of the statistical properties of 

bibliometric indicators, relative to the research performance of individuals (Radicchi & 

Castellano 2013), research groups (van Raan 2006) and universities as a whole (van 

Raan 2008). Concerning the widest known of all indicators, the h-index, the large part 

of the contributions are dedicated to identifying its weaknesses, while only a few studies 

focus on its statistical properties (Cerchiello & Giudici 2014; Pratelli et al. 2012; 

Todeschini 2011; Burrel 2007). 
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3. Methods and data 

 

The current study proposes a composite indicator for the evaluation of research 

performance at the individual level. For this, in order to filter the effects of randomness 

on the bibliometric scores, we adopt a stochastic rather than deterministic approach. The 

approach used is Soft Independent Modeling of Class Analogy (SIMCA) (Vanden 

Branden & Hubert 2005; Wold & Sjostrom 1977). For a rigorous description of the 

method in detail we refer the interested reader to the above works. Here we attempt to 

provide a synopsis of the method which may be comprehensible to the average reader. 

SIMCA is a multivariate statistical method for supervised classification of data. To 

avoid over-fitting, the method requires a training data set consisting of samples with a 

set of attributes and their class membership. The term soft refers to the fact the classifier 

can identify samples as belonging to multiple classes and not necessarily producing a 

classification of samples into non-overlapping classes. In order to build the 

classification models, the samples belonging to each class need to be analyzed using 

principal components analysis (PCA). For a given class, the resulting model then 

describes either a line (for one Principal Component or PC), plane (for two PCs) or 

hyper-plane (for more than two PCs). For each modeled class, the mean orthogonal 

distance of training data samples from the line, plane or hyper-plane (calculated as the 

residual standard deviation) is used to determine a critical distance for classification. 

This critical distance is based on the F-distribution and is usually calculated using 95% 

or 99% confidence intervals. New observations are projected into each PC model and 

the residual distances calculated. An observation is assigned to the model class when its 

residual distance from the model is below the statistical limit for the class. The 

observation may be found to belong to multiple classes and a measure of goodness of 

the model can be found from the number of cases where the observations are classified 

into multiple classes. The classification efficiency is usually indicated by receiver 

operating characteristics. 
In the original SIMCA method, the ends of the hyper-plane of each class are closed 

off by setting statistical control limits along the retained principal components axes (i.e. 

range: minimum score value minus 0.5 times score standard deviation to maximum 

score value plus 0.5 times standard deviation). More recent adaptations of the SIMCA 

method close off the hyper-plane by construction of ellipsoids. With such modified 

SIMCA methods (Forina et al. 2008a), classification of an object requires both that its 

orthogonal distance from the model and its projection within the model (i.e., score value 

within region defined by ellipsoid) are not significant. 

SIMCA as a method of classification has gained widespread use especially in 

applied statistical fields such as chemometrics and spectroscopic data analysis 

(Menesatti et al. 2014; Aguzzi et al. 2009; Forina et al. 2008a, 2008b; Casale et al. 

2007; Hall & Kenny 2007; Krafft et al. 2006). To the best of our knowledge this is the 

first application of SIMCA to the fields of bibliometrics and research evaluation. In fact, 

this type of multivariate approach is particularly suited for treatment of correlated data 

that could present stochastic fluctuations (Forina et al. 2008a), as in the case of our 

bibliometric indicators. 

Our SIMCA application, computed with the software V-Parvus 2010, is based on a 

multivariate dataset composed of five bibliometric indicators that describe the 

performance of scientists from different points of view. The first indicator, Fractional 

Scientific Strength (FSS) (Abramo & D’Angelo 2014), is an indicator of efficiency that 

http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Supervised_learning
http://en.wikipedia.org/wiki/Principal_components_analysis
http://en.wikipedia.org/wiki/F-distribution
http://en.wikipedia.org/wiki/Goodness_of_fit
http://en.wikipedia.org/wiki/Goodness_of_fit
http://en.wikipedia.org/wiki/Receiver_operating_characteristic
http://en.wikipedia.org/wiki/Receiver_operating_characteristic
http://en.wikipedia.org/wiki/Chemometrics
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measures the research productivity of the subjects evaluated, accounting for both 

quantity and impact of production. Two of the indicators represent excellence, in terms 

of the number of publications of the author that place in the top 1% and 5% of world 

ranking for impact, referring to works of the same subject category and year. The last 

two indicators refer to the relative importance of the contribution by the authors of the 

co-authored works, which is particularly important in the life sciences fields that are the 

object of our particular application. These indicators are based on counts of the number 

of publications in which the scientist appears as first or last author in the byline. The 

SIMCA model is calibrated on two artificial datasets constructed from the basis of the 

performance distributions of all Italian professors belonging to the fields of 

pharmacology (506 observations) and general pathology (417 observations). The 

bibliometric dataset is specifically based on their scientific production as indexed in the 

Web of Science, over the period 2006 to 2010. 

In the following subsections we provide more detailed descriptions of the 

performance indicators adopted, the multivariate model, the field of observation and the 

evaluation methodology. 

 

 

3.1 The performance indicators 

 

Any performance should be evaluated relative to goals and objectives as stated for 

the given context. Because objectives will necessarily vary across research institutions 

and over time, the recommendation of a sole performance indicator is inappropriate. 

However this does not on the other hand justify the proliferation of hundreds of 

indicators. In this work we propose five bibliometric indicators. Two of these are 

specifically for those fields where the varying contributions of the co-authors are 

signaled through their order in the article’s byline. 

Bibliometric measurement of research performance requires the adoption of a 

number of simplifications and assumptions. In the current work, as in others, one of the 

most delicate of these is that the same resources are available to all scientists in the 

same field. 

In the vast majority of evaluation exercises, the first and likely most important 

indicator of performance is research productivity. The current study measures this by 

the indicator named Fractional Scientific Strength (FSS), which embeds both the 

number of publications produced and their standardized impact. 

Because the intensity of publications varies across fields, in order to avoid 

distortions in productivity rankings, we compare researchers within the same field. A 

prerequisite of any productivity assessment free of distortions is then a classification of 

each individual researcher in one and only one field. We take advantage of a unique 

feature of the Italian higher education system, in which each professor is classified as 

belonging to a single research field. These formally-defined fields are called Scientific 

Disciplinary Sectors (SDSs): there are 370 SDSs, grouped into 14 University 

Disciplinary Areas (UDAs). In the hard sciences, there are 205 such fields3 grouped into 

nine UDAs4. We then compare the performance of all professors belonging to the same 

                                                           
3  The complete list is accessible on http://attiministeriali.miur.it/UserFiles/115.htm, last accessed on 

September 15, 2014. 
4 Mathematics and computer sciences; physics; chemistry; earth sciences; biology; medicine; agricultural 

and veterinary sciences; civil engineering; industrial and information engineering. 

http://attiministeriali.miur.it/UserFiles/115.htm
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SDS. In formula, the average yearly productivity of an individual, over a period of time, 

is5: 

𝐹𝑆𝑆𝑅 =  
1

𝑡
∑

𝑐𝑖

𝑐̅

𝑁

𝑖=1

fi 

 [1] 

Where: 

t = number of years of work of the professor in the period of observation; 

N = number of publications of the professor in the period of observation; 

 = citations received by publication i; 

 = average of the distribution of citations received by all cited publications6 of the 

same year and subject category of publication i; 

fi = fractional contribution of the researcher to publication i. 

We adopt the methodology of fractional counting of research contributions, as we 

believe it is more compatible with microeconomic theory of production than “full 

counting”. The methodology permits accounting to the level of the different 

contributions of individual authors, where this is signaled by their position in the byline. 

Fractional contribution equals the inverse of the number of authors, in those fields 

where the practice is to place the authors in simple alphabetical order, but assumes 

different weights in other cases. For the life sciences, widespread practice in Italy and 

abroad is for the authors to indicate the various contributions to the published research 

by the order of the names in the byline. For these disciplines, we give different weights 

to each co-author according to their order in the byline and the character of the co-

authorship (intra-mural or extra-mural). If first and last authors belong to the same 

university, 40% of citations are attributed to each of them; the remaining 20% are 

divided among all other authors. If the first two and last two authors belong to different 

universities, 30% of citations are attributed to first and last authors; 15% of citations are 

attributed to second and last author but one; the remaining 10% are divided among all 

others7. Failure to account for the number and position of authors in the byline would 

result in notable ranking distortions at the individual level (Abramo et al. 2013a). 

While productivity is the quintessential indicator of efficiency in any production 

system, another important indicator of performance is research excellence, i.e. the 

ability to achieve path-opening discoveries. We thus measure, for each professor, the 

number of articles that rank among the top 1% (HCA1%) and 5% (HCA5%) world 

publications (of the same year and subject category8) per number of citations. Finally, in 

the life sciences, the byline entry of the first author of the publication generally 

indicates the generator of the original concept, as well as the scientist who contributed 

the most to the research and writing. Correspondingly, the position of last author 

generally indicates the team manager of the research project. Being either first or last 

                                                           
5 A thorough description of the formula, the underlying theory, assumptions and limits is found in Abramo 

& D’Angelo (2014). 
6 A preceding article by the same authors demonstrated that the average of the distribution of citations 

received for all cited publications of the same year and subject category is the most effective scaling 

factor (Abramo et al. 2012a). 
7 The weighting values were assigned following advice from prestigious Italian representatives of the 

scientific community in the life sciences. The values could be changed to suit different practices in other 

national contexts.  
8 When articles are published in multidisciplinary journals we assign them to the subject category where 

they rank the highest. 
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author is a sign of distinction and is highly acknowledged in the scientific world. We 

then measure the number of articles where a professor is either the first (FirstA) or the 

last author (LastA). In general, due to the particularities of the Italian context, we can 

exclude that performance measures may be distorted by variable returns to scale, due to 

different sizes of universities (Abramo et al. 2012b) or by returns to the differing scope 

of their research fields (Abramo et al. 2013b). 

 

 

3.2 Data 

 

The field of observation consists of all Italian professors belonging to two fields 

(SDSs) of the life sciences: Pharmacology (BIO/14, 506 observations) and General 

pathology (MED/04, 417 observations). Data on professors and their SDS classification 

are extracted from the database on Italian university personnel, maintained by the 

Ministry for Universities and Research9. For the bibliometric dataset, we draw on the 

Italian Observatory of Public Research (ORP), a database developed and maintained by 

the authors and derived under license from the WoS. Beginning from the raw data of 

Italian publications indexed in WoS, and applying a complex algorithm for 

disambiguation of the true identity of the authors and their institutional affiliations (for 

details see D’Angelo et al. 2011), each publication is attributed to the university 

professor that produced it, with a harmonic average of precision and recall (F-measure) 

equal to 96 (error of 4%). The observation period is 2006-2010. Once the five-year 

scientific portfolio is reconstructed for the 923 professors in the dataset, for each of 

these we measure the five indicators described in section 2.1. Table 1 presents the 

descriptive statistics for the distributions of the indicators, relative to the two SDSs 

under examination. 

 
Table 1: Descriptive statistics of performance indicators measured for Italian professors of the dataset 
SDS Index Mean Median Min Max Std Dev. Variat. coeff. Skewness Kurtosis 

BIO/14 

(506 obs.) 

FSS 2,75 1,44 0 46,23 4,23 1,54 4,59 31,47 

FirstA 1,53 1 0 23 2,21 1,45 3,58 23,91 

LastA 3,81 2 0 94 6,26 1,64 6,80 85,15 

HCA1% 0,17 0 0 8 0,65 3,82 6,14 51,90 

HCA5% 0,85 0 0 13 1,65 1,95 3,15 12,95 

MED/04 

(417 obs.) 

FSS 3,20 1,12 0,01 98,79 6,90 2,16 7,74 90,56 

FirstA 1,30 0 0 25 2,38 1,83 4,29 29,12 

LastA 3,87 2 0 48 5,74 1,48 3,56 18,17 

HCA1% 0,30 0 0 10 0,98 3,31 5,18 34,39 

HCA5% 1,21 0 0 39 3,00 2,48 6,61 65,83 

 

 

3.3 Multivariate modeling 

 

Multivariate class-modeling techniques answer to the general question of whether an 

object O, stated of class A, really belongs to class A (Forina et al. 2008a; Taiti et al., 

2014). This is a typical question in multivariate quality control. On the contrary, 

traditional classification techniques assign objects to one, and only one, of the potential 

classes. Class-modeling techniques calculate the “prediction probability” with a 

                                                           
9 http://cercauniversita.cineca.it/php5/docenti/cerca.php, last accessed on September 15, 2014 

http://cercauniversita.cineca.it/php5/docenti/cerca.php
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classification threshold for each modeled class. In using a class-modeling approach it is 

possible to attribute objects to one or more classes, but also to none, meaning the object 

is observed as an outlier. 

To develop an index suitable for assessing the research performance of individual 

researchers, we apply the SIMCA model to the five bibliometric performance 

indicators, as described above. For the modeled class, a critical squared distance based 

on the F-distribution is calculated using 95% confidence interval (i.e., the class 

boundary). The efficiency is indicated by a classification (training set) and a prediction 

(evaluation set) matrix, which report percentage of correct classification for each 

considered class and the total percentage ability. The observations for each class 

classified outside the model are also reported. SIMCA expresses the statistical 

parameters indicating the modeling efficiency. In fact, the observation can be found to 

belong to multiple classes or to fit none of them (outlier). Also, unknown objects could 

be either classified into one of the classes or recognized as outliers. The modeling 

efficiency is indicated by a sensitivity parameter. The sensitivity is the measure of how 

well the classification test correctly identifies the observations really belonging to the 

class, thus providing a quantitative indication of how well the model was capable of 

correctly classifying the researchers. The modeling power of each variable is also 

expressed, representing the influence of that particular variable in the definition of the 

model. 

To express an index for each researcher, squared SIMCA distances are linearized by 

converting the values into logarithmic scale and then translating them, adding a value of 

1 (to result in all positive values) to both datasets (BIO/14 and MED/04). This index 

expresses not only if researchers fall or not in the model (artificial dataset; see the 

following section) depending on whether its value is below or above the modeled 

threshold respectively, but also the quantitative proximity to the threshold (i.e., the 

relative performance of the researcher). 

 

Training 

The modeling approach used is based on the construction of artificial observations, 

characterized by absolute excellence from the point of view of bibliometric 

performance. This construction is based on the cut of the upper tail of the performance 

distribution for the five bibliometric indicators measured on the true dataset, as per 

Table 1. Specifically, for each SDS analyzed we construct an artificial dataset by means 

of a full permutation design. Given the distribution of values for the five performance 

indicators measured, we identify the four “high” performance values (the 95th percentile 

of the distribution; the 97.5th percentile; the maximum value; the maximum value 

increased by 5%) and “construct” 1,024 artificial observations by means of their 

factorial combination (4 values for 5 indicators, i.e. 45). 

To avoid over-fitting, of the 1,024 artificial observations only 75% (the training and 

validation sets) are used to construct and cross-validate the SIMCA model 

 

Testing 

The remaining 25% of the artificial dataset is now used to test the performance of 

the SIMCA model. The partitioning of the artificial datasets is optimally chosen with 

Euclidean distances, based on the Kennard & Stone (1969) algorithm that selects 

objects without a priori knowledge of a regression model (i.e., the hypothesis is that a 

flat distribution of the data is preferable for a regression model). 
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Once the SIMCA models are constructed and tested on the artificial datasets, they 

are then run through with the real datasets, based on the true performance of the 

professors in the two SDSs. 

To proceed to the comparative analysis between the results derived from the 

application of the stochastic SIMCA model and those of a deterministic approach, we 

also calculate a “traditional” composite indicator called Bibliometric Composite Score 

(BCS), given by the weighted average of the standardized values for the five indicators. 

The weights applied are FSS, 50%; HCA1%, 20%; HCA5%, 10%; FirstA, 10%; LastA, 

10%10. The individual values of the indicators are standardized to the mean value of the 

distribution of all Italian professors of the same SDS with values above 0. 

 

 

4. The research performance by the multivariate model 

 

Figure 1 presents the performance of the SIMCA model, calibrated for BIO/14 

(Pharmacology). The figure shows the histogram for frequency classes of the translated 

log squared SIMCA. The critical value results as 1.58 (red dashed line). Below this 

value, the observations are classified as belonging to the reference model, while 

observations with a value above threshold are considered “external to the model”. The 

greater is the value of the translated log squared SIMCA distance, the greater is the 

distance from the reference model, and thus from bibliometric excellence. We observe 

that all the observations used both for training (blue bars) and for testing the model (red 

bars) are “accepted” (100% sensitivity), while of the 506 true professors of the BIO/14, 

62 (12.3%) show values above the threshold. Of these 62, 47 (76% of total) belong to 

the best 50 as identified using the “traditional” BCS. The PCA shows the presence of 

two principal components, with a re-computed class standard deviation (RSD) equal to 

1.21. 

The Figure 2 histogram shows the modeling power, or the weight that each of the 

five variables has in the SIMCA model score. We observe that the greatest contributions 

are from FSS and from HCA1%. 

 

                                                           
10 The weights applied may be changed according to the specific objectives of the evaluation. 
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Figure 1: Histogram by frequency class of the translated log squared SIMCA for observations of 

BIO/14 (Pharmacology), subdivided in four groups: i) the 75% of the artificial dataset used to build the 

model (Artif75%; blue); ii) the 25% artificial datasets used as external test (Artif25%; red); iii) the best 

50 real researchers identified using the “deterministic” BCS (Best50; green); iv) all other real 

researchers (Other; purple). The dashed red line is the critical value. 

 

 
Figure 2: Modeling power of the 5 bibliometric indicators in the SIMCA model for BIO/14 

 

Figure 3 presents the performance of the SIMCA model calibrated for MED/04 

(General pathology). The translated log squared SIMCA critical distance is equal to 

1.60. The entirety of artificial observations used to calibrate the model (blue bars) and 

test it (red bars) show values above this threshold, indicating a sensitivity level of 

100%. On the other hand, of the 417 real professors, 99 (23.7%) are accepted by the 

model. These include all of the top 50 professors as identified by BCS. The remaining 

318 (purple bars) are rejected, falling outside the “excellent” class. The PCA shows the 

presence of two principal components and a re-computed class standard deviation 

(RSD) equal to 1.23. 
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The Figure 4 histogram shows the modeling power of the five bibliometric 

indicators in the SIMCA model. The graph is virtually identical to Figure 3: once again, 

the greatest weight in the model is from FSS and HCA1%. 

 

 
Figure 3: Histogram by frequency class of the translated log squared SIMCA for observations of 

MED/04 (General pathology), subdivided in four groups: i) the 75% of the artificial dataset used to 

build the model (Artif75%; blue); ii) the 25% artificial datasets used as external test (Artif25%; red); 

iii) the best 50 real researchers identified using BCS (Best50; green); iv) all other real professors 

(Other; purple). The critical value is indicated as a dashed red line. 

 

 
Figure 4: Modeling power of the 5 bibliometric indicators to the SIMCA model for MED/04 

 

 

5. Comparison between the multivariate model and the deterministic approach 
 

Table 2 shows the bibliometric performance of the 50 professors of BIO/14 that are 

top ranked by BCS. The last two columns show the relative scores by SIMCA, 

permitting comparison between the BCS score and the SIMCA distance. Forty-two of 
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the top-BCS professors also result as top scientists on the basis of SIMCA 

classification. Of the eight excluded professors, the first is ID 125, who places 26th in 

the ranking for BCS. For this individual, the SIMCA distance is particularly remarkable, 

placing the person completely outside the best 50 professors of the SDS. We observe in 

particular that the professor in question never appears as first or last author of articles 

published. The same lack of first/last authorship occurs for ID 179, however this 

professor has authored a full 18 top-1% articles. 

The most apparent outlier is professor ID 139, who shows the top-placing BCS, 

more than 50% greater than the second-ranked professor (ID 300). This second 

professor in fact registers a log squared SIMCA that is slightly less than for his higher-

ranking colleague (1.035 vs. 1.071). 

For the same BIO/14 professors, Figure 5 shows the scatter plot of regressions 

between the BCS and SIMCA rankings. The Spearman correlation ( = 0.95) is clearly 

very high, although the graph also shows some dispersion. 
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Table 2: Bibliometric performance of the top 50 BIO/14 professors by BCS, with relative SIMCA score 
Researcher ID FSS HCA1% HCA5% FirstA LastA BCS SIMCA score 

R_139 46.228 23 94 1 8 11.412 1.071 Best 20 

R_300 31.506 5 12 8 13 7.438 1.035 Best 10 

R_163 27.347 0 16 3 11 6.033 0.928 Best 10 

R_19 26.703 1 5 4 5 5.589 1.020 Best 10 

R_316 20.915 0 13 4 10 4.868 0.911 Best 10 

R_279 21.929 2 16 3 4 4.833 1.013 Best 10 

R_154 19.019 2 10 2 7 4.235 0.958 Best 10 

R_102 17.009 4 17 2 8 4.114 0.831 Best 10 

R_391 15.911 0 6 4 7 3.702 0.984 Best 10 

R_162 15.333 1 26 1 5 3.642 1.181 Best 20 

R_30 16.461 1 14 2 3 3.633 1.184 Best 20 

R_369 13.003 6 12 4 8 3.555 0.795 Best 10 

R_334 14.826 4 21 0 5 3.490 1.279 Best 20 

R_317 15.547 0 21 1 2 3.427 1.342 Best 20 

R_200 14.607 1 30 0 2 3.366 1.428 Best 30 

R_50 12.406 0 5 3 6 2.925 1.111 Best 20 

R_476 12.142 0 19 0 6 2.861 1.356 Best 20 

R_311 11.053 6 0 2 7 2.774 1.060 Best 10 

R_179 10.481 18 2 0 0 2.683 1.520 Best 50 

R_14 10.624 5 5 1 6 2.614 1.217 Best 20 

R_143 10.645 0 25 0 2 2.523 1.497 Best 50 

R_231 9.96 1 13 1 6 2.482 1.287 Best 20 

R_439 10.66 2 12 0 2 2.372 1.487 Best 40 

R_77 10.598 0 13 1 1 2.348 1.467 Best 40 

R_174 10.002 0 11 0 5 2.283 1.432 Best 30 

R_125 9.71 2 20 0 0 2.256 1.568  

R_489 8.35 4 15 0 5 2.211 1.415 Best 30 

R_83 8.679 2 15 0 4 2.152 1.457 Best 40 

R_466 8.534 0 25 0 2 2.140 1.535  

R_142 9.178 2 6 1 2 2.079 1.439 Best 30 

R_16 8.699 4 2 1 3 2.041 1.395 Best 30 

R_198 9.2 0 9 1 1 2.024 1.497 Best 50 

R_441 8.647 7 1 0 2 2.001 1.496 Best 50 

R_312 8.068 1 3 2 4 1.969 1.346 Best 20 

R_325 7.785 0 11 0 6 1.932 1.459 Best 40 

R_460 7.996 3 11 0 2 1.907 1.528  

R_378 7.241 0 15 2 2 1.903 1.440 Best 30 

R_168 7.488 0 15 0 4 1.859 1.506 Best 50 

R_209 7.256 0 12 1 4 1.854 1.435 Best 30 

R_199 8.747 0 0 1 2 1.824 1.481 Best 40 

R_450 6.847 0 16 0 4 1.761 1.520 Best 50 

R_236 7.463 4 10 0 0 1.746 1.600  

R_112 8.139 1 3 0 2 1.714 1.552  

R_194 6.868 3 6 0 4 1.701 1.499 Best 50 

R_99 6.161 0 12 2 3 1.699 1.438 Best 30 

R_420 6.684 3 11 0 2 1.674 1.555  

R_225 6.628 2 18 0 0 1.665 1.623  

R_478 6.45 6 1 0 4 1.653 1.491 Best 40 

R_1 7.105 2 7 0 1 1.597 1.590  

R_203 6.427 2 6 1 2 1.586 1.504 Best 50 
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Figure 5: Scatter plot of BCS vs SIMCA rankings for BIO/14 professors 

 

Table 3 shows the bibliometric performance of the top 50 professors of MED/04, by 

BCS. The last two columns permit comparison of the BCS scores and SIMCA 

distances. Forty-three of the top BCS professors also result as top scientists on the basis 

of SIMCA classification. Of the seven professors excluded, ID 174 places 26th in the 

BCS ranking. For this individual, the SIMCA distance is particularly relevant, placing 

the professor completely outside the best 50 of the SDS. We note in particular that the 

researcher in question did not author any top 1% articles over the study period. 

However while they did not publish any top 1% articles, professors ID 118, 409 and 55 

still remain in the top 50 by SIMCA score, having scored higher than ID 174 for the 

other indicators. In this case too, the top-ranked professor for BCS, ID 128 is an evident 

outlier. For him/her the BCS score is more than double that of the second-ranked 

professor. 

Figure 6 shows the plot of regressions between the BCS and SIMCA rankings for 

the MED/04 professors. Here again there is a very high and statistically significant 

Spearman correlation ( = 0.94), although the graph also shows a meaningful 

dispersion. 
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Table 3: Bibliometric performance of top 50 MED/04 professors by BCS, with relative SIMCA score 
Researcher ID FSS HCA1% HCA5% FirstA LastA BCS SIMCA score 

R_128 98.794 10 39 9 35 18.461 1.025 Best 10 

R_213 34.858 3 18 5 24 6.935 0.757 Best 10 

R_180 33.658 7 17 1 14 6.674 0.898 Best 10 

R_71 32.948 6 14 5 12 6.504 0.773 Best 10 

R_380 27.304 6 12 2 37 5.904 0.837 Best 10 

R_165 27.644 4 15 2 12 5.452 0.926 Best 10 

R_92 26.825 2 13 3 7 5.059 1.157 Best 20 

R_189 23.199 3 5 1 48 4.983 1.131 Best 10 

R_132 26.482 4 6 0 7 4.808 1.130 Best 10 

R_123 20.067 4 10 0 10 3.988 1.122 Best 10 

R_153 18.24 2 5 1 37 3.928 1.232 Best 20 

R_130 21.361 3 7 0 4 3.915 1.231 Best 20 

R_126 20.246 1 7 0 12 3.745 1.364 Best 20 

R_188 14.808 3 5 14 13 3.511 1.066 Best 10 

R_120 18.741 1 7 1 8 3.474 1.376 Best 20 

R_178 19.383 1 6 0 6 3.468 1.402 Best 30 

R_118 15.392 0 4 1 39 3.344 1.459 Best 40 

R_11 10.919 2 5 25 8 3.142 1.291 Best 20 

R_409 13.469 0 3 6 24 2.924 1.432 Best 30 

R_194 12.122 5 10 0 12 2.865 1.201 Best 20 

R_360 14.058 1 7 0 12 2.775 1.410 Best 30 

R_22 14.017 1 3 1 13 2.690 1.416 Best 30 

R_161 12.566 1 8 1 11 2.592 1.408 Best 30 

R_369 11.398 1 1 5 21 2.506 1.383 Best 30 

R_55 11.188 0 3 2 19 2.327 1.499 Best 50 

R_174 11.71 0 1 1 17 2.270 1.520  

R_359 10.522 0 4 0 23 2.254 1.514 Best 50 

R_238 10.842 0 4 1 16 2.215 1.514 Best 50 

R_195 8.901 3 7 8 1 2.211 1.276 Best 20 

R_141 9.266 2 3 1 14 2.043 1.381 Best 20 

R_316 9.002 1 5 2 7 1.907 1.459 Best 40 

R_125 10.136 0 2 2 4 1.853 1.555  

R_387 7.603 3 5 5 2 1.851 1.333 Best 20 

R_147 8.326 2 3 0 11 1.797 1.416 Best 30 

R_340 9.544 1 4 0 2 1.793 1.503 Best 50 

R_315 8.719 0 5 0 10 1.771 1.553  

R_334 7.946 1 4 2 10 1.764 1.463 Best 40 

R_58 8.109 0 3 3 10 1.722 1.537  

R_191 8.591 0 3 1 9 1.703 1.555  

R_179 8.148 1 4 3 2 1.686 1.483 Best 40 

R_15 6.048 0 0 15 3 1.616 1.534  

R_18 5.646 1 1 11 9 1.615 1.439 Best 30 

R_311 7.058 1 4 5 3 1.608 1.471 Best 40 

R_373 7.302 1 4 0 9 1.571 1.496 Best 50 

R_91 6.911 1 5 0 8 1.521 1.498 Best 50 

R_185 6.158 2 6 0 7 1.491 1.437 Best 30 

R_346 6.424 1 4 1 7 1.429 1.500 Best 50 

R_262 6.633 0 4 0 9 1.393 1.576  

R_394 6.099 1 3 5 1 1.387 1.494 Best 50 

R_309 5.522 2 7 0 2 1.333 1.461 Best 40 
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Figure 6: Scatter plot of BCS vs SIMCA rankings for MED/04 professors 

 

 

6. Discussion 

 

Bibliometric measures of research performance are based on assumptions, which 

determine important limits that must be kept in account when measurements are used to 

support policy and research administration decisions. Besides failing to capture 

production of new knowledge that is not codified in publication or where the 

publication is not indexed, bibliometric indicators are affected by many other random 

factors. Some of these are related to the actual processes of publishing research, others 

to the initial assumptions involved in measuring and comparing the performance of 

individuals and research units. 

To hedge against the randomness of these undetected effects, as well as to evaluate 

different dimensions of research performance, bibliometricians often resort to a 

combination of indicators in the evaluation of research, rather than just one. However 

the combination of individual indicators again introduces other elements of randomness 

to the performance evaluation. 

This leads to the suggestion of a stochastic approach to research evaluation, 

whatever the bibliometric indicator or set of indicators that may be used. For this, the 

current paper has proposed a multivariate class-modeling approach, which has been 

developed in different fields and applied to various research problems, particularly in 

biomedicine and chemometrics. In these fields the variables under study, and their 

relative values, are typically correlated between each other and strongly affected by 

chance, hence the statistical approach results as more effective than deterministic ones 

(Costa et al. 2012). It was precisely the analogy to these contexts that suggested the 

possible application of stochastic techniques to bibliometric evaluation. In this 

particular paper we have used the SIMCA multivariate indicator for the estimation of 

the individual research performance of over 900 Italian university scientists working in 

two life sciences fields, over the 2006-2010 period. The approach is based on five 

indicators that measure different aspects of research performance. The SIMCA score 
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then measure the “distance” of each evaluated individual from a “class” characterized 

by absolute excellence in the five indicators. This class is constructed in an artificial 

manner, considering the possible combinations from the upper tail of the distributions of 

the five indicators. 

The SIMCA rank results as being highly correlated with a “deterministic” composite 

indicator composed of the weighted values of the same five starting indicators, thus 

indicating a convergence in the results from the two approaches. Notwithstanding the 

high correlation between ranks, few individuals register significant jumps about 15% of 

the top-50 scientists by the SIMCA method are not as such by the deterministic 

approach. Since there is no unequivocal reference benchmark, we cannot know which of 

the two approaches in fact provides a more truthful representation of the real value of 

the scientists. However we can reason that, given the stochastic nature of the variables 

in play, the SIMCA multivariate class-modeling approach would be a valid substitute to 

the deterministic approach precisely in those real contexts where bibliometric indicators 

will be affected by higher randomness, such as in cases where the publication window 

or citation window are restricted. 

Although randomness should be particularly significant for evaluation exercises 

conducted at the level of individual scientists, but decrease with the increasing 

aggregation of larger units of analysis, the authors believe that a worthwhile future 

aspect of this research would be apply the stochastic method to the evaluation of 

research teams, departments and entire institutions. Furthermore, in addition to 

bibliometric indicators, where available other indicators of scientific merit such as 

patents, licenses, spin-off companies, attraction of research funds and the likes could be 

considered in the SIMCA model. 

 

 

References 

 

Abramo, G., D’Angelo, C.A., & Di Costa, F. (2008). Assessment of sectoral 

aggregation distortion in research productivity measurements. Research 

Evaluation, 17(2), 111-121. 

Abramo, G., Cicero, T., & D’Angelo, C.A. (2012a). Revisiting the scaling of citations 

for research assessment. Journal of Informetrics, 6(4), 470–479. 

Abramo, G., Cicero, T., & D’Angelo, C.A. (2012b). Revisiting size effects in higher 

education research productivity. Higher Education, 63(6), 701-717. 

Abramo, G., D’Angelo, & C.A., Rosati, F. (2013a). The importance of accounting for 

the number of co-authors and their order when assessing research performance at 

the individual level in the life sciences. Journal of Informetrics, 7(1), 198–208. 

Abramo, G., D’Angelo, C.A., & Di Costa, F. (2013b). Investigating returns to scope of 

research fields in universities. Higher Education. DOI: 10.1007/s10734-013-

9685-x 

Abramo, G., & D’Angelo, C.A., (2014). How do you define and measure research 

productivity? Scientometrics. DOI: 10.1007/s11192-014-1269-8 

Aguzzi, J., Costa, C., Antonucci, F., Company, J. B., Menesatti, P., & Sardá, F. (2009). 

Influence of diel behaviour in the morphology of decapod natantia. Biological 

Journal of the Linnean Society, 96, 517-532. 

Amat, C.B. (2008). Editorial and publication delay of papers submitted to 14 selected 

Food Research journals. Influence of online posting. Scientometrics, 74(3), 379-

http://www.informatik.uni-trier.de/~ley/db/journals/scientometrics/scientometrics74.html#Amat08


19 

389. 

Archambault, É., Campbell, D., Gingras, Y., & Larivière, V. (2009). Comparing 

bibliometric statistics obtained from the Web of Science and Scopus. Journal of 

the American Society for Information Science and Technology, 60(7), 1320-1326 

Billaut, J.C, Bouyssou, D., & Vincke, P. (2010). Should you believe in the Shanghai 

ranking? An MCDM view. Scientometrics, 84, 237–263. 

Burrell, Q.L. (2007). Hirsch’s h-index: A stochastic model. Journal of Informetrics, 1, 

16–25. 

Butler, L. (2007). Assessing university research: A plea for a balanced approach. 

Science and Public Policy, 34(8), 565-574. 

Casale, M., Armanino, C., Casolino, C., & Forina, M. (2007). Combining information 

from headspace mass spectrometry and visible spectroscopy in the classification 

of the Ligurian olive oils. Analytica chimica acta, 589(1), 89–95. 

Cerchiello, P., & Giudici, P. (2014). On a statistical h index. Scientometrics, 99, 299-

312. 

Costa, C., Menesatti, P., & Spinelli, R. (2012). Performance modelling in forest 

operations through partial least square regression. Silva Fennica, 46(2), 241-252. 

D’Angelo, C.A., Giuffrida C., & Abramo, G. (2011). A heuristic approach to author 

name disambiguation in bibliometrics databases for large-scale research 

assessments. Journal of the American Society for Information Science and 

Technology, 62(2), 257-269. 

Forina, M., Oliveri, P., Casale, M., & Lanteri, S. (2008b). Multivariate range modeling, 

a new technique for multivariate class modeling: The uncertainty of the estimates 

of sensitivity and specificity. Analytica chimica acta, 622(1), 85-93. 

Forina, M., Oliveri, P., Lanteri, S., & Casale, M. (2008a). Class-modeling techniques, 

classic and new, for old and new problems. Chemometrics and Intelligent 

Laboratory Systems, 93(2), 132–48. 

Garfield, E. (1979). Is citation analysis a legitimate evaluation tool? 

Scientometrics,1(4), 359-375. 

Glänzel, W. (2008). Seven myths in bibliometrics. About facts and fiction in 

quantitative science studies. Kretschmer, & F. Havemann (Eds): Proceedings of 

WIS Fourth International Conference on Webometrics, Informetrics and 

Scientometrics, & Ninth COLLNET Meeting, Berlin, Germany. 

Hall, G.J., & Kenny, J.E. (2007). Estuarine water classification using EEM 

spectroscopy and PARAFAC-SIMCA. Analytica chimica acta, 581(1), 118–24. 

Kennard, R.W., & Stone, L.A. (1969). Computer aided design of experiments. 

Technometrics, 11(1), 137–48. 

Krafft, C., Shapoval, L., Sobottka, S.B., Geiger K.D., Schackert G., & Salzer R. (2006). 

Identification of primary tumors of brain metastases by SIMCA classification of 

IR spectroscopic images. Biochimica et Biophysica Acta (BBA)-Biomembranes, 

1758(7), 883-891. 

Laudel, G., & Origgi, G. (2006). Introduction to a special issue on the assessment of 

interdisciplinary research. Research Evaluation, 15(1), 2–4. 

Leydesdorff, L., & Bornmann, L. (2011). How fractional counting of citations affects 

the impact factor: Normalization in terms of differences in citation potentials 

among fields of science. Journal of the American Society for Information 

Science and Technology, 62(2), 217-229. 

Luwel, M., & Moed, H.F. (1998). Publication delays in the science field and their 



20 

relationship to the ageing of scientific literature. Scientometrics, 41(1-2), 29-40. 

Menesatti, P., Antonucci, F., Pallottino, F., Bucarelli, F.M., & Costa, C. (2014). 

Spectrophotometric qualification of Italian pasta produced by traditional or 

industrial production parameters. Food and Bioprocess Technology, 7(5), 1364-

1370 

Moed, H.F. (2005). Citation Analysis in Research Evaluation. Springer, ISBN: 978-1-

4020-3713-9. 

Pepe, A., & Kurtz, M.J. (2012). A Measure of total research impact independent of time 

and discipline. PLoS ONE, 7(11), e46428. 

Pratelli, L., Baccini, A., Barabesi, L., & Marcheselli, M., (2012). Statistical analysis of 

the Hirsch index. Scandinavian Journal of Statistics, 39, 681–694. 

Radicchi, F., & Castellano, C. (2013). Analysis of bibliometric indicators for individual 

scholars in a large data set. Scientometrics, 97 (3), 627-637. 

Radicchi, F., Fortunato, S., & Castellano, C. (2008). Universality of citation 

distributions: Toward an objective measure of scientific impact. Proceedings of 

the National Academy of Sciences of the United States of America, 105(45), 

17268-17272. 

Taiti, C., Costa, C., Menesatti, P., Comparini, D., Bazihizina, N., Azzarello, E., Masi, 

E., & Mancuso, S. (2014). Class-modeling approach to PTR-TOFMS data: a 

peppers case study. Journal of the Science of Food and Agriculture (accepted on 

22/05/2014) 

Todeschini, R. (2011). The j-index: A new bibliometric index and multivariate 

comparisons between other common indices. Scientometrics, 87, 621–639. 

Vanden Branden, K., & Hubert, M. (2005). Robust classification in high dimensions 

based on the SIMCA method. Chemometrics and Intelligent Laboratory Systems, 

79(1-2), 10-21. 

van Raan, A.F.J., (2005), Fatal attraction: Conceptual and methodological problems in 

the ranking of universities by bibliometric methods. Scientometrics, 62(1),133–

143. 

van Raan, A.F.J. (2006). Statistical properties of bibliometric indicators: Research 

group indicator distributions and correlations. Journal of the American Society 

for Information Science and Technology, 57 (3), 408-430.Trivedi, P.K. (1993). 

An analysis of publication lags in econometrics. Journal of Applied 

Econometrics, 8(1), 93-100. 

van Raan, A.F.J. (2008). Bibliometric statistical properties of the 100 largest European 

research universities: Prevalent Scaling rules in the science system. Journal of 

the American Society for Information Science and Technology, 59 (3), 461-475. 

Wold, S., & Sjostrom, M., (1977). SIMCA: A method for analyzing chemical data in 

terms of similarity and analogy. In Chemometrics: Theory and Application, 

Kowalski, B.R., ed., American Chemical Society Symposium Series 52, Wash., 

D.C., p. 243-282. 

Zhang, Z., Cheng, Y., & Liu, N.C., (2014). Comparison of the effect of mean-based 

method and z-score for field normalization of citations at the level of Web of 

Science subject categories. Scientometrics, DOI 10.1007/s11192-014-1294-7 

http://ideas.repec.org/a/jae/japmet/v8y1993i1p93-100.html
http://ideas.repec.org/s/jae/japmet.html
http://ideas.repec.org/s/jae/japmet.html

