Skip to main content
Log in

Nano language and distribution of article title terms according to power laws

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

Scientometric evaluation of nanoscience/nanotechnology requires complex search strategies and lengthy queries which retrieve massive amount of information. In order to offer some insight based on the most frequently occurring terms our research focused on a limited amount of data, collected on uniform principles. The prefix nano comes about in many different compound words thus offering a possibility for such assessment. The aim is to identify the scatter of nanoconcepts, among and within journals, as well as more generally, in the Web of Science (WOS). Ten principal journals were identified along with all unique nanoterms in article titles. Such terms occur on average in half of all titles. Terms were thoroughly investigated and mapped by lemmatization or stemming to the appropriate roots—nanoconcepts. The scatter of concepts follows the characteristics of power laws, especially Zipf’s law, exhibiting clear inversely proportional relationship between rank and frequency. The same three nanoconcepts are most frequently occurring in as many as seven journals. Two concepts occupy the first and the second rank in six journals. The same six concepts are the most frequently occurring in ten journals as well as full WOS database, representing almost two thirds of all nanotitled articles, in both instances. Subject categories don’t play a decisive role. Frequency falls progressively, quickly producing a long tail of rare concepts. Drop is almost linear on the log scale. The existence of hundreds of different closed-form compound nanoterms has consequences for the retrieval on the Internet search engines (e.g. Google Scholar) which do not permit truncation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adamic, L. A. (2000). Zipf, power-laws, and pareto: A ranking tutorial. Xerox Palo Alto Research Center, Palo Alto. http://www.hpl.hp.com/research/idl/papers/ranking/ranking.html. Accessed 20 April 2014.

  • Baird, D., Nordmann, A., & Schummer, J. (2004). Introduction. Discovering the nanoscale (pp. 1–8). Amsterdam: IOS Press.

    Google Scholar 

  • Bar-Ilan, J. (2008). Informetrics at the beginning of the 21st century: A review. Journal of Informetrics, 2(1), 1–52.

    Article  Google Scholar 

  • Bartol, T., Budimir, G., Dekleva-Smrekar, D., Pusnik, M., & Juznic, P. (2014). Assessment of research fields in Scopus and Web of Science in the view of national research evaluation in Slovenia. Scientometrics, 98(2), 1491–1504.

    Article  Google Scholar 

  • Bassecoulard, E., Lelu, A., & Zitt, M. (2007). Mapping nanosciences by citation flows: A preliminary analysis. Scientometrics, 70(3), 859–880.

    Article  Google Scholar 

  • Benz, R. W., Swamidass, S. J., & Baldi, P. (2008). Discovery of power-laws in chemical space. Journal of Chemical Information and Modeling, 48(6), 1138–1151.

    Article  Google Scholar 

  • Braun, T., Schubert, A., & Zsindely, S. (1997). Nanoscience and nanotecnology on the balance. Scientometrics, 38(2), 321–325.

    Article  Google Scholar 

  • Calero, C., Buter, R., Cabello Valdés, C., & Noyons, E. (2006). How to identify research groups using publication analysis: An example in the field of nanotechnology. Scientometrics, 66(2), 365–376.

    Article  Google Scholar 

  • Glänzel, W., Meyer, M., Du Plessis, M., Thijs, B., Magerman, T., Schlemmer, B., et al. (2003). Nanotechnology: Analysis of an emerging domain of scientific and technological endeavour (Report). Leuven: K.U. Leuven, Steunpunt O&O Statistieken.

    Google Scholar 

  • Grieneisen, M. L., & Zhang, M. (2011). Nanoscience and nanotechnology: Evolving definitions and growing footprint on the scientific landscape. Small (Weinheim an der Bergstrasse, Germany), 7(20), 2836–2839.

    Article  Google Scholar 

  • Guan, J., & Ma, N. (2007). China’s emerging presence in nanoscience and nanotechnology: A comparative bibliometric study of several nanoscience “giants”. Research Policy, 36(6), 880–886.

    Article  Google Scholar 

  • Heinze, T. (2004). Nanoscience and nanotechnology in Europe: Analysis of publications and patent applications including comparisons with the United States. Nanotechnology Law & Business, 1(4), 427–447.

    Google Scholar 

  • Heinze, T., Shapira, P., Senker, J., & Kuhlmann, S. (2007). Identifying creative research accomplishments: Methodology and results for nanotechnology and human genetics. Scientometrics, 70(1), 125–152.

    Article  Google Scholar 

  • Holliday, J. D., Kanoulas, E., Malim, N., & Willett, P. (2011). Multiple search methods for similarity-based virtual screening: Analysis of search overlap and precision. Journal of Cheminformatics, 3(1), 1–15.

    Article  Google Scholar 

  • Huang, C., Notten, A., & Rasters, N. (2011). Nanoscience and technology publications and patents: A review of social science studies and search strategies. Journal of Technology Transfer, 36(2), 145–172.

    Article  Google Scholar 

  • Karakoc, E., Sahinalp, S. C., & Cherkasov, A. (2006). Comparative QSAR- and fragments distribution analysis of drugs, druglikes, metabolic substances, and antimicrobial compounds. Journal of Chemical Information and Modeling, 46(5), 2167–2182.

    Article  Google Scholar 

  • Kostoff, R. N., Lau, C. G. Y., Tolles, W. M., & Murday, J. S. (2006). The seminal literature of nanotechnology research. Journal of Nanoparticle Research, 8(2), 193–213.

    Article  Google Scholar 

  • Leydesdorff, L., & Zhou, P. (2007). Nanotechnology as a field of science: Its delineation in terms of journals and patents. Scientometrics, 70(3), 693–713.

    Article  Google Scholar 

  • Lipkus, A. H., Yuan, Q., Lucas, K. A., Funk, S. A., Bartelt, W. F., Schenck, R. J., & Trippe, A. J. (2008). Structural diversity of organic chemistry. A scaffold analysis of the CAS Registry. The Journal of Organic Chemistry, 73(12), 4443–4451.

    Article  Google Scholar 

  • Magerman, T., Looy, B. V., & Song, X. (2010). Exploring the feasibility and accuracy of Latent Semantic Analysis based text mining techniques to detect similarity between patent documents and scientific publications. Scientometrics, 82(2), 289–306.

    Article  Google Scholar 

  • Maghrebi, M., Abbasi, A., Amiri, S., Monsefi, R., & Harati, A. (2011). A collective and abridged lexical query for delineation of nanotechnology publications. Scientometrics, 86(1), 15–25.

    Article  Google Scholar 

  • Marinova, D., & McAleer, M. (2003). Nanotechnology strength indicators: International rankings based on US patents. Nanotechnology, 14(1), R1. doi:10.1088/0957-4484/14/1/201.

    Article  Google Scholar 

  • Melz, R., Biemann, C., Böhm, K., Heyer, G., & Schmidt, F. (2005). Real-time analysis of speech streams and their representation as conceptual structures. In Proceedings of HCI-05. Las Vegas, Nevada, USA: HCI International.

  • Meyer, M., & Persson, O. (1998). Nanotechnology-interdisciplinarity, patterns of collaboration and differences in application. Scientometrics, 42(2).

  • Milojević, S. (2010). Power law distributions in information science: Making the case for logarithmic binning. Journal of the American Society for Information Science and Technology, 61(12), 2417–2425.

    Article  Google Scholar 

  • Milojević, S. (2012). Multidisciplinary cognitive content of nanoscience and nanotechnology. Journal of Nanoparticle Research, 14(1), 1–28.

    Google Scholar 

  • Mogoutov, A., Cambrosio, A., Keating, P., & Mustar, P. (2008). Biomedical innovation at the laboratory, clinical and commercial interface: A new method for mapping research projects, publications and patents in the field of microarrays. Journal of Informetrics, 2(4), 341–353.

    Article  Google Scholar 

  • Mogoutov, A., & Kahane, B. (2007). Data search strategy for science and technology emergence: A scalable and evolutionary query for nanotechnology tracking. Research Policy, 36(6), 893–903.

    Article  Google Scholar 

  • Newman, M. E. J. (2005). Power laws, Pareto distributions and Zipf’s law. Contemporary Physics, 46(5), 323–351.

    Article  Google Scholar 

  • Noyons, E. C. M., Buter, R. K., van Raan, A. F., Schmoch, U., Heinze, S., Hinze, S., & Rangnow, R. (2003). Mapping excellence in science and technology across Europe: Nanoscience and Nanotechnology (Final report No. EC-PPN CT-2002-0001). Leiden: Leiden University.

  • Piantadosi, S. T. (2014). Zipf’s word frequency law in natural language: A critical review and future directions. Psychonomic Bulletin & Review, 1–19. doi:10.3758/s13423-014-0585-6.

  • Porter, A. L., Youtie, J., Shapira, P., & Schoeneck, D. J. (2008). Refining search terms for nanotechnology. Journal of Nanoparticle Research, 10(5), 715–728.

    Article  Google Scholar 

  • Shiri, A. (2011). Revealing interdisciplinarity in nanoscience and technology queries: A transaction log analysis approach. Knowledge Organization, 38(2), 135–153.

    MathSciNet  Google Scholar 

  • Small, H. (2011). Interpreting maps of science using citation context sentiments: A preliminary investigation. Scientometrics, 87(2), 373–388.

    Article  Google Scholar 

  • Strotmann, A., & Zhao, D. (2010). Combining commercial citation indexes and open-access bibliographic databases to delimit highly interdisciplinary research fields for citation analysis. Journal of Informetrics, 4(2), 194–200.

    Article  Google Scholar 

  • Thelwall, M., & Price, L. (2006). Language evolution and the spread of ideas on the Web: A procedure for identifying emergent hybrid word family members. Journal of the American Society for Information Science and Technology, 57(10), 1326–1337.

    Article  Google Scholar 

  • Tsuda, K., Rinaldo, F. J., Kryssanov, V. V., & Thawonmas, R. (2006). The structure of patent authorship networks in Japanese manufacturing companies. In ICE-B (pp. 289–293). International Conference on E-Business, Setubal, Portugal. http://www.ice.ci.ritsumei.ac.jp/~ruck/PAP/ice-b06.pdf. Accessed 20 April 2014.

  • Turenne, N. (2010). Modelling noun-phrase dynamics in specialized text collections. Journal of Quantitative Linguistics, 17(3), 212–228.

    Article  Google Scholar 

  • Veltri, G. A. (2012). Viva la Nano-Revolución! A semantic analysis of the Spanish national press. Science Communication, 35(2), 143–167.

    Article  Google Scholar 

  • Wang, L., Notten, A., & Surpatean, A. (2013). Interdisciplinarity of nano research fields: A keyword mining approach. Scientometrics, 94(3), 877–892.

    Article  Google Scholar 

  • Warris, C. (2004). Nanotechnology benchmarking project (p. 45). Australian Academy of Science. http://www.sciencearchive.org.au/policy/nano-report.pdf. Accessed 20 April 2014.

  • Yan, S., Spangler, W. S., & Chen, Y. (2013). Chemical mame extraction based on automatic training data generation and rich feature set. IEEE-ACM Transactions on Computational Biology and Bioinformatics, 10(5), 1218–1233.

    Article  Google Scholar 

  • Zhang, W., Yoshida, T., & Tang, X. (2009). Distribution of multi-words in Chinese and English documents. International Journal of Information Technology & Decision Making, 8(2), 249–265.

    Article  MATH  Google Scholar 

  • Zibareva, I. V., Vedyagin, A. A., & Bukhtiyarov, V. I. (2014). Nanocatalysis: A bibliometric analysis. Kinetics and Catalysis, 55(1), 1–11.

    Article  Google Scholar 

  • Zipf, G. K. (1949). Human behaviour and the principle of least effort. Cambridge, MA: Addison-Wesley.

    Google Scholar 

  • Zitt, M., & Bassecoulard, E. (2006). Delineating complex scientific fields by an hybrid lexical-citation method: An application to nanosciences. Information Processing and Management, 42(6), 1513–1531.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Slovenian Research Agency, Research Programme P4-0085 (D).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomaz Bartol.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bartol, T., Stopar, K. Nano language and distribution of article title terms according to power laws. Scientometrics 103, 435–451 (2015). https://doi.org/10.1007/s11192-015-1546-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-015-1546-1

Keywords

Navigation