Skip to main content
Log in

Dynamic subfield analysis of disciplines: an examination of the trading impact and knowledge diffusion patterns of computer science

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

The objective of this research is to examine the dynamic impact and diffusion patterns at the subfield level. Using a 15-year citation data set, this research reveals the characteristics of the subfields of computer science from the aspects of citation characteristics, citation link characteristics, network characteristics, and their dynamics. Through a set of indicators including incoming citations, number of citing areas, cited/citing ratios, self-citations ratios, PageRank, and betweenness centrality, the study finds that subfields such as Computer Science Applications, Software, Artificial Intelligence, and Information Systems possessed higher scientific trading impact. Moreover, it also finds that Human–Computer Interaction, Computational Theory and Mathematics, and Computer Science Applications are among the subfields of computer science that gained the fastest growth in impact. Additionally, Engineering, Mathematics, and Decision Sciences form important knowledge channels with subfields in computer science.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Twenty-seven major subject areas and their associated ASJCs: General (1000), Agricultural and Biological Sciences (1100), Arts and Humanities (1200), Biochemistry, Genetics and Molecular Biology (1300), Business, Management and Accounting (1400), Chemical Engineering (1500), Chemistry (1600), Computer Science (1700), Decision Sciences (1800), Earth and Planetary Sciences (1900), Economics, Econometrics and Finance (2000), Energy (2100), Engineering (2200), Environmental Science (2300), Immunology and Microbiology (2400), Materials Science (2500), Mathematics (2600), Medicine (2700), Neuroscience (2800), Nursing (2900), Pharmacology, Toxicology and Pharmaceutics (3000), Physics and Astronomy (3100), Psychology (3200), Social Sciences (3300), Veterinary (3400), Dentistry (3500), and Health Professions (3600).

References

  • Abbot, A. (2001). Chaos of disciplines. Chicago: University of Chicago Press.

    Google Scholar 

  • Almeida, P., & Kogut, B. (1999). Localization of knowledge and the mobility of engineers in regional networks. Management Science, 45(7), 905–917.

    Article  Google Scholar 

  • Bergstrom, C. T., West, J. D., & Wiseman, M. A. (2008). The Eigenfactor™ Metrics. Journal of Neuroscience, 28(45), 11433–11434.

    Article  Google Scholar 

  • Bollen, J., Rodriguez, M. A., & Van de Sompel, H. (2006). Journal status. Scientometrics, 69(3), 669–687.

    Article  Google Scholar 

  • Borgman, C. L., & Rice, R. E. (1992). The convergence of information science and communication: A bibliometric analysis. Journal of the American Society for Information Science, 43(6), 397–411.

    Article  Google Scholar 

  • Börner, K., Contractor, N., Falk-Krzesinski, H. J., Fiore, S. M., Hall, K. L., Keyton, J., Spring, B., Stokols, D., Trochim, W., & Uzzi, B. (2010). A multi-level systems perspective for the science of team science. Science Translational Medicine, 2(49), cm24. Doi: 10.1126/scitranslmed.3001399.

  • Boyack, K. W., Klavans, A. R., & Börner, K. (2005). Mapping the backbone of science. Scientometrics, 64(3), 351–374.

    Article  Google Scholar 

  • Breschi, S., & Lissoni, F. (2009). Mobility of skilled workers and co-invention networks: An anatomy of localized knowledge flow. Journal of Economic Geography, 9(4), 439–468.

    Article  Google Scholar 

  • Brin, S., & Page, L. (1998). The anatomy of a large-scale hypertextual Web search engine. Computer Networks and ISDN Systems, 30(1–7), 107–117.

    Article  Google Scholar 

  • Cronin, B., & Meho, L. I. (2008). The shifting balance of intellectual trade in information studies. Journal of the American Society for Information Science and Technology, 59(4), 551–564.

    Article  Google Scholar 

  • Cronin, B., & Pearson, S. (1990). The export of ideas from information science. Journal of Information Science, 16(6), 381–391.

    Article  Google Scholar 

  • Ding, Y., Chowdhury, G., & Foo, S. (2000). Journal as markers of intellectual space: Journal co-citation analysis of information retrieval area, 1987–1997. Scientometrics, 47(1), 55–73.

    Article  Google Scholar 

  • Freeman, L. C. (1977). A set of measures of centrality based on betweenness. Sociometry, 40(1), 35–41.

    Article  Google Scholar 

  • Goldstone, R. L., & Leydesdorff, L. (2006). The import and export of cognitive science. Cognitive Science, 30(6), 983–993.

    Article  Google Scholar 

  • Guimera, R., Uzzi, B., Spiro, J., & Amaral, L. A. N. (2005). Team assembly mechanisms determine collaboration network structure and team performance. Science, 308(5722), 697–702.

    Article  Google Scholar 

  • Hyland, K. (2004). Disciplinary discourses: Social interactions in academic writing. Ann Arbor: University of Michigan Press.

    Google Scholar 

  • Klein, J. T. (1990). Interdisciplinarity: History, theory, and practice. Detroit: Wayne State University Press.

    Google Scholar 

  • Knorr-Cetina, K. (1999). Epistemic Cultures: How the Sciences Make Knowledge. Cambridge: Harvard University Press.

    Google Scholar 

  • Larivière, V., Sugimoto, C. R., & Cronin, B. (2012). A bibliometric chronicling of Library and Information Science’s first hundred years. Journal of the American Society for Information Science and Technology, 63(5), 997–1016.

    Article  Google Scholar 

  • Levitt, J. M., Thelwall, M., & Oppenheim, C. (2011). Variations between subjects in the extent to which the social sciences have become more interdisciplinary. Journal of the American Society for Information Science and Technology, 62(6), 1118–1129.

    Article  Google Scholar 

  • Leydesdorff, L. (2009). How are new citation-based journal indicators adding to the bibliometric toolbox? Journal of the American Society for Information Science and Technology, 60(7), 1327–1336.

    Article  Google Scholar 

  • Leydesdorff, L., & Probst, C. (2009). The delineation of an interdisciplinary specialty in terms of a journal set: The case of communication studies. Journal of the American Society for Information Science and Technology, 60(8), 1709–1718.

    Article  Google Scholar 

  • Meho, L. I., & Yang, K. (2007). Impact of data sources on citation counts and rankings of LIS faculty: Web of Science versus Scopus and Google Scholar. Journal of the American Society for Information Science and Technology, 58(13), 2105–2125.

    Article  Google Scholar 

  • Newman, M. E. J. (2004). Coauthorship networks and patterns of scientific collaboration. Proceedings of the National Academy of Sciences of the United States of America, 101(suppl. 1), 5200–5205.

    Article  Google Scholar 

  • Ni, C., Sugimoto, C. R., & Jiang, J. (2013). Venue-author-coupling: A measure for identifying disciplines through author communities. Journal of the American Society for Information Science and Technology, 64(2), 265–279.

    Article  Google Scholar 

  • Oh, W., Choi, J. N., & Kim, K. (2005). Coauthorship dynamics and knowledge capital: The patterns of cross-disciplinary collaboration in information systems research. Journal of Management Information Systems, 22(3), 265–292.

    Google Scholar 

  • Opsahl, T., Agneessens, F., & Skvoretz, J. (2010). Node centrality in weighted networks: Generalizing degree and shortest paths. Social Networks, 32(3), 245–251.

    Article  Google Scholar 

  • Radicchi, F., Fortunato, S., Markines, B., & Vespignani, A. (2009). Diffusion of scientific credits and the ranking of scientists. Physical Review E, 80(5), 056103.

    Article  Google Scholar 

  • Rosvall, M., & Bergstrom, C. T. (2008). Maps of information flow reveal community structure in complex networks. Proceedings of the National Academy of Science of the United State of America, 105(4), 1118–1123.

    Article  Google Scholar 

  • Waltman, L., & Van Eck, N. J. (2012). A new methodology for constructing a publication-level classification system of science. Journal of the American Society for Information Science and Technology, 63(12), 2378–2392.

    Article  Google Scholar 

  • Waltman, L., Van Eck, N. J., Van Leeuwen, T. N., Visser, M. S., & Van Raan, A. F. J. (2010). Towards a new crown indicator: Some theoretical considerations. Journal of Informetrics, 5(1), 37–47.

    Article  Google Scholar 

  • Waltman, L., & Yan, E. (2014). PageRank-Related Methods for Analyzing Citation Networks. In Y. Ding, R. Rousseau, & D. Wolfram (Eds.), Measuring scholarly impact (pp. 83–100). Switzerland: Springer International Publishing.

    Chapter  Google Scholar 

  • Waltman, L., Yan, E., & Van Eck, N. J. (2011). A recursive field-normalized bibliometric performance indicator: An application to the field of library and information science. Scientometrics, 89(1), 301–314.

    Article  Google Scholar 

  • Wasserman, S., & Faust, K. (1994). Social network analysis: Methods and applications. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • White, H. D., & McCain, K. W. (1998). Visualizing a discipline: An author co-citation analysis of information science, 1972–1995. Journal of the American Society for Information Science, 49(4), 327–355.

    Google Scholar 

  • Yan, E. (2014a). Topic-based PageRank: Toward a topic-level scientific evaluation. Scientometrics, 100(2), 407–437.

    Article  Google Scholar 

  • Yan, E. (2014b). Finding knowledge paths among scientific disciplines. Journal of the Association for Information Science & Technology, 65(11), 2331–2347.

    Article  Google Scholar 

  • Yan, E., & Ding, Y. (2009). Applying centrality measures to impact analysis: A coauthorship network analysis. Journal of the American Society for Information Science and Technology, 60(10), 2107–2118.

    Article  Google Scholar 

  • Yan, E., Ding, Y., Cronin, B., & Leydesdorff, L. (2013). A bird’s-eye view of scientific trading: Dependency relations among fields of science. Journal of Informetrics, 7(2), 249–264.

    Article  Google Scholar 

  • Yan, E., Ding, Y., & Sugimoto, C. R. (2011). P-Rank: An indicator measuring prestige in heterogeneous scholarly networks. Journal of the American Society for Information Science and Technology, 62(3), 467–477.

    Google Scholar 

  • Yan, E., & Sugimoto, C. R. (2011). Institutional interactions: Exploring social, cognitive, and geographic relationships between institutions as demonstrated through citation networks. Journal of the American Society for Information Science and Technology, 62(8), 1498–1514.

    Article  Google Scholar 

  • Zitt, M. (2010). Citing-side normalization of journal impact: A robust variant of the Audience Factor. Journal of Informetrics, 4(3), 392–406.

    Article  Google Scholar 

Download references

Acknowledgments

The data set used in this paper is supported by the Elsevier Bibliometric Research Program (EBRP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erjia Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Yan, E. Dynamic subfield analysis of disciplines: an examination of the trading impact and knowledge diffusion patterns of computer science. Scientometrics 104, 335–359 (2015). https://doi.org/10.1007/s11192-015-1594-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-015-1594-6

Keywords

Navigation