Skip to main content
Log in

Thirty years of use of multivariate quantitative methods in benthic community ecology of marine and coastal habitats: looking to the past to planning the future

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

The benthic community ecology of marine and coastal habitats has recently been faced with the challenge of needing a predictive model to anticipate the responses of these natural communities to environmental impacts. This challenge forces the use of quantitative methods to conduct more predictive science. This work is focused on multivariate quantitative methods applied to community ecological problems. A survey was conducted in the Science Citation Index using combined keywords that reflects multivariate quantitative methods, benthic assemblages and marine and coastal habitats. There has been analytical inertia in this research field, as the most commonly used methods have not changed over the years, and novel methods that have been developed inside and outside of ecology have not been included in the analytical tools of marine benthic ecologists. Methods that are increasing the predictive power of freshwater benthic ecology, such as machine learning, have not been used for the benthic community ecology of marine and coastal habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  • Anderson, M. J., & Robinson, J. (2003). Generalized discriminant analysis based on distances. Australian and New Zealand Journal of Statistics, 45, 301–318.

    Article  MATH  MathSciNet  Google Scholar 

  • Anderson, M. J., & Willis, T. J. (2003). Canonical analysis of principal coordinates: A useful method of constrained ordination for ecology. Ecology, 84, 511–525.

    Article  Google Scholar 

  • Bascompte, J., & Solé, R. V. (1997). Models of habitat fragmentation. In J. Bascompte & R. V. Solé (Eds.), Modeling spatiotemporal dynamics in ecology (pp. 127–149). Berlin: Springer.

    Google Scholar 

  • Beals, M. L. (2006). Understanding community structure: A data-driven multivariate approach. Oecologia, 150, 484–495.

    Article  Google Scholar 

  • Beninger, P. G., Boldina, I., & Katsanevakis, S. (2012). Strengthening statistical usage in marine ecology. Journal of Experimental Marine Biology and Ecology, 426–427, 97–108.

    Article  Google Scholar 

  • Borcard, D., Gillet, F., & Legendre, P. (2011). Numerical ecology with R. New York: Springer.

    Book  MATH  Google Scholar 

  • Bray, J. R., & Curtis, J. T. (1957). An ordination of the upland forest communities of southern wiscosin. Ecological Monographs, 27, 325–349.

    Article  Google Scholar 

  • Brayard, A., Escarguel, G., & Bucher, H. (2007). The biogeography of early triassic ammonoid faunas: Clusters, gradients, and networks. Geobios, 40, 749–765.

    Article  Google Scholar 

  • Brehm, G., & Fiedler, K. (2004). Ordinating tropical moth ensembles from an elevational gradient: A comparison of common methods. Journal of Tropical Ecology, 20, 165–172.

    Article  Google Scholar 

  • Clarke, K. R. (1993). Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology, 18, 117–143.

    Article  Google Scholar 

  • Clarke, K. R., & Ainsworth, M. (1993). A method of linking multivariate community structure to environmental variables. Marine Ecology Progress Series, 92, 205–219.

    Article  Google Scholar 

  • Clarke, K. R., Somerfield, P. J., & Gorley, R. N. (2008). Testing of null hypotheses in exploratory community analyses: Similarity profiles and biota-environment linkage. Journal of Experimental Marine Biology and Ecology, 366, 56–69.

    Article  Google Scholar 

  • Cunha, I., Neuparth, T., Caeiro, S., Costa, M. H., & Guilhermino, L. M. (2007). Toxicity ranking of estuarine sediments on the basis of sparus aurata biomarkers. Environmental Toxicology and Chemistry, 26, 444–453.

    Article  Google Scholar 

  • Cutler, D. R., Edwards, T. C., Beard, K. H., Cutler, A., Hess, K. T., Gibson, J., & Lawler, J. J. (2007). Random forests for classification in ecology. Ecology, 88, 2783–2792.

    Article  Google Scholar 

  • De'ath, G. (2002). Multivariate regression trees: A new technique for modeling species-environment relationships. Ecology, 83, 1105–1117.

    Google Scholar 

  • DelValls, T. Á., Conradi, M., Forja, J. M., & Gómez-Parra, A. (1998). Analysis of macrobenthic community structure in relation to different environmental sources of contamination in two littoral ecosystems from the Gulf of Cádiz (SW Spain). Hydrobiologia, 385, 59–70.

    Article  Google Scholar 

  • Dormann, C. F., Gruber, B., & Fründ, J. (2008). Introducing the bipartite package: Analysing ecological networks. R News, 8, 8–11.

    Google Scholar 

  • Eleftheriou, A., & McIntyre, A. (2005). Methods for the study of marine benthos (3rd ed.). Oxford: Blackwell Science.

    Book  Google Scholar 

  • Gardner, S. L., & Duszynski, D. W. (1990). Polymorphism of eimerian oocysts can be a problem in naturally infected hosts: An example from subterranean rodents in Bolivia. Journal of Parasitology, 76, 805–811.

    Article  Google Scholar 

  • Gauch, H. G. J. (1982). Multivariate analysis in community ecology. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Giraudel, J.-L., & Lek, S. (2001). A comparison of self-organizing map algorithm and some conventional statistical methods for ecological community ordination. Ecological Modelling, 146, 329–339.

    Article  Google Scholar 

  • Godínez-Domínguez, E., & Freire, J. (2003). Information-theoretic approach for selection of spatial and temporal models of community organization. Marine Ecology Progress Series, 253, 17–24.

    Article  Google Scholar 

  • Goodall, D. W. (1954). Objective methods for the classification of vegetation. III. An essay in the use of factor analysis. Australian Journal of Botany, 2, 304–324.

    Article  Google Scholar 

  • Gray, J. S., & Elliott, M. (2009). Ecology of marine sediments (2nd ed.). Oxford: Oxford University Press.

    Google Scholar 

  • Herrando-Pérez, S., Baratti, M., & Messana, G. (2008). Subterranean ecological research and multivariate statistics: A review (1945–2006). Journal of Cave and Karst Studies, 70, 120–128.

    Google Scholar 

  • Hsieh, W. W. (2009). Machine learning methods in the environmental sciences: Neural networks and kernels. New York: Cambridge University Press.

    Book  Google Scholar 

  • James, F. C., & McCulloch, C. E. (1990). Multivariate analysis in ecology and systematics: Panacea or pandora’s box? Annual Review of Ecology and Systematics, 21, 129–166.

    Article  Google Scholar 

  • Kenkel, N. C. (2006). On selecting an appropriate multivariate analysis. Canadian Journal of Plant Science, 2, 663–676.

    Article  Google Scholar 

  • Kenkel, N. C., & Orlóci, L. (1986). Applying metric and nonmetric multidimensional scaling to ecological studies: Some new results. Ecology, 67, 919–928.

    Article  Google Scholar 

  • Kent, M., & Ballard, J. (1988). Trends and problems in the application of classification and ordination methods in plant ecology. Vegetatio, 78, 109–124.

    Article  Google Scholar 

  • Legendre, P., & Anderson, M. J. (1999). Distance-based redundancy analysis: Testing multispecies responses in multifactorial ecological experiments. Ecological Monographs, 69, 1–24.

    Article  Google Scholar 

  • Legendre, P., & Gallagher, E. D. (2001). Ecologically meaningful transformations for ordination of species data. Oecologia, 129, 271–280.

    Article  Google Scholar 

  • Legendre, P., & Legendre, L. (1998). Numerical ecology (2nd ed.). Amsterdam: Elsevier.

    MATH  Google Scholar 

  • Lek, S., Scardi, M., Verdonschot, P. F. M., Descy, J.-P., & Park, Y.-S. (2005). Modelling community structure in freshwater ecosystems. Berlin: Springer.

    Book  Google Scholar 

  • Leps, J., & Smilauer, P. (2003). Multivariate Analysis of ecological data using CANOCO. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Maier, H. R., & Dandy, G. C. (2000). Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications. Environmental Modelling and Software, 15, 101–124.

    Article  Google Scholar 

  • McCune, B., Grace, J. B., & Urban, D. L. (2002). Analysis of ecological communities. Gleneden Beach: MJM Software Design.

    Google Scholar 

  • Olden, J. D., & Jackson, D. A. (2002). A comparison of statistical approaches for modelling fish species distributions. Freshwater Biology, 47, 1976–1995.

    Article  Google Scholar 

  • Olden, J. D., Lawler, J. J., & Poff, N. L. (2008). Machine learning methods without tears: A primer for ecologists. The Quarterly Review of Biology, 83, 171–193.

    Article  Google Scholar 

  • Özesmi, S. L., Tan, C. O., & Özesmi, U. (2006). Methodological issues in building, training, and testing artificial neural networks in ecological applications. Ecological Modelling, 195, 83–93.

    Article  Google Scholar 

  • Park, Y.-S., & Chon, T.-S. (2007). Biologically-inspired machine learning implemented to ecological informatics. Ecological Modelling, 203, 1–7.

    Article  Google Scholar 

  • Parker, R. H. (1975). The study of benthic communities: A model and A review. Amsterdam: Elsevier.

    Google Scholar 

  • Pearson, K. (1901). On lines and planes of closest fit to systems of points in space. Philosophical Magazine, 2, 559–572.

    Article  Google Scholar 

  • Quetglas, A., Ordines, F., & Guijarro, B. (2011). The use of artificial neural networks (ANNs) in aquatic ecology. In C.-L. Hui (Ed.), Artificial neural networks—Application (pp. 567–586). Rijeka: InTech.

    Google Scholar 

  • R Core Team. (2012). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.

    Google Scholar 

  • Ramette, A. (2007). Multivariate analyses in microbial ecology. FEMS Microbiology Ecology, 62, 142–160.

    Article  Google Scholar 

  • Recknagel, F. (2006). Ecological informatics: Scope, techniques and applications (2nd ed.). Berlin: Springer.

    Book  Google Scholar 

  • Reid, M. K., & Spencer, K. L. (2009). Use of principal components analysis (PCA) on estuarine sediment datasets: The effect of data pre-treatment. Environmental Pollution, 157, 2275–2281.

    Article  Google Scholar 

  • Southwood, R., & Henderson, P. A. (2000). Ecological methods (3rd ed.). Oxford: Blackwell Publishing.

    Google Scholar 

  • Suryanarayanaa, I., Braibanti, A., Rao, R. S., Ramam, V. A., Sudarsan, D., & Rao, G. N. (2008). Neural networks in fisheries research. Fisheries Research, 92, 115–139.

    Article  Google Scholar 

  • Swan, J. M. A. (1970). An examination of some ordination problems by use of simulated vegetational data. Ecology, 51, 89–102.

    Article  Google Scholar 

  • Ter Braak, C. J. F. (1986). Canonical correspondence analysis: A new eigenvector technique for multivariate direct gradient analysis. Ecology, 67, 1167–1179.

    Article  Google Scholar 

  • Thomson, D. H. (1982). Marine benthos in the Eastern Canadian high arctic: Multivariate analyses of standing crop and community structure. Arctic, 35, 61–74.

    Article  Google Scholar 

  • Thomson Reuters. (2013). Web of science [WWW Document]. http://apps.webofknowledge.com/UA_GeneralSearch_input.do?product=UA&search_mode=GeneralSearch&SID=4DepC3Cj8@ofDMifp7F&preferencesSaved=.

  • Van Den Brink, P. J., Van Den Brink, N. W., & Ter Braak, C. J. F. (2003). Multivariate analysis of ecotoxicological data using ordination: Demonstrations of utility on the basis of various examples. Australasian Journal of Ecotoxicology, 9, 141–156.

    Google Scholar 

  • Von Wehrden, H., Hanspach, J., Bruelheide, H., & Wesche, K. (2009). Pluralism and diversity: Trends in the use and application of ordination methods 1990–2007. Journal of Vegetation Science, 20, 695–705.

    Article  Google Scholar 

  • Walters, K., & Coen, L. D. (2006). A comparison of statistical approaches to analyzing community convergence between natural and constructed oyster reefs. Journal of Experimental Marine Biology and Ecology, 330, 81–95.

    Article  Google Scholar 

  • Warton, D. I., Wright, S. T., & Wang, Y. (2012). Distance-based multivariate analyses confound location and dispersion effects. Methods in Ecology and Evolution, 3, 89–101.

    Article  Google Scholar 

  • Zuur, A. F., Ieno, E. N., & Smith, G. M. (2007). Analysing ecological data. New York: Springer.

    Book  MATH  Google Scholar 

Download references

Acknowledgments

We thank several colleagues who helped with fruitful discussions. This research is part of the Ph.D. thesis of G. C. Carvalho at the Graduate Program in Ecology and Biomonitoring, UFBA. F. Barros was supported by CNPq fellowships (Nos. 303897/2011-2 and 239978/2012-9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilson Correia de Carvalho.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Carvalho, G.C., de Sá-Neto, R.J. & Barros, F. Thirty years of use of multivariate quantitative methods in benthic community ecology of marine and coastal habitats: looking to the past to planning the future. Scientometrics 105, 593–610 (2015). https://doi.org/10.1007/s11192-015-1667-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-015-1667-6

Keywords

Navigation