Skip to main content
Log in

A vector for measuring obsolescence of scientific articles

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

Diachronous studies of obsolescence categorized articles into three general types: “flashes in the pan”, “sleeping beauties” and “normal articles”. These studies used either quartiles or averages to define thresholds on sleeping and awakening periods. However, such average- and quartile-based criteria, sometimes, are less effective in distinguishing “flashes in the pan” and “sleeping beauties” from normal articles due to the arbitrariness of the manner in which thresholds are determined. In this investigation, we propose a vector for measuring obsolescence of scientific articles as an alternative to these criteria. The obsolescence vector is designed as O = (G s, A ), with G s as a parameter affecting the shape of citation curves and A as a parameter detecting drastic fluctuation of citation curves. We collected 50,789 articles authored by Nobel laureates during 1900–2012. Applying our criteria to this dataset, we compared the obsolescence vector with average- and quartile-based criteria. Our findings show that the proposed obsolescence vector is different from and serves as an alternative to the average- and quartile-based criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abt, H. A. (1981). Long-term citation histories of astronomical papers. Publications of the Astronomical Society of the Pacific, 93, 207–210.

    Article  Google Scholar 

  • Avramescu, A. (1979). Actuality and obsolescence of scientific literature. Journal of the American Society for Information Science, 30(5), 296–303.

    Article  Google Scholar 

  • Barber, B. (1961). Resistance by scientists to scientific discovery. Science, 134, 596–602.

    Article  Google Scholar 

  • Brookes, B. C. (1970). The growth, utility, and obsolescence of scientific periodical literature. Journal of Documentation, 26(4), 283–294.

    Article  Google Scholar 

  • Burrell, Q. L. (1991). The Bradford distribution and the Gini index. Scientometrics, 21(2), 181–194.

    Article  Google Scholar 

  • Burrell, Q. L. (2002). The nth-citation distribution and obsolescence. Scientometrics, 53(3), 309–323.

    Article  Google Scholar 

  • Burton, R. E., & Kebler, R. W. (1960). The “half-life” of some scientific and technical literatures. American Documentation, 11(1), 18–22.

    Article  Google Scholar 

  • Cole, S. (1970). Professional standing and the reception of scientific discoveries. American Journal of Sociology, 76, 286–306.

    Article  Google Scholar 

  • Costas, R., van Leeuwen, T. N., & van Raan, A. F. J. (2010). Is scientific literature subject to a “sell-by-date”? A general methodology to analyze the “durability” of scientific documents. Journal of the American Society for Information Science and Technology, 61(2), 329–339.

    Article  Google Scholar 

  • Cunningham, S. J., & Bocock, D. (1995). Obsolescence of computing literature. Scientometrics, 34(2), 255–262.

    Article  Google Scholar 

  • Egghe, L., & Rao, I. K. R. (1992). Citation age data and the obsolescence function: Fits and explanations. Information and Processing Management, 28(2), 201–217.

    Article  Google Scholar 

  • Garfield, E. (1980). Premature discovery or delayed recognition-why? Current Contents, 4, 488–493.

    Google Scholar 

  • Garfield, E. (1989). More delayed recognition. Part 1. Examples from the genetics of color blindness, the entropy of short-term memory, phosphoinositides, and polymer rheology. Current Contents, 38, 3–8.

    Google Scholar 

  • Glänzel, W. (2004). Towards a model for diachronous and synchronous citation analyses. Scientometrics, 60(3), 511–522.

    Article  Google Scholar 

  • Guo, J. L., & Suo, Q. (2014). Comment on” Quantifying long-term scientific impact”. Science, 345(6193), 149.

    Google Scholar 

  • Hsu, C. P., Song, X., & Marcus, R. A. (1997). Time-dependent Stokes shift and its calculation from solvent dielectric dispersion data. The Journal of Physical Chemistry B, 101(14), 2546–2551.

    Article  Google Scholar 

  • Hugget, S. (2010). Does a Nobel Prize lead to more citations. Research Trends. Retrieved April 7, 2015 from http://www.researchtrends.com/issue20-november-2010/does-a-nobel-prize-lead-to-more-citations.

  • Ke, Q., Ferrara, E., Radicchi, F., & Flammini, A. (2015). Defining and identifying sleeping beauties in science. Proceedings of the National Academy of Sciences of the United States of America, 112(24), 7426–7431.

    Article  Google Scholar 

  • Landsteiner, K., & Harte, R. A. (1940). On group specific a substances IV. The substance from hog stomach. The Journal of Experimental Medicine, 71(4), 551–562.

    Article  Google Scholar 

  • Li, J. (2014). Citation curves of “all-elements-sleeping-beauties”: “Flash in the pan” first and then “delayed recognition”. Scientometrics, 100(2), 595–601.

    Article  Google Scholar 

  • Li, J., Shi, D., Zhao, S. X., & Ye, F. Y. (2014). A study of the “heartbeat spectra” for “sleeping beauties”. Journal of Informetrics, 8(3), 493–502.

    Article  Google Scholar 

  • Li, J., & Ye, F. Y. (2012). The phenomenon of all-elements-sleeping-beauties in scientific literature. Scientometrics, 92(3), 795–799.

    Article  Google Scholar 

  • Li, J., & Ye, F. Y. (2014). A probe into the citation patterns of high-quality and high-impact publications. Malaysian Journal of Library and Information Science, 19(2), 31–47.

    Google Scholar 

  • Mazloumian, A., Eom, Y., Helbing, D., Lozano, S., & Fortunato, S. (2011). How citation boosts promote scientific paradigm shifts and nobel prizes. PLoS ONE, 6(5), e18975.

    Article  Google Scholar 

  • Nakamoto, H. (1988). Synchronous and diachronous citation distributions. In L. Egghe & R. Rousseau (Eds.), Informetrics 87/88 (pp. 157–163). Amsterdam: Elsevier Science Publishers.

    Google Scholar 

  • Persson, O. (2005). “Citation indexes for science”—A 50 year citation history. Current Science, 89(9), 1503–1504.

    Google Scholar 

  • Price, D. (1970). Citation measures of hard science, soft science, technology, and non-science. In C. E. Nelson & D. K. Pollock (Eds.), Communication among scientists and engineers (pp. 3–22). Lexington, MA: Heath.

    Google Scholar 

  • Price, D. (1976). A general theory of bibliometric and other cumulative advantage processes. Journal of the American Society for Information Science, 27(5), 292–306.

    Article  Google Scholar 

  • Redner, S. (2005). Citation statistics from more than a century of physical review. Physics Today, 58(1), 49–54.

    Article  MathSciNet  Google Scholar 

  • Rousseau, R. (1999). A weak goodness-of-fit test for rank-frequency distributions. In Proceedings of the 7th conference of the international society for scientometrics and informetrics (pp. 421–430). Universidad de Colima (Mexico).

  • Stent, G. S. (1972). Prematurity and uniqueness in scientific discovery. Scientific American, 227(6), 84–93.

    Article  Google Scholar 

  • Sun, J., Min, C., & Li, J. (2015). A vector for measuring obsolescence of scientific articles. In Proceedings of the 15th conference of the international society for scientometrics and informetrics, Istanbul (Turkey) (pp. 317–327).

  • van Dalen, H. P., & Henkens, K. (2005). Signals in science—On the importance of signaling in gaining attention in Science. Scientometrics, 64(2), 209–233.

    Article  Google Scholar 

  • van Raan, A. F. J. (2004). Sleeping beauties in science. Scientometrics, 59(3), 467–472.

    Article  Google Scholar 

  • Vlachý, J. (1985). Citation histories of scientific publications. The data sources. Scientometrics, 7(3), 505–528.

    Article  Google Scholar 

  • Wang, D., Song, C., & Barabási, A. L. (2013). Quantifying long-term scientific impact. Science, 342(6154), 127–132.

    Article  Google Scholar 

  • Wyatt, H. V. (1961). Knowledge and prematurity-journey from transformation to DNA. Perspectives in Biology and Medicine, 18(2), 149–156.

    Article  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the National Natural Science Foundation of China (NSFC Nos. 71203193 and 71273125).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Min, C. & Li, J. A vector for measuring obsolescence of scientific articles. Scientometrics 107, 745–757 (2016). https://doi.org/10.1007/s11192-016-1884-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-016-1884-7

Keywords

Navigation