Skip to main content
Log in

A bibliometric analysis of micro/nano-bubble related research: current trends, present application, and future prospects

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

With great versatile characteristics, micro/nano-bubble related research have attracted much attention due to their extensive applications in the last half century. Researchers not merely focus on their physi-chemical properties, but also aim at their well-controlled generation methods and potential adhibition field. It can be expected that the future prospects of micro/nano-bubble related research will be tremendous and that there will be even more to be explored. In this case study, a bibliometric analysis was conducted to evaluate micro/nano-bubble related research from 1991 to 2014, based on the Science Citation Index EXPANDED database. The Ultrasound in Medicine and Biology with the highest h-index of 56 is the leading journal in this field, publishing 6.9 % of articles over this period, followed by Langmuir and Journal of the Acoustical Society of America. USA and the Univ Toronto, Canada were the most productive country and institution, respectively, while the USA, was the most internationally collaborative and had the highest h-index (111) of all countries. A new method named “word cluster analysis” was successfully applied to trace the research hotspots. Innovation in detection means and novel pathways for medical applications via micro/nano-bubble is considered to relate to the increasingly new types and varieties of diseases or cancers, as well as the well-controlled generation of micro/nano-bubbles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  • Agarwal, A., Ng, W. J., & Liu, Y. (2011). Principle and applications of microbubble and nanobubble technology for water treatment. Chemosphere, 84(9), 1175–1180.

    Article  Google Scholar 

  • Aoi, A., Watanabe, Y., Mori, S., Takahashi, M., Vassaux, G., & Kodama, T. (2008). Herpes simplex virus thymidine kinase-mediated suicide gene therapy using nano/microbubbles and ultrasound. Ultrasound in Medicine and Biol, 34(3), 425–434.

    Article  Google Scholar 

  • Baskerville, C. (1904). The titles of papers. Science (New York, NY), 19(487), 702–703.

    Article  Google Scholar 

  • Bax, J. J., Molhoek, S. G., van Erven, L., Voogd, P. J., Somer, S., Boersma, E., et al. (2003). Usefulness of myocardial tissue Doppler echocardiography to evaluate left ventricular dyssynchrony before and after biventricular pacing in patients with idiopathic dilated cardiomyopathy. The American Journal of Cardiology, 91(1), 94–97.

    Article  Google Scholar 

  • Bell, M., & Pavitt, K. (1997). Technological accumulation and industrial growth: Contrasts between developed and developing countries. Cambridge: Cambridge University Press.

    Google Scholar 

  • Blomley, M. J. K., Cooke, J. C., Unger, E. C., Monaghan, M. J., & Cosgrove, D. O. (2001). Microbubble contrast agents: A new era in ultrasound. BMJ. British Medical Journal, 322(7296), 1222–1225.

    Article  Google Scholar 

  • Burns, P. N., Wilson, S. R., & Simpson, D. H. (2000). Pulse inversion imaging of liver blood flow: Improved method for characterizing focal masses with microbubble contrast. Investigative Radiology, 35(1), 58.

    Article  Google Scholar 

  • Ciriminna, R., & Pagliaro, M. (2013). On the use of the h-index in evaluating chemical research. Chemistry Central Journal, 7(1), 132.

    Article  Google Scholar 

  • Claudon, M., Dietrich, C. F., Choi, B. I., Cosgrove, D. O., Kudo, M., Nolsøe, C. P., et al. (2013). Guidelines and good clinical practice recommendations for contrast enhanced ultrasound (CEUS) in the liver-update 2012. Ultraschall in der Medizin, 34(1), 11–29.

    Google Scholar 

  • De Nooy, W., Mrvar, A., & Batagelj, V. (2011). Exploratory social network analysis with Pajek. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Delalande, A., Kotopoulis, S., Postema, M., Midoux, P., & Pichon, C. (2013). Sonoporation: Mechanistic insights and ongoing challenges for gene transfer. Gene, 525(2), 191–199.

    Article  Google Scholar 

  • Delalande, A., Postema, M., Mignet, N., Midoux, P., & Pichon, C. (2012). Ultrasound and microbubble-assisted gene delivery: Recent advances and ongoing challenges. Therapeutic Delivery, 3(10), 1199–1215.

    Article  Google Scholar 

  • Dixon, A. J., Dhanaliwala, A. H., Chen, J. L., & Hossack, J. A. (2013). Enhanced intracellular delivery of a model drug using microbubbles produced by a microfluidic device. Ultrasound in Medicine and Biology, 39(7), 1267–1276.

    Article  Google Scholar 

  • Doida, Y., Marcello, K. R., Brayman, A. A., Cox, C., Barned, S., & Miller, M. W. (1998). Sonochemicals increase the mutation frequency of V79 cells in vitro. Ultrasound in Medicine and Biology, 24(8), 1209–1213.

    Article  Google Scholar 

  • Endo, A., Srithongouthai, S., Nashiki, H., Teshiba, I., Iwasaki, T., Hama, D., & Tsutsumi, H. (2008). DO-increasing effects of a microscopic bubble generating system in a fish farm. Marine Pollution Bulletin, 57(1), 78–85.

    Article  Google Scholar 

  • Escoffre, J. M., Piron, J., Novell, A., & Bouakaz, A. (2011). Doxorubicin delivery into tumor cells with ultrasound and microbubbles. Molecular Pharmaceutics, 8(3), 799–806.

    Article  Google Scholar 

  • Ferrara, K., Pollard, R., & Borden, M. (2007). Ultrasound microbubble contrast agents: Fundamentals and application to gene and drug delivery. Annual Review of Biomedical Engineering, 9, 415–447.

    Article  Google Scholar 

  • Finardi, U. (2015). Scientific collaboration between BRICS countries. Scientometrics, 102(2), 1139–1166.

    Article  Google Scholar 

  • Fisher, M. R., Forfia, P. R., Chamera, E., Housten-Harris, T., Champion, H. C., Girgis, R. E., et al. (2009). Accuracy of Doppler echocardiography in the hemodynamic assessment of pulmonary hypertension. American Journal of Respiratory and Critical Care Medicine, 179(7), 615–621.

    Article  Google Scholar 

  • Fu, H. Z., Long, X., & Ho, Y. S. (2014). China’s research in chemical engineering journals in Science Citation Index Expanded: A bibliometric analysis. Scientometrics, 98(1), 119–136.

    Article  Google Scholar 

  • Gao, W., Chen, Y., Liu, Y., & Guo, H. (2015). Scientometric analysis of phosphorus research in eutrophic lakes. Scientometrics, 102(3), 1951–1964.

    Article  Google Scholar 

  • Gao, Z., Kennedy, A. M., Christensen, D. A., & Rapoport, N. Y. (2008). Drug-loaded nano/microbubbles for combining ultrasonography and targeted chemotherapy. Ultrasonics, 48(4), 260–270.

    Article  Google Scholar 

  • Garfield, E. (1990). Key-words-plus takes you beyond title words. 2. Expanded journal coverage for current-contents-on-diskette includes social and behavioral-sciences. Current Contents, 33, 5–9.

    Google Scholar 

  • Hernot, S., & Klibanov, A. L. (2008). Microbubbles in ultrasound-triggered drug and gene delivery. Advanced Drug Delivery Reviews, 60(10), 1153–1166.

    Article  Google Scholar 

  • Hirsch, J. E. (2005). An index to quantify an individual’s scientific research output. Proceedings of the National Academy of Sciences of the United States of America, 102(46), 16569–16572.

    Article  Google Scholar 

  • Hirsch, J. E. (2007). Does the h index have predictive power? Proceedings of the National Academy of Sciences, 104(49), 19193–19198.

    Article  Google Scholar 

  • Hou, Q., Mao, G., Zhao, L., Du, H., & Zuo, J. (2015). Mapping the scientific research on life cycle assessment: A bibliometric analysis. The International Journal of Life Cycle Assessment, 20(4), 541–555.

    Article  Google Scholar 

  • Invernizzi, N., Foladori, G., Robles-Belmont, E., Lau, E. Z., Figueroa, E. A., Bagattolli, C., et al. (2015). Nanotechnology for social needs: Contributions from Latin American research in the areas of health, energy and water. Journal of Nanoparticle Research, 17(5), 1–19.

    Article  Google Scholar 

  • Jiang, L., Wong, M., & Zohar, Y. (1999). Phase change in microchannel heat sinks with integrated temperature sensors. Journal of Microelectromechanical Systems, 8(4), 358–365.

    Article  Google Scholar 

  • Karpagam, R. (2014). Global research output of nanobiotechnology research: A scientometrics study. Current Science, 106(11), 1490.

    Google Scholar 

  • Kiessling, F., Fokong, S., Koczera, P., Lederle, W., & Lammers, T. (2012). Ultrasound microbubbles for molecular diagnosis, therapy, and theranostics. Journal of Nuclear Medicine, 53(3), 345–348.

    Article  Google Scholar 

  • Kinoshita, M., & Hynynen, K. (2005a). A novel method for the intracellular delivery of siRNA using microbubble-enhanced focused ultrasound. Biochemical and Biophysical Research Communications, 335(2), 393–399.

    Article  Google Scholar 

  • Kinoshita, M., & Hynynen, K. (2005b). Intracellular delivery of Bak BH3 peptide by microbubble-enhanced ultrasound. Pharmaceutical Research, 22(5), 716–720.

    Article  Google Scholar 

  • Klibanov, A. L. (2006). Microbubble contrast agents: Targeted ultrasound imaging and ultrasound-assisted drug-delivery applications. Investigative Radiology, 41(3), 354–362.

    Article  MathSciNet  Google Scholar 

  • Koike, H., Tomita, N., Azuma, H., Taniyama, Y., Yamasaki, K., Kunugiza, Y., et al. (2005). An efficient gene transfer method mediated by ultrasound and microbubbles into the kidney. The Journal of Gene Medicine, 7(1), 108–116.

    Article  Google Scholar 

  • Lee, M., Lee, E. Y., Lee, D., & Park, B. J. (2015). Stabilization and fabrication of microbubbles: Applications for medical purposes and functional materials. Soft Matter, 11(11), 2067–2079.

    Article  Google Scholar 

  • Levy, N., Burke, S. A., Meaker, K. L., Panlasigui, M., Zettl, A., Guinea, F., et al. (2010). Strain-induced pseudo-magnetic fields greater than 300 tesla in graphene nanobubbles. Science, 329(5991), 544–547.

    Article  Google Scholar 

  • Li, P., & Tsuge, H. (2006). Water treatment by induced air flotation using microbubbles. Journal of Chemical Engineering of Japan, 39(8), 896–903.

    Article  Google Scholar 

  • Li, W., & Zhao, Y. (2015). Bibliometric analysis of global environmental assessment research in a 20-year period. Environmental Impact Assessment Review, 50, 158–166.

    Article  Google Scholar 

  • Lomonaco, R., Sunny, N. E., Bril, F., & Cusi, K. (2013). Nonalcoholic fatty liver disease: Current issues and novel treatment approaches. Drugs, 73(1), 1–14.

    Article  Google Scholar 

  • Mao, G., Liu, X., Du, H., Zuo, J., & Wang, L. (2015). Way forward for alternative energy research: A bibliometric analysis during 1994–2013. Renewable and Sustainable Energy Reviews, 48, 276–286.

    Article  Google Scholar 

  • Mao, N., Wang, M., & Ho, Y. (2010). A bibliometric study of the trend in articles related to risk assessment published in Science Citation Index. Human and Ecological Risk Assessment, 16(4), 801–824.

    Article  Google Scholar 

  • McDannold, N., Arvanitis, C. D., Vykhodtseva, N., & Livingstone, M. S. (2012). Temporary disruption of the blood–brain barrier by use of ultrasound and microbubbles: Safety and efficacy evaluation in rhesus macaques. Cancer Research, 72(14), 3652–3663.

    Article  Google Scholar 

  • Meairs, S. (2013). Drug delivery across the blood–brain barrier with focused ultrasound and microbubbles. In The Blood Brain Barrier (BBB) (pp. 143–158). Berlin/Heidelberg: Springer.

    Google Scholar 

  • Narsinh, K., Narsinh, K. H., & Wu, J. C. (2011). Derivation of human induced pluripotent stem cells for cardiovascular disease modeling. Circulation Research, 108(9), 1146–1156.

    Article  Google Scholar 

  • Neethirajan, S., Kobayashi, I., Nakajima, M., Wu, D., Nandagopal, S., & Lin, F. (2011). Microfluidics for food, agriculture and biosystems industries. Lab on a Chip, 11(9), 1574–1586.

    Article  Google Scholar 

  • Niu, B. B., Hong, S., Yuan, J. F., Peng, S., Wang, Z., & Zhang, X. (2014). Global trends in sediment-related research in earth science during 1992–2011: A bibliometric analysis. Scientometrics, 98(1), 511–529.

    Article  Google Scholar 

  • Persson, O. (1994). The intellectual base and research fronts of JASIS 1986–1990. Journal of the American Society for Information Science, 45(1), 31–38.

    Article  Google Scholar 

  • Persson, O., Danell, R., & Schneider, J. W. (2009). How to use Bibexcel for various types of bibliometric analysis. In Celebrating scholarly communication studies: A Festschrift for Olle Persson at his 60th birthday (pp. 9–24).

  • Piscaglia, F., Nolsøe, C., Dietrich, C. A., Cosgrove, D. O., Gilja, O. H., Bachmann Nielsen, M., et al. (2012). The EFSUMB guidelines and recommendations on the clinical practice of contrast enhanced ultrasound (CEUS): Update 2011 on non-hepatic applications. Ultraschall in der Medizin, 33(1), 33.

    Article  Google Scholar 

  • Postema, M., Van Wamel, A., Lancée, C. T., & De Jong, N. (2004). Ultrasound-induced encapsulated microbubble phenomena. Ultrasound in Medicine and Biology, 30(6), 827–840.

    Article  Google Scholar 

  • Pritchard, A. (1969). Statistical bibliography or bibliometrics. Journal of Documentation, 25(4), 348–349.

    MathSciNet  Google Scholar 

  • Rodríguez-Rodríguez, J., Sevilla, A., Martínez-Bazán, C., & Gordillo, J. M. (2015). Generation of microbubbles with applications to industry and medicine. Annual Review of Fluid Mechanics, 47, 405–429.

    Article  Google Scholar 

  • Sassaroli, E., & Hynynen, K. (2007). Cavitation threshold of microbubbles in gel tunnels by focused ultrasound. Ultrasound in Medicine and Biology, 33(10), 1651–1660.

    Article  Google Scholar 

  • Sato, K. (2011). Recent patents on micro-and nano-bubble applications and potential application of a swirl-type generator. Recent Patents on Mechanical Engineering, 4(3), 202–211.

    Article  Google Scholar 

  • Sebba, F. (1971). Microfoams-an unexploited colloid system. Journal of Colloid and Interface Science, 35(4), 643–646.

    Article  Google Scholar 

  • Sirsi, S. R., & Borden, M. A. (2012). Advances in ultrasound mediated gene therapy using microbubble contrast agents. Theranostics, 2(12), 1208.

    Article  Google Scholar 

  • Staub, F., Tournoux-Facon, C., Roumy, J., Chaigneau, C., Morichaut-Beauchant, M., Levillain, P., et al. (2009). Liver fibrosis staging with contrast-enhanced ultrasonography: Prospective multicenter study compared with METAVIR scoring. European Radiology, 19(8), 1991–1997.

    Article  Google Scholar 

  • Suslick, K. S., Grinstaff, M. W., Kolbeck, K. J., & Wong, M. (1994). Characterization of sonochemically prepared proteinaceous microspheres. Ultrasonics Sonochemistry, 1(1), S65–S68.

    Article  Google Scholar 

  • Terekhov, A. I. (2015). R&D on carbon nanostructures in Russia: scientometric analysis, 1990-2011. Journal of Nanoparticle Research, 17(2), 1–26.

    Article  MathSciNet  Google Scholar 

  • Thomson Reuters. (2015). Quartiles in JCR on the InCites platform. http://ipscience-help.thomsonreuters.com/incitesLiveJCR/JCRGroup/jcrJournalProfile/jcrJournalProfileRank.html.

  • Ting, C., Fan, C., Liu, H., Huang, C., Hsieh, H., Yen, T., et al. (2012). Concurrent blood–brain barrier opening and local drug delivery using drug-carrying microbubbles and focused ultrasound for brain glioma treatment. Biomaterials, 33(2), 704–712.

    Article  Google Scholar 

  • Unger, E., Porter, T., Lindner, J., & Grayburn, P. (2014). Cardiovascular drug delivery with ultrasound and microbubbles. Advanced Drug Delivery Reviews, 72, 110–126.

    Article  Google Scholar 

  • Unnikrishnan, S., & Klibanov, A. L. (2012). Microbubbles as ultrasound contrast agents for molecular imaging: Preparation and application. American Journal of Roentgenology, 199(2), 292–299.

    Article  Google Scholar 

  • Wang, M., Liu, D., Jia, J., & Zhang, X. (2015). Global trends in soil monitoring research from 1999–2013: A bibliometric analysis. Acta Agriculturae Scandinavica, Section B-Soil and Plant Science, 65(6), 483–495.

    Google Scholar 

  • Wang, J., Wang, J., Chen, H., Zhang, C., Liu, L., Pan, S., & Wu, C. (2008). Ultrasound-mediated microbubble destruction enhances gene transfection in pancreatic cancer cells. Advances in Therapy, 25(5), 412–421.

    Article  Google Scholar 

  • Wang, L., Wang, Q., Zhang, X., Cai, W., & Sun, X. (2013). A bibliometric analysis of anaerobic digestion for methane research during the period 1994-2011. Journal of Material Cycles and Waste Management, 15(1), 1–8.

    Article  Google Scholar 

  • Wei, K., Jayaweera, A. R., Firoozan, S., Linka, A., Skyba, D. M., & Kaul, S. (1998). Quantification of myocardial blood flow with ultrasound-induced destruction of microbubbles administered as a constant venous infusion. Circulation, 97(5), 473–483.

    Article  Google Scholar 

  • Xu, J. L., Cheng, P., & Zhao, T. S. (1999). Gas–liquid two-phase flow regimes in rectangular channels with mini/micro gaps. International Journal of Multiphase Flow, 25(3), 411–432.

    Article  MATH  Google Scholar 

  • Xu, Q., Nakajima, M., Ichikawa, S., Nakamura, N., & Shiina, T. (2008). A comparative study of microbubble generation by mechanical agitation and sonication. Innovative Food Science and Emerging Technologies, 9(4), 489–494.

    Article  Google Scholar 

  • Xu, Q., Nakajima, M., Liu, Z., & Shiina, T. (2011). Biosurfactants for microbubble preparation and application. International Journal of Molecular Sciences, 12(1), 462–475.

    Article  Google Scholar 

  • Yu, Q., Shao, H., & Duan, Z. (2011). Research groups of oncology co-authorship network in China. Scientometrics, 89(2), 553–567.

    Article  Google Scholar 

  • Zhai, L., Pan, Y., Guo, Y., Ma, Z., & Bi, F. (2014). International comparative study on nanofiltration membrane technology based on relevant publications and patents. Scientometrics, 101(2), 1361–1374.

    Article  Google Scholar 

  • Zhang, C., Cao, H., Li, Q., Tu, J., Guo, X., Liu, Z., & Zhang, D. (2013). Enhancement effect of ultrasound-induced microbubble cavitation on branched polyethylenimine-mediated VEGF165 transfection with varied N/P ratio. Ultrasound in Medicine and Biology, 39(1), 161–171.

    Article  Google Scholar 

  • Zheng, T., Wang, J., Wang, Q., Meng, H., & Wang, L. (2015a). Research trends in electrochemical technology for water and wastewater treatment. Applied Water Science,. doi:10.1007/s13201-015-0280-4.

    Google Scholar 

  • Zheng, T., Wang, J., Wang, Q., Nie, C., Smale, N., Shi, Z., & Wang, X. (2015b). A bibliometric analysis of industrial wastewater research: current trends and future prospects. Scientometrics, 105(2), 863–882.

    Article  Google Scholar 

  • Zheng, T., Wang, Q., Shi, Z., Huang, P., Li, J., Zhang, J., & Wang, J. (2015c). Separation of pollutants from oil-containing restaurant wastewater by novel microbubble air flotation and traditional dissolved air flotation. Separation Science and Technology, 50(16), 2568–2577.

    Google Scholar 

  • Zheng, T., Wang, Q., Zhang, T., Shi, Z., Tian, Y., Shi, S., et al. (2015d). Microbubble enhanced ozonation process for advanced treatment of wastewater produced in acrylic fiber manufacturing industry. Journal of Hazardous Materials, 287, 412–420.

    Article  Google Scholar 

  • Zhou, P., & Leydesdorff, L. (2006). The emergence of China as a leading nation in science. Research Policy, 35(1), 83–104.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of the Major Science and Technology Program for Water Pollution Control and Treatment (2012ZX07201002-6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qunhui Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 41 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, T., Wang, J., Wang, Q. et al. A bibliometric analysis of micro/nano-bubble related research: current trends, present application, and future prospects. Scientometrics 109, 53–71 (2016). https://doi.org/10.1007/s11192-016-2004-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-016-2004-4

Keywords

Navigation