Skip to main content
Log in

Uncovering inter-specialty knowledge communication using author citation networks

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

Knowledge communication plays a fundamental role in studies of science of science. This paper aims to examine inter-specialty communication patterns within a discipline using author citation networks. Two metrics are designed, including average knowledge flow and average shortest distance. They are used to identify the impact and diffusion characteristics of inter-specialty knowledge communication. We apply these metrics to an empirical data set of Chinese library and information science (CLIS) publications. We find that the two metrics portray different aspects of knowledge communication in CLIS and conclude that indirect paths, the size of specialties, and the communication structure among specialties may lead to the differences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. In fact, the distance from TMLS to CI is just at the threshold of 1.518. If we delete this arc, the division of Fig. 5 will be very similar to that of Fig. 3.

References

  • Agrawal, A., & Henderson, R. (2002). Putting patents in context: Exploring knowledge transfer from MIT. Management Science, 48(1), 44–60.

    Article  Google Scholar 

  • Blondel, V. D., Guillaume, J.-L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(10), P10008.

    Article  Google Scholar 

  • Borgman, C. L., & Furner, J. (2002). Scholarly communication and bibliometrics. In B. Cronin (Ed.), Annual review of information science and technology (Vol. 36, pp. 3–72)., Information Today NJ: Medford.

    Google Scholar 

  • Bornmann, L., & Leydesdorff, L. (2015). Topical connections between the institutions within an organisation (institutional co-authorships, direct citation links and co-citations). Scientometrics, 102(1), 455–463.

    Article  Google Scholar 

  • Chen, C., & Morris, S. (2003). Visualizing evolving networks: Minimum spanning trees versus pathfinder networks. In Information Visualization, 2003. INFOVIS 2003. IEEE Symposium on (pp. 67–74): IEEE.

  • De Nooy, W., Mrvar, A., & Batagelj, V. (2005). Exploratory social network analysis with Pajek. New York: Cambridge University Press.

    Book  Google Scholar 

  • Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische Mathematik, 1, 269–271.

    Article  MathSciNet  MATH  Google Scholar 

  • Garvey, W. D., & Griffith, B. C. (1971). Scientific communication: Its role in the conduct of research and creation of knowledge. American Psychologist, 26(4), 349.

    Article  Google Scholar 

  • Jaffe, A. B., & Trajtenberg, M. (1998). International knowledge flows: Evidence from patent citation. Papers, 8(1), 105–136.

    Google Scholar 

  • Jaffe, A. B., Trajtenberg, M., & Fogarty, M. S. (2000). Knowledge spillovers and patent citations: Evidence from a survey of inventors. American Economic Review, 90(2), 215–218.

    Article  Google Scholar 

  • Jaffe, A. B., Trajtenberg, M., & Henderson, A. D. (1993). Geographical localization of knowledge spillovers by patent citations. Quarterly Journal of Economics, 108(3), 577–599.

    Article  Google Scholar 

  • Lambiotte, R., & Panzarasa, P. (2009). Communities, knowledge creation, and information diffusion. Journal of Informetrics, 3(3), 180–190.

    Article  Google Scholar 

  • Leicht, E. A., & Newman, M. E. (2008). Community structure in directed networks. Physical Review Letters, 100(11), 118703.

    Article  Google Scholar 

  • Leydesdorff, L. (2004). Top-down decomposition of the journal citation reportof the social science citation index: Graph-and factor-analytical approaches. Scientometrics, 60(2), 159–180.

    Article  Google Scholar 

  • Leydesdorff, L. (2006). Can scientific journals be classified in terms of aggregated journal–journal citation relations using the Journal Citation Reports? Journal of the American Society for Information Science and Technology, 57(5), 601–613.

    Article  Google Scholar 

  • Leydesdorff, L., & Jin, B. (2005). Mapping the Chinese Science Citation Database in terms of aggregated journal–journal citation relations. Journal of the American Society for Information Science and Technology, 56(14), 1469–1479.

    Article  Google Scholar 

  • Leydesdorff, L., & Probst, C. (2009). The delineation of an interdisciplinary specialty in terms of a journal set: The case of communication studies. Journal of the American Society for Information Science and Technology, 60(8), 1709–1718.

    Article  Google Scholar 

  • Leydesdorff, L., & Rafols, I. (2009). A global map of science based on the ISI subject categories. Journal of the American Society for Information Science and Technology, 60(2), 348–362.

    Article  Google Scholar 

  • Leydesdorff, L., & Rafols, I. (2011). Indicators of the interdisciplinarity of journals: Diversity, centrality, and citations. Journal of Informetrics, 5(1), 87–100.

    Article  Google Scholar 

  • Lucio-Arias, D., & Leydesdorff, L. (2007). Knowledge emergence in scientific communication: From “fullerenes” to “nanotubes”. Scientometrics, 70(3), 603–632.

    Article  Google Scholar 

  • Mehta, A., Rysman, M., & Simcoe, T. (2010). Identifying the age profile of patent citations. Social Science Research Network, 25(7), 1179–1204.

    MathSciNet  Google Scholar 

  • Mingers, J., & Leydesdorff, L. (2015). Identifying research fields within business and management: A journal cross-citation analysis. Journal of the Operational Research Society, 66(8), 1370–1384.

    Article  Google Scholar 

  • Nomaler, Ö., & Verspagen, B. (2008). Knowledge flows, patent citations and the impact of science on technology. Economic Systems Research, 20(4), 339–366.

    Article  Google Scholar 

  • Persson, O. (2001). All author citations versus first author citations. Scientometrics, 50(2), 339–344.

    Article  Google Scholar 

  • Persson, O. (2010). Identifying research themes with weighted direct citation links. Journal of Informetrics, 4(3), 415–422.

    Article  Google Scholar 

  • Porter, A., Cohen, A. S., Roessner, J. D., & Perreault, M. (2007). Measuring researcher interdisciplinarity. Scientometrics, 72(1), 117–147.

    Article  Google Scholar 

  • Porter, A., & Rafols, I. (2009). Is science becoming more interdisciplinary? Measuring and mapping six research fields over time. Scientometrics, 81(3), 719–745.

    Article  Google Scholar 

  • Rafols, I., & Meyer, M. (2010). Diversity and network coherence as indicators of interdisciplinarity: Case studies in bionanoscience. Scientometrics, 82(2), 263–287.

    Article  Google Scholar 

  • Ramalho Correia, A. M., & Teixeira, J. C. (2005). Reforming scholarly publishing and knowledge communication: From the advent of the scholarly journal to the challenges of open access. Online Information Review, 29(4), 349–364.

    Article  Google Scholar 

  • Schneider, J. W., Larsen, B., & Ingwersen, P. (2009). A comparative study of first and all-author co-citation counting, and two different matrix generation approaches applied for author co-citation analyses. Scientometrics, 80(1), 103–130.

    Article  Google Scholar 

  • Schvaneveldt, R. W. (1990). Pathfinder associative networks: Studies in knowledge organization. New York: Ablex Publishing.

    MATH  Google Scholar 

  • Shibata, N., Kajikawa, Y., Takeda, Y., & Matsushima, K. (2008). Detecting emerging research fronts based on topological measures in citation networks of scientific publications. Technovation, 28(11), 758–775.

    Article  Google Scholar 

  • Shibata, N., Kajikawa, Y., Takeda, Y., & Matsushima, K. (2009). Comparative study on methods of detecting research fronts using different types of citation. Journal of the American Society for Information Science and Technology, 60(3), 571–580.

    Article  Google Scholar 

  • Tsay, M.-Y. (2015). Knowledge flow out of the domain of information science: A bibliometric and citation analysis study. Scientometrics, 102(1), 487–502.

    Article  Google Scholar 

  • Van Leeuwen, T., & Tijssen, R. (2000). Interdisciplinary dynamics of modern science: Analysis of cross-disciplinary citation flows. Research Evaluation, 9(3), 183–187.

    Article  Google Scholar 

  • Wang, H. Y., Huang, Q., Li, C. T., & Chu, B. Z. (2010). Tulun suanfa jiqi MATLAB shixian [Graph Theory Algorithms Based on MATLAB]. Beijing: Beihang University Press.

    Google Scholar 

  • White, H. D. (2001). Authors as citers over time. Journal of the American Society for Information Science and Technology, 52(2), 87–108.

    Article  Google Scholar 

  • White, H. D. (2003). Pathfinder networks and author cocitation analysis: A remapping of paradigmatic information scientists. Journal of the American Society for Information Science and Technology, 54(5), 423–434.

    Article  Google Scholar 

  • White, H. D., & Griffith, B. C. (1981). Author cocitation: A literature measure of intellectual structure. Journal of the American Society for information Science, 32(3), 163–171.

    Article  Google Scholar 

  • White, H. D., & McCain, K. W. (1998). Visualizing a discipline: An author co-citation analysis of information science, 1972–1995. Journal of the American Society for information Science, 49(4), 327–355.

    Google Scholar 

  • Wikgren, M. (2002). Health discussions on the Internet: A study of knowledge communication through citations. Library and Information Science Research, 23(4), 305–317.

    Article  Google Scholar 

  • Yan, E. (2014). Finding knowledge paths among scientific disciplines. Journal of the Association for Information Science and Technology, 65(11), 2331–2347.

    Article  Google Scholar 

  • Yan, E. (2015). Disciplinary knowledge production and diffusion in science. Journal of the American Society for Information Science and Technology. doi:10.1002/asi.23541.

    Google Scholar 

  • Yan, E., Ding, Y., Cronin, B., & Leydesdorff, L. (2013). A bird’s-eye view of scientific trading: Dependency relations among fields of science. Journal of Informetrics, 7(2), 249–264.

    Article  Google Scholar 

  • Yang, S., & Wang, F. (2015). Visualizing information science: Author direct citation analysis in China and around the world. Journal of Informetrics, 9(1), 208–225.

    Article  Google Scholar 

  • Yu, W., Chen, G., Cao, M., & Kurths, J. (2010). Second-order consensus for multiagent systems with directed topologies and nonlinear dynamics. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 40(3), 881–891.

    Article  Google Scholar 

  • Zhao, D., & Strotmann, A. (2008). Evolution of research activities and intellectual influences in information science 1996–2005: Introducing author bibliographic-coupling analysis. Journal of the American Society for Information Science and Technology, 59(13), 2070–2086.

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Social Science Foundation of China (No. 12CTQ026), the Program for the Top Young Academic Leaders of Higher Learning Institutions of Shanxi (No. 2014052006) and the 131 Leading Talents Project of Colleges and Universities of Shanxi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruimin Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, R., Yan, E. Uncovering inter-specialty knowledge communication using author citation networks. Scientometrics 109, 839–854 (2016). https://doi.org/10.1007/s11192-016-2091-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-016-2091-2

Keywords

Navigation