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Technology is a complex system, with technologies relating to each other in a space that can be
mapped as a network. The technology network’s structure can reveal properties of technologies
and of human behavior, if it can be mapped accurately. Technology networks have been made
from patent data, using several measures of proximity. These measures, however, are influenced by
factors of the patenting system that do not reflect technologies or their proximity. We introduce
a method to precisely normalize out multiple impinging factors in patent data and extract the
true signal of technological proximity, by comparing the empirical proximity measures with what
they would be in random situations that remove the impinging factors. With this method, we
created technology networks, using data from 3.9 million patents. After normalization, different
measures of proximity became more correlated with each other, approaching a single dimension
of technological proximity. The normalized technology networks were sparse, with few pairs of
technology domains being significantly related. The normalized network corresponded with human
behavior: we analyzed the patenting histories of 2.8 million inventors and found they were more
likely to invent in two different technology domains if the pair was closely related in the technology
network. We also analyzed 250 thousand firms’ patents and found that, in contrast, firms’ inventive
activities were only modestly associated with the technology network; firms’ portfolios combined
pairs of technology domains about twice as often as inventors. These results suggest that controlling
for impinging factors provides meaningful measures of technological proximity for patent-based
mapping of the technology space, and that this map can be used to aid in technology innovation
planning and management.

I. INTRODUCTION

Technological invention can be considered as navigat-
ing a space of technologies [1–6]. Networks have been
used to represent and describe that space: there are
many kinds of technologies, and they relate to each other
in many, complex ways [7–9]. Different technological do-
mains can be connected and proximate in the technology
space if they rely on similar or related knowledge [8, 10–
14]. An accurate network map of the technology space,
even at a low resolution, opens the door to understand-
ing how technology as a whole behaves and how humans
interact with it. Such understanding could improve the
inventive strategies of individual inventors and the tech-
nology innovation policies of firms or countries.

The technology space can be mapped using patent
data, and technology domains identified from patent
metadata. Domain experts at patent offices classify every
patent into one of many technology classes, such as “or-
ganic chemistry” or “hats,” which represent technology
domains. The proximity between two technology classes
can be measured in numerous ways using patent data,
and different measures reflect different intuitions of how
technologies could be related or similar with each other.
This creates two types of challenges when mapping the
space of technologies. First, when different measures
disagree on the proximity of two technology domains,
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it can make interpretation of the technology space dif-
ficult. This makes it harder to derive precise technol-
ogy development strategies based on the network map of
the technology space. If different methods for quantify-
ing proximity could be harmonized, it would allow for
greater clarity in studying technology. Second, the dif-
ferent empirical measures of inter-domain distance in the
technology space are affected by biases that arise from
the patenting and inventive processes, which distort the
perceived proximity across technologies. Hence, these
measures needs to be properly cleaned to allow the true
representation of the technology space to emerge.

We used data from 3,911,050 utility patents issued
from 1976 to 2010 by the United States Patent and
Trademark Office to create technology networks using
nine different measures of proximity. Fig. 1A shows one
such network. Each of the proximity measures builds
on one of two phenomena: 1) patents’ citations to other
patents in different technology classes, or 2) classes oc-
curring together on patents or in the patenting histories
of inventors or firms. Both of these phenomena, are in-
fluenced by impinging factors that are not intrinsic prop-
erties of the technologies that the patents represent (Fig.
2). These factors include classes’ number of patents, the
number of citations those patents make, and how old
the patents are; we examine their origins below. These
factors distort the perception of how distant two tech-
nologies are in the space based on raw empirical mea-
surements. The accuracy of a technology network map
crucially depends on the ability to separate the true sig-
nal of technological proximity from these other, spurious
effects. By removing the spurious effects, we can create
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FIG. 1. Measuring technology networks that control for impinging factors reveals different network structures.
A) The empirical and B) normalized technology networks. The normalized network’s links are not influenced by the impinging
factors of Fig. 2. Node size: proportional to the number of patents in the technology class. Link weight: proportional to the
number of citations between the technology classes (the average of both directions). The networks are fully connected, but
only a subset of the strongest links are visualized (see Appendix VII). For visual reference, a community structure is shown by
node color, which was identified using both visualized and unvisualized links.

a better representation of the latent technology network
(Fig. 1B).

Here we introduce a method to precisely control for the
complexities of multiple impinging factors in patent data,
all at once. We calculated a null hypothesis: an expecta-
tion of what the observed proximity measure between two
technology classes would be by random chance, given the
other influencing factors. We then identified which pairs
of technology classes had significantly higher proximity
than that expected by chance. After normalizing the em-
pirical proximity measures relative to the random expec-
tation, most measures of technology proximity became
highly correlated with each other. Normalized proximity
measures based on citations, co-classification, and inven-

tors’ patent portfolios are all correlated strongly. The
sole measure of technology class proximity with lower
correlation to the others was how often firms patented
in a pair of classes, which could be driven by factors be-
yond how proximate the technologies are. These results
indicate that controlling for the impinging factors cre-
ates stronger agreement of different measures of proxim-
ity, validating the utility of the method. The increased
agreement of measures also opens up the possibility of
measuring a single technology space and constructing a
unified patent technology map.
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II. MEASURING TECHNOLOGY PROXIMITY

The proximity of technologies has been measured in
various ways. Here we briefly review the most common
proximity measures. The proximity measures can be or-
ganized into two families based on the kind of data they
use: citations and co-occurrences.

A. Citation based measures

Patents cite other patents as related technologies. Ci-
tations highlight which existing solutions the current in-
vention has improved upon, with the purpose of limit-
ing what the citing patent can claim as novel intellec-
tual property. Citations can thus represent knowledge
proximity. Several measures of knowledge proximity be-
tween technology classes have been created in the liter-
ture, building upon patent citations.

1. Direct Citation

The most straightforward way to describe the prox-
imity between two technology classes is to simply count
the number of citations between them [15]. The Direct
Citation measure is the total number of citations from
patents in a class X to other patents in another class Y .
Because citations disclose the relevant prior art, the di-
rect citation count between classes can be interpreted as
an overall measure of the importance of the cited class
as a technical input for the citing one.

2. Co-Citation

Patents can make many citations, including to patents
from multiple classes. If two classes are often cited to-
gether they may function well together as a input. The
Co-Citation between two classes X and Y is the number
of patents that cited patents from both X and Y . Co-
Citation thus indicates if two classes often jointly serve
as knowledge inputs for the same inventive output. Co-
Citation has been used to measure the proximity of scien-
tific fields and journals [16, 17]. Co-Citation is sometimes
normalized by computing the Jaccard index (dividing the
number of co-citations by the total number of citations
received by patents in the two classes X and Y [18]),
but here we calculate Co-Citation directly and use more
complex normalizations, as described below.

3. Cosine Similarity

A more sophisticated measure of proximity is not
whether two classes cite each other, but if they cite other
classes in a similar pattern (i.e. if they use the same

set of inventive inputs). This is analogous to measur-
ing the structural equivalence of two nodes in a network
[19]. We count how many citations patents in a class X
make to patents in every other class (Y , Z, and so on).
This is summarized as a class-class citation vector, cX . If
the class-class citation vector is the same for two classes,
they have the same citation behavior, and are taken to be
related or proximate. If they have entirely different vec-
tors, they have entirely different citation behaviors, and
are taken to be unrelated. We calculate the similarity of
the two class-class citation vectors by taking the cosine
of the angle between them, cos(cX , cY ).

Cosine Similarity is a long-used measure for evaluat-
ing the similarity of two sets. The cosine index was intro-
duced as a measure of proximity of technology domains in
patent data by Jaffe [14, 20]. Jaffe measured relatedness
between pairs of technological fields (proxied by patent
classes) by computing the cosine of the vectors represent-
ing the occurrences of fields in firms’ patent documents.
Breschi and colleagues [9] designed a similar version of
the index, which measures proximity between class pairs
as the cosine of the classes’ vectors of co-occurrences in
patent documents. Cosine similarity has been used in
other studies to create patent-based technology maps [7,
8].

Cosine Similarity can be calculated using two different
class-class citation vectors: the vector of citations the
class X makes to every other class, and the vector of ci-
tations the class receives from every other class. These
can be thought of as measuring the similarity of knowl-
edge inputs to the class vs. the similarity of knowledge
outputs of the class. We refer to these two measures as
Cosine Similarity, Inputs and Cosine Similarity, Outputs.

The principle of measuring class-class citation vectors
can be extended to class-patent citation vectors [21]. In
this case, what is measured is how many citations patents
in a class X make to every individual patent, without
summarizing them by which classes those patents are in.
This creates a much higher dimensional vector (as there
are many more patents than classes), but the principle is
the same. Obviously, the citation vector measured at the
class-patent citation level has a higher granularity than
its class-class counterpart. This can be interpreted as
a measure of similarity of specific, rather than generic,
knowledge inputs or outputs between classes. The class-
patent citation vectors between two classes can again be
compared using Cosine Similarity. Again there are two
versions of the measure, depending on whether we mea-
sure the citations a class makes versus the citations a
class receives. We refer to these two measures as Cosine
Similarity, Input , High Resolution and Cosine Similarity,
Output, High Resolution.
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B. Co-Classification and Co-Occurrence based
measures

Patents are assigned a main class to which they pri-
marily belong, which is the class used for the citation
analysis. But patents are also frequently assigned to ad-
ditional, secondary classes. We can then measure how of-
ten two classes both appear on the same patents together
(Co-Classification). This is a common method in sciento-
metric analysis [22–27]. Similarly, an inventor or firm can
have multiple patents, and those patents could be in mul-
tiple classes. We can then measure how often two classes
both appear together in inventors’ and firms’ patent his-
tories (Co-Occurrence). Co-Classification is interpreted
as measuring how often two technology domains are com-
bined into an invention, while Co-Occurrence is inter-
preted as how often two technology domains are both
used within a single mind or collection of minds (i.e. a
firm). Therefore, Co-Classification is a measure of prox-
imity of two technologies based on how similar their arti-
facts are. In contrast, Co-Occurrence measures the sim-
ilarity in the technical skills required to make the arti-
facts, or in the assets or managerial practices needed to
be successful in both [28–30].

Calculating Co-Occurrence from patent data requires
accurately tracking individual inventors and firms with
multiple patents, even though their names can be listed
differently on different patents (e.g. “IBM” vs. “Inter-
national Business Machines” or “Charles Jacob Smith”
vs “Charles J. Smith”). The recent availability of har-
monized inventors’ and firms’ names for patent data [31]
made it possible to compute a reliable measure of Co-
Occurrence of technology classes in inventors’ and firms’
patenting histories. Following the work done in [21], this
paper represents one of the first attempts at measur-
ing the Co-Occurrence of technology classes in inventors’
patenting histories. Inventor and firm identities were
tracked across patents using name reconciliation data
from [31]. This data identified 2,756,508 inventors and
247,913 firms. Firm identity reconciliation, performed
by [31] and based on [32], focused on linking patents’
assignee names to firms traded in the United States
stock market and harmonizing spell variations. The firm
identity reconciliation did not merge firms’ subsidiaries,
which can be distinct entities with different knowledge,
capabilities, and operations. Interpreting subsidiaries’
relationships with each other is a complex topic that we
will not seek to resolve here; we simply consider sub-
sidiaries as separate entities.

III. ORIGINS OF FACTORS IMPINGING ON
THE EMPIRICAL MEASUREMENT OF

TECHNOLOGY PROXIMITY

Unfortunately, all the measures of technology proxim-
ity are affected by factors other than the technologies
themselves. These factors thus impinge on the measures

of proximity, detracting from the signal we desire to mea-
sure. The impinging factors that we can control for are
different depending on if the proximity measure is based
on citations or on occurrence data.

A. Citations

The probability of a citation between two patents, or
between two technology classes, is affected by several
variables that are not intrinsic properties of the inven-
tions they represent [16, 32]. The expected number of
citations between any two technology classes depends on
several factors, which vary greatly across classes and time
(Fig. 2).

First, the expected number of citations between a cit-
ing class and a cited class is driven by the number of
patents in each (Fig. 2A,B). Technology classes vary
greatly in size, and those sizes change over time (Fig.
2A). All else equal, larger classes both make and receive
more citations, and thus there is a linear correlation be-
tween the sizes of two technology classes and the number
of citations between them (Fig. 2B).

Another possible influence of examiner behavior chang-
ing over time is the number of citations made per patent.
The number of citations made per patent varies across
technology classes and history, and is increasing over time
(Fig. 2C). This may be a cognitive bias due to the grow-
ing pool of potential prior art (more previous patents)
and patent electronic databases, which makes searching
for prior art easier and thus assessing novelty more strin-
gent.

Patents’ citations are also biased to be made to patents
within the same class. Citations are often made by patent
examiners [33, 34], and the examiners leverage the classi-
fication system to make citations. They first classify the
patent, then search for potentially related patents [35],
and so are more likely to find relevant previous patents
to cite within the same class. The portion of citations
made to patents in other classes varies greatly depending
on the class of the citing patent, and is also growing over
time (Fig. 2D); these differences can be due to differences
in examiner behavior or office policy.

Another factor affecting citations is time. Recent in-
ventions need time to be recognized and older technolo-
gies gradually become unused, though can potentially re-
main indefinitely [32, 36]. Since a patent’s citations reflect
what technologies are relevant prior art to the invention,
these temporal effects are reflected in the citation record:
Fig. 2E shows the distribution of the age of patents at
the time they are cited. Obviously, because the patent
data we studied only extends to 1976, the maximum pos-
sible patent age depends on the year in which the citing
patents was awarded. The increased likelihood of citing
patents from a particular point in history interacts with
the growing number of new patents and the increasing
number of citations they make. It also crucially interacts
with the fact that technology classes vary in age. The
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FIG. 2. Multiple aspects of the patenting system af-
fect citation rates, and thus impinge on measures of
proximity. The impinging factors vary greatly between tech-
nology classes and are not stable over time, but these com-
plexities can be removed from measures of technology proxim-
ity by normalizing with randomized controls. Colored lines:
Individual classes. Black lines: Averages. A) The number
of patents in different technology classes, over time. B) The
number of citations between every pair of classes compared
to the number of patents in the two classes (on a double log-
arithmic scale). On average the two values are proportional.
C) The mean number of citations made by patents in different
technology classes, over time. D) The percent of citations that
cite patents in classes different from that of the citing patent,
grouped by the class of the citing patent, over time. E) The
distribution of the ages of patents that are cited, grouped by
the year the citation was made. F) The average age of patents
in different technology classes over time. The data for E and
F are censored, as they only cover patents awarded from 1976
onward.

average age of patents in a technology class varies across
classes, and is increasing over history (Fig. 2F). The
trend is increasing partly by construction, as we have no

data before 1976, but the large variance for recent years
is likely a real phenomenon.

Given all these citation phenomena, the expected num-
ber of citations between any two technology classes are
influenced by their propensity to cite and be cited by
other classes, their number of patents, the age distribu-
tion of their patents and their propensity to make and
receive citations. In this study we show how to simulta-
neously control for all these factors.

B. Co-Classification and Co-Occurrence

Like citations, Co-Classification and Co-Occurrence
measures are also influenced by other impinging factors,
such as the simple number of occurrences. The prob-
ability that two technology classes co-occur within the
same patent document, inventor’s or firm’s past patent-
ing history depends on the number of classes that are
associated with a patent, inventor or firm and the num-
ber of patents, inventors and firms that are associated
with a given technology class. A given technology class
may be very common or very rare across all patents, in-
ventors, or firms. Similarly, each patent, inventor, or firm
may associate with very many technology classes, or very
few.

As explained by Bottazzi and Pirino [29], in order to
properly measure the true proximity between classes as
a function of their Co-Occurrence it is crucial to com-
pare the observed Co-Occurrence with a null hypoth-
esis in which occurrences of classes in patents, inven-
tors’ and firms’ histories are randomly distributed while
preserving both the number of occurrences of a class
and the number of classes that are associated with a
given patent, inventor or firm. This is necessary to
make sure that the random expectations incorporate
the characteristic skewed distributions of the number
of classes per patent/inventor/firm and the number of
patents/inventors/firms per class that are observed in the
real world.

Controlling for the number of occurrences in co-
occurrence data has been addressed in information sci-
ence, ecology, medicine and economics [37–41]. We ex-
tend on this understanding by also controlling for tem-
poral effects, since the number of occurrences of a class,
patent, inventor or firm can vary over time. While some
classes are popular in some years and not in others, a
change in popularity ought not influence the true prox-
imity between technology classes. For example, if a firm
only worked on what was most popular every year, the
firm’s activity would not provide new information on how
technologies are related. Controlling for temporal effects
allows us to measure how unusual it is that two classes
co-occurred, given when they were each popular.
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IV. METHODS: MEASURING TECHNOLOGY
PROXIMITY

WHILE CONTROLLING FOR IMPINGING
FACTORS

A. Citations

Using citation information in patent documents, we
measured how often patents in two classes cited each
other directly (Direct Citation), how often classes were
cited together by the same patents (Co-Citation), how
similar were the patterns of citations classes made or re-
ceived from all other classes (Cosine Similarity, Inputs
and Cosine Similarity, Outputs) and how similar were
the patterns of citations classes made or received from all
other patents (Cosine Similarity, Inputs, High Resolution
and Cosine Similarity, Outputs, High Resolution). These
different measures have typically been used to capture
different aspects of technological proximity, as described
above. However, all of the measures rely on patents’ ci-
tations, and citations are determined by more than tech-
nologies’ true proximity.

To clean the empirical signal of technology proxim-
ity from possible spurious relationships caused by the
impinging factors, we compared the empirical proxim-
ity values to a null hypothesis: What would the mea-
sured proximity be by chance, given all the impinging
factors? We calculated the random expectation by cre-
ating 1,000 randomized versions of the patent citation
history, in which all of the impinging factors were ex-
actly preserved. To create these randomized controls we
identified groups of citations in which all the following
properties were the same: the year the citing patents
were issued, the year the cited patents were issued, and
whether the citing and cited patents were in the same
class (cross-class vs. same-class citations). For same-
class citations, we only created citation groups in which
all patents were in the same class. We then shuffled the
cited patents among the citations in the group (Fig. 9).
Perhaps surprisingly, virtually all citations were able to
be grouped with other, similar citations and shuffled in
this way (Appendix VIII). The resulting shuffled versions
of the network were thus different from the original, but
preserved all the desired features of the number of patents
in each class, the patent age sequence, etc.

We used the randomized patent citation history to cal-
culate the different proximity measures between the tech-
nology classes. For each pair of classes, we obtained a
histogram of measured proximity values across the 1,000
randomized controls (Fig. 3, gray bars). For certain
measures and conditions it is also possible to calculate
the complete probability distribution for the randomized
controls, using analytic approximations (Appendix XI).
In contrast, the numerically-generated randomized con-
trols are valid across all conditions and all measures.

We compared the histogram of proximity values from
the randomized controls to the proximity value calculated
from the empirical patent citation history (Fig. 3, verti-
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FIG. 3. The empirical value of proximity between any
two classes was compared to the distribution of prox-
imity values across 1,000 randomized controls for that
link. Each panel represents the link between two classes, the
row class (e.g. Agriculture) and the column class (e.g. Cloth-
ing). The proximity metric shown is Co-Citation, the number
of patents that cited patents in both the row class and the
column class. Histogram: the distribution of proximity val-
ues for that link across 1,000 randomized controls. Vertical
lines: the empirical value for that link derived from the orig-
inal patent citation network, colored by whether it is below,
within, or above the values of the randomized controls. The
empirical proximity value for a given link was typically com-
pletely outside the distribution of the randomized controls’
proximity values for that link (see Fig. 6). The panels shown
are a small sample of the 7,260 possible pairs of classes in the
network of 121 IPC classes.

cal lines). For most pairs of classes the empirical proxim-
ity measure was different from all 1,000 of the random-
ized control values, sitting entirely outside the histogram
(Fig. 3, (blue and red lines). This is analogous to the
empirical link having a p-value below 0.001.

B. Co-Classification and Co-Occurrence

We controlled for the impinging factors in Co-
Classification and Co-Occurrence measures by again
comparing the empirical data to randomized controls.
We created randomized versions of the patent record in
which the number of associations made by each class,
patent, inventor and firm were preserved. We also pre-
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served temporal effects by treating each year of patent
data separately, randomizing each individually, then
combining them into a single, randomized version of his-
tory. We created 1,000 randomized controls in this way,
described in more detail in Appendix IX. We again com-
pared the proximity measures calculated from the ran-
domized controls to those of the empirical values, as with
the citations in Fig. 3.

C. A Normalized Measure of Technology Proximity

For each pair of classes, we summarized the differ-
ence between the empirical proximity and the random
expectation through a z-score. From the numerically-
obtained distribution of randomized controls we cal-
culated the mean (µrandom) and the standard devia-
tion (σrandom), then expressed the empirical proximity
measure (xempirical) as a z-score: z = (xempirical −
µrandom)/σrandom. The z-score expressed how more or
less connected the pair of classes were than would be ex-
pected by chance, given the impinging factors.

The z-score values were nearly a completely normal-
ized proximity measure, but z-scores are still affected by
an impinging factor: the number of patents in each class.
The maximum and minimum possible z-score for a link
between two classes grow as the number of patents in
each class grows; the space of valid z-scores increases and
their magnitudes “inflate” (Fig. 4). As an example, con-
sider the Direct Citation measure between two classes X
and Y . All else equal, the number of expected citations
between the two classes is determined by the number of
patents in each class, Xn and Yn; the mean of the ran-
domized controls grows proportionally with Xn∗Yn (Fig.
4A, blue). However, the standard deviation of the ran-
domized controls grows with the square root of Xn ∗ Yn
(Fig. 4A, green), and so the mean grows large relative
to the standard deviation (Fig. 4B). The maximum dis-
tance an empirical value can be from the mean is also
proportional to Xn ∗ Yn (Fig. 4C, gray region): the min-
imum empirical value is always 0, and so the largest neg-
ative deviation from the mean is just the value of the
mean; the maximum number of possible citations from
X to Y is if every patent in X cited every patent in the
other, which is Xn ∗ Yn itself and thus clearly propor-
tional to Xn ∗ Yn. The links between large classes thus
had a larger space of possible z-scores they could have,
and indeed the observed z-scores grew in magnitude as
the number of patents increased (Fig. 4C, dots).

The inflation of z-scores is not an empirical result, but
an analytical relationship. It arises from three steps:

1. Randomized controls’ mean value and standard de-
viation grow at different rates as the number of
patents in a pair of classes increases, so their ratio
increases.

2. The difference between the empirical value and the
randomized controls’ mean value (the numerator

of the z-score) has a maximum possible value, and
that value grows proportionally with the number of
patents in both classes.

3. As the maximum value of the numerator of the
z-score grows, the denominator (the standard de-
viation) grows less quickly. The numerator grows
large relative to the denominator, larger z-scores
are possible, and the space of possible z-score val-
ues inflates.

To illustrate that z-score inflation is definitional, we
estimated analytically how the means and standard de-
viations of the randomized controls’ link values would
grow with Xn ∗ Yn (Fig. 4A, B, solid lines; 4C, gray
region). The analytic model is only illustrative, as the
statistics of the randomized controls are due to a variety
of factors and could thus deviate from the simple model.
This is why some of the z-scores in Fig. 4C are actu-
ally below the lower barrier modeled, outside the gray
region; the randomized controls’ standard deviation was
smaller expected, so the z-score’s magnitude was larger
than would otherwise be possible.

We corrected for the z-score inflation with a simple
heuristic: regressing out the inflation trend. We calcu-
lated the trend of the z-score inflation for the positive and
negative z-scores, then divided the z-score values by the
trend line (Fig. 4C, D, dashed lines). We calculated the
trend and regressed it out for each measure of proximity
individually (Figures in Supporting Information). The
z-scores were thus deflated, and so the normalized mea-
sures of proximity had no correlation with class’ number
of patents.

The deflated z-scores were the desired measure of tech-
nological proximity that was normalized to remove im-
pinging factors. Empirical and normalized proximity
measures could convey very different perspectives. For
example, the empirical number of citations from “Med-
ical & Hygiene” to “Electric Communication” seemed
large at 17, 542 citations, which put it in the top 3%
of citations. However, this was actually fewer citations
than would be expected by chance: the randomized his-
tories had 63, 826±161 citations between the two classes,
producing a z-score of −288.32. After z-score deflation
the normalized proximity was −2.56, in the bottom 3%
of normalized values.

D. Robustness of Analysis to Different
Classification Systems

All patents were classified by patent agents under two
systems: the United States Classification system (USPC:
430 classes) and the International Patent Classification
system (low-resolution IPC3: 121 classes, high-resolution
IPC4: 629 sub-classes). Data of patents main classes for
all classification systems were available for patents from
1976-2010, and data from those years are used for all
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FIG. 4. The empirical proximity between a pair of classes can be compared to that of randomized controls
as z-scores, but z-scores inflate with the number of patents in the classes, which requires a correction. Solid
lines: analytic model, dots: data, dashed lines: data trend. A) The randomized controls’ links’ means and standard deviations,
which both grew as the number of patents in the pair of classes grew, though at different rates. B) The ratio of the randomized
controls’ links’ means and standard deviations, which grew large as the number of patents in the pair of classes grows. C) The
empirical proximity values, compared to randomized controls using z-scores. The space of possible z-scores was limited above
by the case where all patents in class X cited all patents in class Y , and below by the case where none of the patents in class
X cited any patents in class Y . The limits of this space were modeled analytically (gray region), and the observed z-scores
did grow in magnitude as the space expanded. D) The z-scores were deflated by finding the inflation trends for the positive
and negative z-scores, then dividing each z-score by the value predicted by the trend. The resulting deflated z-scores had no
relationship with the number of patents in each class.

the relevant proximity measures. USPC secondary clas-
sification was available for patents from 1976-2010, and
so Co-Classification using USPC reflect the same years
of data as the other measures. For IPC3 and IPC4 data
on secondary classifications was only available for patents
from 1976-2006, and so the Co-Classification measure us-
ing these classifications reflect 4 fewer years of data.

The US patent office recently joined other national
patent offices to exclusively use the new Cooperative
Patent Classification system (CPC), which is based on
the IPC. In order to ensure our findings are the most
relevant for the future, we focus here on results from
the IPC3, which is more similar to the modern CPC
system than USPC and is more easily visualized than
IPC4. We also repeated the analysis using the USPC
and the higher-resolution IPC4 classification systems and
found qualitatively similar results to those shown here
(Appendix ).

E. Data and Code for Reproduction and Extension
of these Methods

All code to perform these analyses and produce these
figures is included online at . This code takes as input
a set of raw data files describing patents classifications,
authors, assignees and citations. These raw data files
are in Supporting Information. The code is written in
Python and includes documentation.

V. RESULTS

A. Normalization Creates Closer Correlation of
Different Measures of Technology Proximity

Normalization changed how the different kinds of prox-
imity measures compared to each other. Among the em-
pirical networks (before normalization) there were three
groups of correlated networks (Fig. 5, lower left panel).

https://www.github.com/jeffalstott/technologyspace
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FIG. 5. Normalizing networks made technology prox-
imity networks more similar to each other, while less
influenced by other factors. Correlations are between
the link weights of technology networks created with different
measures of proximity. Lower left) Empirical networks. Up-
per right) Normalized networks. Normalized networks’ link
weights are z-scores, where a link value of the empirical net-
work is expressed as a z-score of the randomized controls’
values for that link. Scatter plots and heat maps of the raw
data for all comparisons of proximity measures are in Figs.
11 and 12.

In the first group were Direct Citation and Co-Citation,
in the second were the four varieties of Cosine Simi-
larity, and last was Co-Classification. After normaliza-
tion, all of the proximity measures became more cor-
related with each other measure (Fig. 5, upper right
panel). For classification with IPC3 (Fig. 5) and IPC4
(Fig. 23), Co-Classification was less correlated with
other measures, though its correlation was also raised af-
ter normalization[Note1]. In contrast, Co-Classification
was as correlated as other measures when using classifica-
tion with USPC; the less-correlated measure with USPC
was Co-Citation (Fig. 21).

Thus, removing impinging factors led to more agree-
ment among the different measures of proximity. There is
little a priori reason to expect that normalization would
lead to increased agreement, though we discuss possible
reasons below. However, a posteriori the increased agree-
ment of different proximity measures validates the utility
of the method of normalizing out impinging factors.

B. The Technology Network is Sparse

Before normalizing proximity measures, it is difficult to
quantify the distance between two technologies and then
assert if the resulting number is a high or low value. How-
ever, comparing an empirical link weight to randomized
controls yields a natural interpretation for whether a link
is particularly strong or weak: an empirical link weight
is stronger or weaker than would be expected by chance.
Most links in the networks were weaker than would be
expected by chance (Fig. 6), measured as being below
the link weights of any of the 1,000 randomized controls
(analogous to p < .001). For most proximity measures,
˜20% of the links were stronger than chance, indicating
the two technology classes they connected were particu-
larly related.

The technology networks were thus sparsely connected,
though sparse is a relative term; the network had 7,260
possible links, and with a link density 20% there were still
1,452 links remaining. However, using other classification
systems with higher resolution revealed an even sparser
network: using the USPC classification (430 classes)
yielded a sparsity of ˜10%, and using the IPC4 classi-
fication (629 classes) yielded a sparsity of ˜5% (Figs. 18,
20).

Controlling for spurious factors quantifies an intuitive
fact: most technologies are not particularly proximate to
each other. Instead, any single technology is only notably
proximate to a fraction of the other technology domains.
This finding on the technology map structure again justi-
fies the value of our method of normalizing out impinging
factors.

0 20 40 60 80 100

Percent of Links with an Empirical Value
Greater/Lower/Equal to Randomized Controls

Co-Occurrence, Firms' Patents

Co-Occurrence, Inventors' Patents

Co-Classification

Cosine Sim., Outputs, High Res.

Cosine Sim., Inputs, High Res.

Cosine Sim., Outputs

Cosine Sim., Inputs

Co-Citation

Direct CitationBelow Random

Within Random

Above Random

FIG. 6. Few links between classes had a higher prox-
imity than that expected by chance. Technology net-
works created using different measres were compared to 1,000
randomized controls, by comparing the weights of their links.
For most networks, a majority of the empirical links had lower
proximity than any of the randomized controls (blue), and a
minority were above the randomized controls (red). The ex-
ception was Co-Occurrence, Firm networks, for which many
more pairs of technology classes had greater Co-Occurrence
than would be expected by chance.
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Sparsity was notably less the case for the Co-
Occurrence measured from firms’ patenting histories:
technology pairs occurred together in firms’ patenting
histories at rates greater than chance about twice as often
as in the other networks. Using the IPC3 classification
system this meant most technology pairs were signifi-
cantly connected. However, using the higher resolution
USPC or IPC4 classifications lowered the frequency of
significant technology pairs to ˜20% (Figs. 18, 20).

We also analyzed the patenting histories of countries
and found a similar pattern to that of firms, though the
comparatively small sample of < 200 countries meant the
trend was not statistically significant (Appendix X).

C. Inventors’ Behavior Follows Proximity
Measures Closely, While Firms’ Portfolios Follow

Less Closely

Inventors’ patenting histories closely followed the tech-
nology network structure identified by the normal-
ized measures. Pairs of technology classes’ normal-
ized rates of Co-Occurrence in inventors’ patent histo-
ries were strongly correlated with the other citation- and
classification-based networks (Fig. 7, blue bars). The
normalized technology networks, then, not only began to
converge on a common description of technologies’ prox-
imity to each other, but to a description that also mir-
rored inventors’ behavior. The technology network maps
may thus provide explanation for why a single mind that
is able to invent in “organic chemistry” is also likely able
to invent in “agriculture”: these technology domains are
intrinsically related. Thus, this normalized map will be
particularly useful for analyzing and predicting the in-
vention portfolios and learning paths of inventors.

Firms’ patent portfolios, in contrast, followed the
other technology networks less closely. Pairs of technol-
ogy classes’ normalized rates of Co-Occurrence in firms’
patent histories were also correlated with the other net-
works, but only modestly (Fig. 7, green bars). The asso-
ciation between technology proximity and inventive be-
havior is similar for firms and inventors, but the variance
is much larger for firms, reducing the strength of the asso-
ciation (Fig. 11). Firms, then, are like inventors in that
they tend to invent in classes related to those that they
already have experience in; notwithstanding, deviations
from this general pattern are much more common and siz-
able for firms. Previous research has used co-occurrence
data to investigate whether firms preferentially diversify
into related classes [9, 29, 30]. The present results show
that firms’ patent portfolios are indeed influenced by the
proximity of different technology domains, but this is just
one, modest influence. Firms’ decisions to enter into a
new technology domain are also determined by such fac-
tors as market demand, the availability of capital and risk
diversification. Furthermore, firms are less constrained
than individual inventors; they can hire additional staff
or acquire new ventures that can bring in new knowledge
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FIG. 7. Inventors closely followed the technology net-
work maps derived from the normalized proximity
measures, while firms followed the maps less closely.
The normalized counts of how often two technology classes co-
occurred in inventors’ patenting history correlated with other
normalized measures of technology proximity (blue bars).
The normalized counts of how often two technology classes
co-occurred in firms’ patent portfolios correlated only mod-
estly with the other measures of proximity (green bars).

unrelated or dissimilar to a firm’s previous capabilities.
As such, firms’ inventive behavior only partially reflects
other measures of the technology proximity space.

D. Network Stability Over Time

The technology networks presented so far were con-
structed using all available patent data from 1976 to
2010. These networks represent the ”view from 2010”.
How much does the network change if we consider the
view from different points in history? We previously an-
alyzed the temporal stability of the unnormalized tech-
nology proximity measures, and found that they altered
little over time[21]. Here we analyzed the temporal stabil-
ity of the normalized technology networks by construct-
ing multiple versions using data up year X, where X is
each year from 1976 to 2010. We assessed the similarity
of the networks over time, again by measuring the corre-
lation of their link weights. We measured the correlation
of a network created with data from each year X with
the network created with data from year X − 1.

The networks started out unstable in the 1970s, but
quickly became stable by the 1980s and remained so
through 2010 (Fig. 8). The initial instability was likely



11

0

.5

1
Direct Citation Co-Citation

Cosine Sim.,
Inputs

0

.5

1

C
o
rr

e
la

ti
o
n
 o

f 
N

e
tw

o
rk

's
 L

in
k 

W
e
ig

h
ts

w
it

h
 t

h
o
se

 o
f 

P
re

v
io

u
s 

Y
e
a
r 

(X
-1

)

Cosine Sim.,
Outputs

Cosine Sim.,
Inputs, High Res.

Cosine Sim.,
Outputs, High Res.

1980 1990 2000 2010
0

.5

1
Co-Classification

1980 1990 2000 2010

Network Calculated with Patent Data through Year X

Co-Occurrence,
Inventors' Patents

1980 1990 2000 2010

Co-Occurrence,
Firms' Patents

Network Type

Empirical

Normalized

FIG. 8. All measures of technology proximity were stable over time. Lines: the correlation of the link weights of a
technology proximity network, calculated with data from 1976 to year X, with the link weights of the same network calculated
with data from 1976 to year X − 1. Each panel corresponds to a different measure of technology proximity. Blue lines: the
empirical technology proximity. Green lines: the normalized measure of technology proximity.

due to comparatively little data in these first few years.
With adequate data, however, the normalized networks
are generally stable over time. Thus, the technology
proximities calculated here are not particular to the year
2010, but reflect a more lasting set of relationships.
These relationships may of course still change slowly or
locally, and large changes can not be ruled out before
1976 or after 2010.

VI. DISCUSSION

Normalizing technology network maps by controlling
for impinging factors uncovers previously obscured in-
formation, such as the sparsity of the space of technol-
ogy proximity. Normalization also leads to convergence
of many of the different measures of proximity, as seen
through their increased correlation. These results vali-
date the method of normalizing proximity measures to
remove impinging factors and the usefulness of resulting
maps.

A. Technology Proximity, the Inventive Process,
and Technology Development

After normalization, different technology proximity
measures began to provide a similar map of the technol-
ogy space. There is no a priori reason why this should

happen. In fact, one could assume that proximity mea-
sures based on different perspectives should lead to differ-
ent maps of the technology space. However, the increased
agreement of the different measures could be explained
by that the simple relationship of inventive inputs, in-
ventive outputs, and inventive processes becomes more
apparent after impinging factors and their spurious ef-
fects are removed.

Let us assume that inventions are the result of a cogni-
tive process, f(), that transforms knowledge inputs x into
inventive outputs: y = f(x). The following then holds:
f1(x1) = f2(x2) if f1 = f2 and x1 = x2. Two identical
inventive processes that are given the same inputs will
yield the same outputs. We can then relax the concept
of equality to just similarity: similar inventive processes
that are given similar inputs will yield similar outputs.
We can then explain why technology classes that fre-
quently Co-Occur in inventor’s portfolios also have simi-
lar sets of inputs or outputs: technology classes that re-
quire similar inventive processes (“functions”) are being
used on similar inputs to obtain similar outputs. Inven-
tors with similar inventive process functions f are using
similar inputs x and thus getting similar outputs y, or
seeking to create similar outputs y and thus are using
similar inputs x. Different measures of technology prox-
imity that measure input similarity vs. output similarity
thus correlate, because inputs and outputs are linked by
the function that turns inputs into outputs.

Using normalized measures of technology proximity,
we now better understand the statistics of how inventors
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use their knowledge to create new inventions. The maps
presented here are a cleaned signal of technology prox-
imity, which we can now use to address further questions
about how technology proximity affects technology de-
velopment on a large scale. For instance, it has been hy-
pothesized that the growth or decay of one technology do-
main is affected by technology dynamics and competition
in neighboring domains [42, 43] and that technology de-
velopment in one area benefits from knowledge spillovers
induced by R&D investments in proximate technologies
[13, 44, 45]. The normalized network maps can be used to
test these hypotheses, and so may improve our ability to
explain specific classes number of patents, or how proxi-
mate technology domains interact and even compete. If
the network maps can be used to explain domains dy-
namic coupling, then the maps could be used for pre-
diction: if a new development arises in one domain, we
could predict cascading effects reaching into proximate
domains.

B. Absolutely Related vs. Particularly Related

It is important to highlight that the methods intro-
duced here do not measure if two technological domains
are proximate in an absolute sense; they only measure
if two classes are particularly proximate. As an exam-
ple, consider a class with just one patent that is super-
connected, which cites every other patent. Randomizing
this citation history while also preserving each patents’
outward and inward citations would yield the exact same
arrangement: the super-connected patent would still cite
every other patent. The randomized controls would not
be able to deviate from the observed data, because only
the original arrangement of citations satisfies the condi-
tions. The empirical links between the super-connected
class and other classes would look exactly the same as the
randomized controls’ links, and so the z-scores for those
links would be 0. The class with the super-connected
patent could thus reasonably be considered very proxi-
mate to every other class, but the methods we introduce
here would just see it as not particularly proximate to
any other class. This example illustrates that we do
not measure if two technology classes are proximate in
an absolute sense, but only if, given their absolute level
of connection to all other classes, they have particular
connectivity or disconnectivity to each other above what
could be expected by chance.

C. Alternative Definition of Impinging Factors

We identified several aspects of the patent record as
not pertaining to the proximity of technological artifacts,
arising instead through the patenting or inventive pro-
cess. We called these aspects of the patent record imping-
ing factors, because they affect measures of technological
proximity without contributing to the true signal of prox-

imity. These impinging factors included patents’ number
of citations, the age of the cited patents, the number of
technology classes an inventor or firm has patented in,
etc.; we described above our assessments of what drives
these factors. However, the methods that we present
here could be modified to control for additional imping-
ing factors, such as whether inventors’ patents’ preferen-
tially cite patents by other inventors in the same city or
firm. It is also possible to control for fewer factors, if a
researcher wanted those factors to affect the measure of
proximity. The general method simply requires clearly
identifying which properties of the patent record are to
be controlled for, then generating randomized controls
that preserve those properties.

D. Utility of the Maps and Mapping Technique

The normalized technology networks measured here
can now serve as map for uses in technology develop-
ment planning and management. Both individual inven-
tors and firms can locate themselves and their knowl-
edge on the map and observe what technology domains
are nearby in the technology space. Nearby domains are
likely easier targets for new invention over more distant
domains. Inventors are particularly justified in using the
map to guide their future inventions, since inventors who
successfully patent in multiple domains typically do so in
proximate domains. Firms are less justified in restrict-
ing themselves to targeting technologies in solely those
domains that are proximate to their existing knowledge
base; they may instead hire additional inventors with new
knowledge to roam further afield. For both inventors
and firms, it may be possible to use the map to plan a
long-term research and development path: starting in the
domain where one currently has knowledge, one can tar-
get at a series of domains that are always proximate to
each other, but ultimately result in patenting in a domain
very unrelated from one’s origin. Thus, the normalized
technology proximity map can be a significant strategic
planning tool.

Strategies of following the map (or not) are justified if
an individual or firm wants to behave like those who suc-
cessfully patent. It is possible, however, to have a higher
bar: to be an inventor whose patents receive many cita-
tions, or to be a firm whose inventions yield high financial
returns. Multiple lines of research have found that in-
ventive efforts that combine or move between proximate
technologies are more likely to successfully invent, but
the results are low novelty and unlikely to be a break-
through with high impact [46–50]. In contrast, inventive
efforts that combine distant technologies are less likely
to succeed in creating an invention, but if this hurdle is
overcome then the results are more novel and more likely
to be a breakthrough. The network maps presented here
provide a cleaner measure of technology proximity to fur-
ther test this theory: it is possible to identify inventors
and organizations that persistently followed the map ver-
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sus not, and then examine their performance. Analyzing
inventive behavior in terms of a network may also reveal
more complexity: high-performing inventors or firms may
indeed follow the network more or less closely, but they
may also employ more complex strategies like targeting
particularly dense or sparse regions of the network.

Additionally, the normalization methods presented
here are also of potential relevance in other domains,
such as the study of the proximity of scientific fields. The
same randomization approaches can be used to map the
latent space of scientific disciplines using journal articles’
citations, classifications, etc. Measuring the space of sci-
entific topics with greater accuracy and statistical rigor
may allow for answering such questions as whether the
processes of intellectual creation follow universal rules,
regardless of the scientific or technological nature of the
knowledge involved.

E. Conclusion

Technology is a complex system, but we can gain un-
derstanding of that system by mapping out its compo-
nents and their relations to each other. With the more ac-
curate patent-based technology mapping techniques pre-
sented here it is possible to study technology develop-
ment with a new level of clarity, including both aspects
of technologies themselves and how humans interact with
those technologies. Improved understanding of technolo-
gies and invention may ultimately inform better tech-
nology development policies, leading to more successful
technology innovation and management.
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Appendix

VII. NETWORK VISUALIZATION

We visualized the empirical and normalized technol-
ogy proximity networks (Fig. 1A-B). We highlighted a
community structure for each network, which was calcu-
lated by approximately maximizing the weighted modu-
larity using a faster version of the Louvain method [51–
53]. Only a subgraph of the networks’ links were visu-
alized: the planar maximally filtered graphs [54]. These
graphs contained the set of links with the highest weights
that were also topologically planar, such that they could
be laid out flat on a plane without links crossing.

VIII. EFFECTIVENESS OF THE PATENT
CITATION NETWORK RANDOMIZATION

FIG. 9. The citation rewiring process used to create
randomized control networks preserved many proper-
ties of the original patent citation network. Citations
were selected whose citing patents were issued in the same
year and whose cited patents were also issued in the same
year. Groups of citations were selected that were either all
cross-class (left) or all same-class and all within the same class
(right). The citations in the group were then shuffled. Per-
forming this shuffling operation resulted in a randomized ver-
sion of the patent citation network that still preserved many
properties of the original networks, such as the cross-class
citation rates, the time lag of citations, and the number of
citations made and received by each patent.

There are two wrinkles in how the generation of the
randomized controls, which could in theory could affect
the normalized proximity measures, though in practice
do not. The first wrinkle is that it is not guaranteed that
for every citation there is another citation to be paired
with that has all the same properties required. Fortu-
nately, this happened rarely. Each citation was part of
group of citations that had the same citing patent year,
cited patent year, and cross-class identification (and for
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same-class citations, being within a particular technol-
ogy class). Fig. 10 shows the number of citations in each
group that was represented in the patent network. Only
approximately 14.16% of citations were part of a group
that fewer than 10 members. 2.55% of citations were
part of a group with 1 member; these were unique cita-
tions, and could not be rewired. Leaving these citations
unaltered made the randomized control networks more
similar to the empirical network. As discussed in the
main text, the randomized control networks and the em-
pirical network were still very different, and so the effect
of the unrewired links was unappreciable.
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FIG. 10. Most citations had many other citations with
the same properties, and so could be rewired. The
rewiring procedure used to create randomized controls re-
quired pairing each citation with another citation with similar
properties (Fig. 9). If the group of citations with those prop-
erties was small, then that link would not have many oppor-
tunities for rewiring, and so the randomized controls would
be similar to the empirical network. Over 85% of citations
were in a group that had 10 or more members. Only 2.55%
of citations were unique and could not be rewired. In prac-
tice, the empirical networks rarely resembled the randomized
controls (Fig. 6)

The second wrinkle of this normalization method is
with rewiring cross-class citations. As in Fig. 9, if all
four patents are from different classes, the desired out-
come is achieved. However, it is possible that the citing
patent of one citation is in the same class as the cited
patent of the other citation. In this case, both citations
are indeed cross-class citations, but after rewiring one of
the citations would become a same-class citation. Thus,
the cross-class citation rate would decrease in the ran-
domized controls, and the same-class citation rate would
decrease (Note that it is not possible for the reverse mis-
take to occur, because all the same-class citations are
paired and swapped separately.). The solution, of course,
is to check that the paired citations do not have the prob-
lematic arrangement of classes, and so will not create a
same-class citation. While this works in principle, it does
not in practice. The solution requires checking, rejecting,
and re-suggesting possible pairs of citations. This process
creates significant computational problems, and it is hard
to assess if and when the process will even converge. Be-

cause of this, we left the problem in place, and so the
randomized controls had an increased rate of same-class
citations. This rate was small, with the rate of same-class
citations raising from 39.74% in the empirical patent ci-
tation network to a typical rate of 41% in randomized
controls. The decrease in cross-class citations in the ran-
domized control patent citation networks would typically
make the empirical network appear to have an unusually
high amount of citations between two classes, leading to
an unusually strong connection in the technology net-
work. However, as discussed in the main text, the empir-
ical network generally had much lower proximity values
than would be expected by chance. As such, the error
that the imperfect rewiring introduces would only make
the unusually low normalized values more notable.

IX. RANDOMIZATION OF
CO-CLASSIFICATION AND CO-OCCURRENCE

DATA

The process for controlling for the number of occur-
rences of each class and the number of associations of
each patent, inventor or firm is the same principle as
used in the patent citation network: many randomized
control versions of the empirical data are created. In
the randomized controls, the number of occurrences of
each class and the number of associations of each patent,
inventor or firm is preserved, but the assigning of tech-
nology classes to patents, inventors or firms is otherwise
random. This goal is practically accomplished by ex-
pressing the co-classification or co-occurrence data as a
bipartite graph, in which technology classes are one type
of node and they form connections to another type of
node, be that patents, inventors or firms. Randomized
controls are then created by shuffling the bipartite net-
work’s links, but preserving each node’s degree. The bi-
partite network is then projected into a single-mode net-
work, the co-classification or co-occurrence network. The
resulting one-mode network is then compared to the same
information from the empirical, unrandomized data.

The bipartite network is equivalent to a binary ma-
trix, with patents, inventors or firms forming the rows
and technology classes forming the columns. Reshuffling
the bipartite network is equivalent to creating random
versions of the binary matrix, with each row and column
having the same sum. Bottazzi and Pirino described how
creating random controls in this way for co-occurrence
data can markedly alter the interpretation of empirical
co-occurrences [29]. We extend the shuffling technique
they used with a reshuffling method designed with bi-
partite networks in mind [40]. These methods analyti-
cally determine the number of rewires necessary to make
on the original bipartite network in order to effectively
take an unbiased sample from the set of networks with
the same degree sequence. We used the BiRewire soft-
ware package to first calculate the necessary number of
rewires for each of the bipartite networks we examined,
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FIG. 11. Comparison of link weights across different proximity measures, as scatter plots. Blue: empirical networks.
Red: normalized networks. Black: empirical vs. normalized link weight for each measure compared to itself (x-axis: empirical,
y-axis: normalized). Text: Pearson correlation.

and then to rapidly execute the rewires [55].

We created randomized controls that preserved tempo-
ral changes in class’ popularity and inventors’ or firms’
activity by treating each year of data as a separate bi-
partite network. Each year was rewired independently,
and then all years were combined to create the final ran-
domized control to which the empirical network was com-
pared.

Preserving temporal behavior introduces information
which is not typically considered in the analysis of co-
occurrence data. It also introduces additional complex-
ity. Consider an inventor who was active in one technol-
ogy class: Hats. This inventor was active for 10 years,
patenting each year, each time in the technology class
for Hats. If we identify this inventor as “occurring” in
Hats each year, and randomize each of the 10 years indi-
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FIG. 12. Comparison of link weights across different proximity measures, as heat maps. As Fig. 11, but expressed
a heat map of point density. Blue: empirical networks. Red: normalized networks. Black: empirical vs. normalized link weight
for each measure compared to itself (x-axis: empirical, y-axis: normalized). Text: Pearson correlation.

vidually, it is likely that across the 10 randomized years
the inventor will then occur in many different technol-
ogy classes. When we combine the 10 randomized years
back together, we would then observe that the inventor
occurred in many technology classes, perhaps 10, which
is far more than the 1 class in which the inventor was
actually active. By marking the inventor as “occurring”
in every year individually, our randomization will thus

break the basic task of preserving the number of classes
the inventor was active in. Therefore, any time an in-
ventor or firm is awarded patents in a class in multiple
years, we have a problem.

The solution to the problem of an inventor or firm “oc-
curring” over multiple years is to not consider the entity
as occurring over multiple years. Instead, the inventor
or firm is considered to occur in each class only once, in
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a single year. In this way, randomizing each year indi-
vidually cannot increase the total number of classes that
an entity associates with in its history. After random-
ization of individual years and combining them together,
the number of classes per entity and entities per class will
still be preserved.

For the purpose of inventors or firms patenting in tech-
nology classes, the most salient year to mark the entity as
occurring in a class is the first year that entity patented in
that class. This is particularly relevant for controlling for
phenomena like popularity-chasing; if a firm only enters
technology domains because they are popular, that does
not provide more information about how related technol-
ogy domains are. We thus mark each inventor or firm as
occurring in a technology class when they first entered
into that class, and compare to randomized controls that
preserve the timing of the entries.

A. Preserving Temporal Information Markedly
Affected Firm Measures, but not Others

Preserving the year sequence in the randomized con-
trols had only a modest effect on the measured normal-
ized network, for most measures (Fig. 13). However,
the Co-Occurrence, Firm measure was markedly altered
by preserving the year sequences. Without preserving
year sequences, the Co-Occurrence, Firm network had
˜25% of its links stronger than random chance, closer to
the fraction observed in the other proximity measures.
By preserving the year sequences in the randomized con-
trols and normalizing out such phenomena as popularity-
chasing, the normalized Firm, Co-Occurrence network
had ˜50% of links stronger than chance.

0 20 40 60 80 100

Percent of Links with an Empirical Value
Greater/Lower/Equal to Randomized Controls

Co-Occurrence, Firms' Patents,
Unpreserved Year Sequence

Co-Occurrence, Firms' Patents

Co-Occurrence, Inventors' Patents,
Unpreserved Year Sequence

Co-Occurrence, Inventors' Patents

Co-Classification,
Unpreserved Year Sequence

Co-Classification
Below Random

Within Random

Above Random

FIG. 13. Most proximity measures were only modestly
affected by preserving yearly history. The exception was
in Co-Occurrence, Firm, which showed a marked change in
the number of links that were stronger than chance.

By preserving temporal effects, the Co-Occurrence of
technology classes in firms’ patent portfolios were found
to be generally more frequent than chance. Thus, by cre-
ating randomized controls that had more features in com-
mon with the empirical data (the temporal sequence),

the empirical data appeared more unusual. This may
seem counter intuitive, and so we provide some intuition
here. Consider two statements:

1. “I am a human, and I speak Mandarin
Chinese”.

This is unusual, but not that unusual. A randomly se-
lected human has about a 1/7 chance of speaking Man-
darin Chinese.

2. “I am an Italian human, and I speak Man-
darin Chinese”.

This is very unusual. A randomly selected Italian human
has a much lower chance of speaking Mandarin Chinese.

Thus, by adding additional constraints to the random-
ized controls, we generate controls that are more like the
empirical sample (human vs. Italian human), but the
empirical sample is now more different from the controls.

In our case, we generate randomized controls that can
either:

1. freely associate classes with firms, regardless of
firms’ histories

2. must associate classes with firms only when the
firms entered a new class

Consider a class, Hats, that had some level of popu-
larity P across all of history, but during some periods of
history had a much smaller popularity, p. Using method
1, randomized controls will match up a firm with Hats
at the rate P . However, it is possible that a specific
firm only entered a new class at the moment in history
when Hats had the diminished popularity p. Method 1 is
blind to this fact. However, using method 2, randomized
controls will match up the firm with Hats at the rate p.
The specific firm’s entry into Hats, then, appears more
unusual using method 2 than method 1, because p < P .

Therefore, using randomized controls that preserve the
yearly sequence of firms’ entries can identify temporal
effects that make a firm’s movement into a class appear
more unusual. This method can then be scaled to a whole
population of firms, to determine if their movements in
aggregate are unusual. We can then measure whether
the co-occurrence of two classes in firms’ portfolios is
unusual, i.e. different from that expected by chance.

X. CO-OCCURRENCE, COUNTRY DATA

The empirical proximity links between technology
classes had values typically much higher or lower than all
1,000 randomized controls, across all measures of prox-
imity (Fig. 6). We measure this phenomena in more
detail by expressing each empirical link’s value as a per-
centile rank, relative to the randomized controls. Fig.
14 shows the histograms of the empirical links’ ranks, for
each proximity measure. For the nine proximity measures
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reported in the main text, the majority of links were lower
than all randomized controls (rank 0) or higher (rank
100). For eight of the proximity measures, rank 0 links
outnumbered rank 100 links. The exception was the Co-
Occurrence, Firm network, in which rank 100 links were
more common than rank 0 links.

We analyzed the patenting histories of countries to cre-
ate a Co-Occurrence, Countries network, analogous to
the networks created from Co-Occurrence, Inventor and
Co-Occurrence, Firm measures. The country data was
similar to the firm data, in that rank 100 links were more
common than rank 0 data (Fig. 14, lower right panel).
However, the vast majority of links between technology
domains were between ranks 0 and 100, meaning they
had values within the range expected by chance (covered
by the 1,000 randomized controls). It is possible that
with additional country data these links would prove to
be significantly different from chance. However, with less
than 200 countries, the co-occurrence data did not pro-
vide a sufficiently strong signal to assert that country’s
invention portfolios combined many technology classes at
rates different from random chance.

XI. ANALYTIC APPROXIMATIONS OF
RANDOMIZED CONTROLS

A. Expected Number of Citations

The expected value of citations between any pair of
classes and its standard deviation can be conveniently
approximated analytically by exploiting the statistical
properties of our randomization process. The process can
be seen as a sum of random variables Xt,lag, one for each
citing-cited year t, lag pair that describe the possible re-
lationship between a given citing and cited class. The ci-
tation swapping procedure can be described as sampling
a number of citations ncitingt,lag

without replacement out
of a population N of swappable citations that respect the
required constraints, in which there are exactly K cita-
tions directed toward the given cited class. Therefore,
for each citing-cited year pair t, lag, the expected num-
ber of citations between a citing and a cited class behaves
like a hypergeometric random variable Xt,lag. As such,
the total expected number of citations for a given pair of
citing-cited classes is described by the sum Cciting,cited

of hypergeometric random variables Xt,lag with different
number of trials n, population size Nt,lag and number of
successes Kcitedt,lag

. It follows that the expected value
E(Cciting,cited) is approximately equal to

E(Cciting,cited) ∼
∑

∀t∈Tciting

t−1976∑
lag=0

[
ncitingt,lag

∗ p(connection)citedt,lag

]
(1)
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FIG. 14. All proximity measures found that most tech-
nology proximity links were very different from ran-
domized controls, except Co-Occurrence, Country.

Where ncitingt,lag
is the number of citations made by

the given citing class to be reshuffled for each random
variable Xt,lag (i.e. the number of trials). The prob-
ability of swapping any of these citations with anyone
connecting to a patent belonging to the given cited class
is
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p(connection)citedt,lag
=
Kcitedt,lag

Nt,lag
(2)

More specifically, for each citing-cited year pair t, lag
the number of trials ncitingt,lag

is equal to

ncitingt,lag
= Ccitingtp(lag)citingt,lag

p(outward)citingt,lag

(3)

Where Ccitingt is the number of citations made
by patents granted in year t belonging to the given
citing class, p(lag)citingt,lag

is the probability that
they cite patents granted in the year t− lag and
p(outward)citingt,lag

is the probability that they cite
patents belonging to a class different from the one of
origin. The latter two are indexed by citing, t and lag
because, as we have shown in the panels of Fig. 1, there
is a large variability across classes and time. It follows
that the standard deviation σciting,cited of Cciting,cited is
approximately equal to

σciting,cited ∼

√√√√ ∑
∀t∈Tciting

t−1976∑
lag=0

[
ncitingt,lag

∗ p(connection)citedt,lag

∗ (1 − p(connection)citedt,lag
)

∗
Nt,lag − ncitingt,lag

Nt,lag − 1

]
(4)

When Nt,lag is large and nt,lag is small compared to it,
then the fraction in equation 4 approaches unity. There-
fore, the σciting,cited can be approximated by the stan-
dard deviation of a binomial distribution. This is partic-
ularly handy if one would like to have an analytic solution
for the p-values of the empirical proximity. In fact, the
distribution of the sum of hypergeometric random vari-
ables with varying number of trials and probability of
success has no closed form solution. However, the sum of
binomial random variables with different n and p, can be
seen as the the sum of Bernoulli random variables with
different probabilities and is, therefore, described by the
Poisson binomial distribution (a.k.a. Bernoulli-Poisson
distribution) [56–58]. Recently, it has been shown that
the Poisson-binomial cumulative and probability distri-
bution functions have exact closed-form solutions and ac-
curate refined normal approximations [56]. Based on the
equations discussed here it is straightforward to derive
the expected value of Co-Citation and Cosine Similari-
ties between classes by using the joint probability distri-
bution of citations from patents to classes and the cosine
value of the vectors of expected received citations for any
given class pairs.

B. Nature and Quality of the Analytic
Approximation

The solutions for E(Cciting,cited) and σciting,cited re-
ported above are excellent approximations of numeric
solutions for the number of citations between classes,
as provided by our randomization process (Fig. 15).
The same approach could be applied to predict the nu-
meric solution of the expected value and variance of co-
occurrences of classes in patents, inventors’ and firms’
patenting histories. In this case n would be the num-
ber of classes in which a patent, an inventor or a firm
have been inventing, K would be the number of patents,
inventors or firms that have been patenting in a given
class and N would be the total number of occurrences
(i.e. of links) in a bipartite network of patents*classes,
inventors*classes or firms*classes. However, the approx-
imation would perform very poorly in this case.

The source of the analytic approximation deviating
from the real behavior is due to the binary nature
of citation networks and bipartite occurrence networks.
When one works with weighted networks, numeric so-
lutions provided by randomization algorithms that pre-
serve row and column sums of the adjacency matrix, and
analytic solutions based on hypergeometric distributions
fully agree. In contrast, with binary networks, analytic
solutions based on hypergeometric random variables may
considerably differ from numeric solutions. The source of
the problem lays in the possibility of double counting as-
sociations. Suppose that we are measuring the expected
number of citations between patents. Suppose also that
patent A cites patents B and C and that patent D cites
patents B and E, and that we want to swap citations be-
tween patents. If we use a permutation algorithm (which
are a popular choice for randomizing weighted networks)
to randomize citations, we might incur in double count-
ing. In our example, if we permute cited patents we
might end up in a configuration in which patent A cites
patent B twice and patent D cites patents C and E. This
would obviously break the binary nature of patent cita-
tions networks, and make the model deviate from reality.
If our example would now describe a fictitious weighted
networks we would not be facing double-counting prob-
lems as the random realization of the network would just
strengthen the link between node A and node B. Al-
gorithms like BiRewire randomize networks while auto-
matically preserving row and column sums of the empir-
ical adjacency matrix, but also avoiding the possibility
of double counting associations (this is accomplished by
repeatedly swapping associations within sub-matrices of
four cells in which associations are only found in one
of the two diagonals). Analytic approaches based on hy-
pergeometric distributions provide the exact solutions for
permutation algorithms and are blind to the possibility
of double-counting. Therefore, if we use them to predict
expected values and standard deviation of associations
between nodes in binary networks, we incur a mistake.

When we deal with a large patent citation network,
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FIG. 15. Comparison of analytic and numeric solutions of the expected value (first column), standard deviation
(second column) and z-scores (third column) of direct citations (first row), co-classification (second row), co-
occurrences of classes in inventors’ patenting histories (third row) and in firms histories (fourth row). One data
point per class pair. If the analytic and numeric solutions would agree, all data points would lay on the black solid lines. This
only happens for direct citations. Red shaded lines in the z-scores panel highlights values of the z-scores equal to 2 and -2, i.e.
a possible threshold of statistical significance for proximity and distance based on a normal approximation. Inference based on
the analytic solutions would cause both type I and II errors for co-classification and co-occurrences.

in which the in-degree distribution is extremely skewed
(i.e. most of the nodes have a very low K), most of the
patents cite several patents (i.e. n is relatively large),
and there are many links (i.e. N is very large), the prob-
ability of selecting two citations to swap that will cause
double-counting is very low. To understand this, suppose
now that patent A cites patents B and C (and therefore
has n = 2), that patent B has been cited K times and
that there are N citations in the network. We would
face double counting of citations from patent A to B
only if, during the randomization process, we would ran-
domly pick the citations from A to C and swap it with
another one directed to B. This will happen with prob-
ability (1/n) ∗ (K − 1)/(N −n), which is very small. For
these reasons, the hypergeometric-based analytic solu-
tion, designed to predict permutation algorithms, works
very well in our case, even if we randomize our binary
citation network by using a 2-by-2 sub-matrix diagonal
swapping algorithm (Fig. 15), top row). However, for
co-occurrence data, the situation is very different.

The occurrence networks of patents-classes, inventors-
classes and firms-classes have much fewer links than a
patent citation network (i.e. N is much smaller) and the
occurrence of some classes is much more common that
the appearance of citations to a given patent (i.e. K is
much larger compared to N in our occurrence networks).
Therefore, the probability of incurring in double count-
ing, if we would use permutation algorithms, is much

larger. Accordingly, 2-by-2 sub-matrix diagonal swap-
ping algorithms, like BiRewire, must be used in this case
and the misuse of hypergeometric-based analytic solu-
tions to predict their outcome actually causes type I and
II errors in the inference based on z-scores (Fig. 15, right
column). For this reason, precise analytic solutions of the
expected value and variance of occurrences of classes in
patents, inventors’ and firms’ histories do not exist. We
must therefore solely rely on the numeric solutions pro-
vided by our randomization method, to calculate reliable
z-scores of technology proximity.
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FIG. 16. The different measures of technology proxim-
ity, as calculated using the IPC3 classification system
with patents from 1976-2006 for all measures.
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FIG. 17. The impinging factors affecting proximity
measures, calculated using the USPC classification
system.
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FIG. 18. Using the USPC classification system, all
measures of technology proximity showed a sparse
network after normalization.

FIG. 19. The impinging factors affecting proximity
measures, calculated using the IPC4 classification
system.

FIG. 20. Using the IPC4 classification system, all mea-
sures of technology proximity showed a sparse net-
work after normalization.
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FIG. 21. The different measures of technology proxim-
ity, as calculated using the USPC classification sys-
tem, had heterogeneous correlations before normal-
ization. After normalization, however, all measures
correlated.
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FIG. 22. As calculated using the USPC classification
system, the normalized measures of technology prox-
imity strongly correlated with the behavior of inven-
tors, and modestly with the behavior of firms.
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FIG. 23. The different measures of technology prox-
imity, as calculated using the IPC4 classification sys-
tem, had heterogeneous correlations before normal-
ization. After normalization, however, all measures
correlated.
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FIG. 24. As calculated using the IPC4 classification
system, the normalized measures of technology prox-
imity strongly correlated with the behavior of inven-
tors, and modestly with the behavior of firms.
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Supporting Information

XII. Z-SCORE INFLATION AND DEFLATION
OF DIFFERENT PROXIMITY MEASURES

All figures as Fig. 4. Note that cosine-based measures
have different dynamics with how randomized controls’

means and standard deviations alter with the number of
patents in a pair of classes. However, since the mean
and the standard deviation still change at different rates,
their ratio still changes, which still leads to the change
in the space of possible z-scores. Thus, correcting for the
change in the space of possible z-scores is still necessary.



REFERENCES 29

FIG. S1.
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FIG. S2.
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FIG. S3.
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FIG. S4.



REFERENCES 33

FIG. S5.
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FIG. S6.
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FIG. S7.
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FIG. S8.


	Mapping Technology Space by Normalizing Patent Networks
	Abstract
	I Introduction
	II Measuring Technology Proximity
	A Citation based measures
	1 Direct Citation
	2 Co-Citation
	3 Cosine Similarity

	B Co-Classification and Co-Occurrence based measures

	III Origins of Factors Impinging on the Empirical Measurement of Technology Proximity
	A Citations
	B Co-Classification and Co-Occurrence

	IV Methods: Measuring Technology proximity while Controlling for Impinging Factors
	A Citations
	B Co-Classification and Co-Occurrence
	C A Normalized Measure of Technology Proximity
	D Robustness of Analysis to Different Classification Systems
	E Data and Code for Reproduction and Extension of these Methods

	V Results
	A Normalization Creates Closer Correlation of Different Measures of Technology Proximity
	B The Technology Network is Sparse
	C Inventors' Behavior Follows Proximity Measures Closely, While Firms' Portfolios Follow Less Closely
	D Network Stability Over Time

	VI Discussion
	A Technology Proximity, the Inventive Process, and Technology Development
	B Absolutely Related vs. Particularly Related
	C Alternative Definition of Impinging Factors
	D Utility of the Maps and Mapping Technique
	E Conclusion

	 Acknowledgments
	VII Network Visualization
	VIII Effectiveness of the patent citation network randomization
	IX Randomization of Co-Classification and Co-Occurrence Data
	A Preserving Temporal Information Markedly Affected Firm Measures, but not Others

	X Co-Occurrence, Country Data
	XI Analytic Approximations of Randomized Controls
	A Expected Number of Citations
	B Nature and Quality of the Analytic Approximation

	 References
	XII Z-Score Inflation and Deflation of Different Proximity Measures


