Skip to main content
Log in

Measuring the R&D efficiency of regions by a parallel DEA game model

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

This paper proposes a model that can measure the R&D efficiency of each region (DMU) or each production unit while taking the inter-DMU competition and inter-subprocesses competition into account. The game cross-efficiency concept is introduced into the parallel DEA model. Furthermore, each DMU (subprocess) tries to maximize its own efficiency without harming the cross efficiency of each of the other DMUs (subprocess). We carry out an algorithm to obtain the best game cross-efficiency scores. This score has been proved to converge to a Nash equilibrium point. We use the proposed model to measure the R&D efficiency of the 30 provinces of China. The results show that the algorithm converges to a unique cross efficiency and our model indeed takes the bargaining power of DMUs and subprocesses into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abramo, G., D’Angelo, C. A., & Pugini, F. (2008). The measurement of Italian universities’ research productivity by a non parametric-bibliometric methodology. Scientometrics, 76(2), 225–244.

    Article  Google Scholar 

  • Anderson, T. R., Hollingsworth, K., & Inman, L. (2002). The fixed weighting nature of a cross-evaluation model. Journal of Productivity Analysis, 17(3), 249–255.

    Article  Google Scholar 

  • Banker, R. D. (1980). A game theoretic approach to measuring efficiency. European Journal of Operational Research, 5(4), 262–266.

    Article  MathSciNet  MATH  Google Scholar 

  • Banker, R. D., Charnes, A., Cooper, W., & Clarke, R. (1989). Constrained game formulations and interpretations for data envelopment analysis. European Journal of Operational Research, 40(3), 299–308.

    Article  MathSciNet  MATH  Google Scholar 

  • Becker, R. A., & Chakrabarti, S. K. (2005). Satisficing behavior, Brouwer’s fixed point theorem and Nash equilibrium. Economic Theory, 26(1), 63–83.

    Article  MathSciNet  MATH  Google Scholar 

  • Bonaccorsi, A., Daraio, C., & Simar, L. (2006). Advanced indicators of productivity of universities An application of robust nonparametric methods to Italian data. Scientometrics, 66(2), 389–410.

    Article  Google Scholar 

  • Braglia, M., & Petroni, A. (2000). A quality assurance-oriented methodology for handling trade-offs in supplier selection. International Journal of Physical Distribution & Logistics Management, 30(2), 96–112.

    Article  Google Scholar 

  • Brouwer, L. E. (1911). Beweis der Invarianz der Dimensionenzahl. Mathematische Annalen, 70(2), 161–165.

    Article  MathSciNet  MATH  Google Scholar 

  • Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2(6), 429–444.

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, C. P., Hu, J. L., & Yang, C. H. (2013). Produce patents or journal articles? A cross-country comparison of R&D productivity change. Scientometrics, 94(3), 833–849.

    Article  Google Scholar 

  • Chen, C. M., & Zhu, J. (2011). Efficient resource allocation via efficiency bootstraps: An application to R&D project budgeting. Operations Research, 59(3), 729–741.

    Article  MATH  Google Scholar 

  • Choung, J.-Y., & Hwang, H.-R. (2013). The evolutionary patterns of knowledge production in Korea. Scientometrics, 94(2), 629–650.

    Article  Google Scholar 

  • Debreu, G. (1952). A social equilibrium existence theorem. Proceedings of the National Academy of Sciences of the United States of America, 38(10), 886.

    Article  MathSciNet  MATH  Google Scholar 

  • Dimas, G., Goula, A., & Soulis, S. (2012). Productive performance and its components in Greek public hospitals. Operational Research, 12(1), 15–27.

    Article  MATH  Google Scholar 

  • Doyle, J., & Green, R. (1994). Efficiency and cross-efficiency in DEA: Derivations, meanings and uses. Journal of the Operational Research Society, 45(5), 567–578.

    Article  MATH  Google Scholar 

  • Farrell, M. J. (1957). The measurement of productive efficiency. Journal of the Royal Statistical Society, 120(3), 253–290.

    Article  Google Scholar 

  • Glicksberg, I. L. (1951). A further generalization of the Kakutani fixed point theorem, with application to Nash equilibrium points. Proceedings of the National Academy of Sciences of the United States of America, 38, 170–174.

    MATH  Google Scholar 

  • Golany, B., & Rousseau, J. J. (1992). Efficiency evaluation games. In F. Y. Phillips & J. J. Rousseau (Eds.), Systems and management science by extremal methods (pp. 327–347). Boston: Kluwer.

    Chapter  Google Scholar 

  • Green, R. H., Doyle, J. R., & Cook, W. D. (1996). Preference voting and project ranking using DEA and cross-evaluation. European Journal of Operational Research, 90(3), 461–472.

    Article  MATH  Google Scholar 

  • Guan, J. C., & Chen, K. H. (2010a). Measuring the innovation production process: A cross-region empirical study of China’s high-tech innovations. Technovation, 30(5), 348–358.

    Article  Google Scholar 

  • Guan, J. C., & Chen, K. H. (2010b). Modeling macro-R&D production frontier performance: An application to Chinese province-level R&D. Scientometrics, 82(1), 165–173.

    Article  Google Scholar 

  • Guan, J. C., & Chen, K. H. (2012). Modeling the relative efficiency of national innovation systems. Research Policy, 41(1), 102–115.

    Article  MathSciNet  Google Scholar 

  • Guan, J. C., Yam, R., Mok, C. K., & Ma, N. (2006). A study of the relationship between competitiveness and technological innovation capability based on DEA models. European Journal of Operational Research, 170(3), 971–986.

    Article  MATH  Google Scholar 

  • Guan, J. C., & Zuo, K. R. (2014). A cross-country comparison of innovation efficiency. Scientometrics, 100, 541–575.

    Article  Google Scholar 

  • Guan, J. C., Zuo, K. R., Chen, K. H., & Yam, R. C. M. (2016). Does country-level R&D efficiency benefit from the collaboration network structure? Research Policy, 45(4), 770–784.

    Article  Google Scholar 

  • Han, U., Asmild, M., & Kunc, M. (2016). Regional R&D efficiency in Korea from static and dynamic perspectives. Regional Studies, 50(7), 1170–1184.

    Article  Google Scholar 

  • Han, U., & Kunc, M. (2015). Philosophical insights in system modelling: an application to the field of innovation systems. International Journal of Economics and Business Research, 9(4), 437–453.

    Article  Google Scholar 

  • Ho, M. H.-C., & Liu, J. S. (2013). The motivations for knowledge transfer across borders: the diffusion of data envelopment analysis (DEA) methodology. Scientometrics, 94(1), 397–421.

    Article  Google Scholar 

  • Hung, W.-C., Lee, L.-C., & Tsai, M.-H. (2009). An international comparison of relative contributions to academic productivity. Scientometrics, 81(3), 703–718.

    Article  Google Scholar 

  • Jiménez-Sáez, F., Zabala-Iturriagagoitia, J. M., & Zofío, J. L. (2013). Who leads research productivity growth? Guidelines for R&D policy-makers. Scientometrics, 94(1), 273–303.

    Article  Google Scholar 

  • Kao, C., & Liu, S. T. (2014). Measuring performance improvement of Taiwanese commercial banks under uncertainty. European Journal of Operational Research, 235(3), 755–764.

    Article  Google Scholar 

  • Liang, L., Wu, J., Cook, W. D., & Zhu, J. (2008). The DEA game cross-efficiency model and its Nash equilibrium. Operations Research, 56(5), 1278–1288.

    Article  MathSciNet  MATH  Google Scholar 

  • Lim, S., Oh, K. W., & Zhu, J. (2014). Use of DEA cross-efficiency evaluation in portfolio selection: An application to Korean stock market. European Journal of Operational Research, 236(1), 361–368.

    Article  MathSciNet  MATH  Google Scholar 

  • Lozano, S. (2013). Using DEA to find the best partner for a horizontal cooperation. Computer and Industrial Engineering, 66(2), 286–292.

    Article  MathSciNet  Google Scholar 

  • Lucas, R. E. (1988). On the mechanics of economic development. Journal of Monetary Economics, 22(1), 3–42.

    Article  Google Scholar 

  • Ma, R. M., Yao, L. F., Jin, M. Z., & Ren, P. Y. (2014). The DEA game cross-efficiency model for supplier selection problem under competition. Applied Mathematics & Information Science, 8(2), 811–818.

    Article  Google Scholar 

  • Moon, H. S., & Lee, J. D. (2005). A fuzzy set theory approach to national composite S&T indices. Scientometrics, 64(1), 67–83.

    Article  Google Scholar 

  • Nakabayashi, K., & Tone, K. (2006). Egoist’s dilemma: A DEA game. Omega, 34(2), 135–148.

    Article  Google Scholar 

  • National Bureau of Statistics and Ministry of Science and Technology. (2008–2015). China statistical yearbook on science and technology. Beijing: China Statistical Press.

  • Nelson, R. R. (1982). The role of knowledge in R&D efficiency. The Quarterly Journal of Economics, 97(3), 453–470.

    Article  Google Scholar 

  • Oral, M., Kettani, O., & Lang, P. (1991). A methodology for collective evaluation and selection of industrial R&D projects. Management Science, 37(7), 871–885.

    Article  MATH  Google Scholar 

  • Oxman, J. A. (1992). The global service quality measurement program at American Express Bank. National Productivity Review, 11(3), 381–392.

    Article  Google Scholar 

  • Romer, P. M. (1986). Increasing returns and long-run growth. The Journal of Political Economy, 94(5), 1002–1037.

    Article  Google Scholar 

  • Romer P. M. (1990). Endogenous technological change. Journal of Political Economy, 98(5), 71–102.

    Article  Google Scholar 

  • Rousseau, S., & Rousseau, R. (1997). Data envelopment analysis as a tool for constructing scientometric indicators. Scientometrics, 40(1), 45–56.

    Article  Google Scholar 

  • Rousseau, S., & Rousseau, R. (1998). The scientific wealth of European nations: Taking effectiveness into account. Scientometrics, 42(1), 75–87.

    Article  Google Scholar 

  • Rousseau, J. J., & Semple, J. (1995). Two-person ratio efficiency games. Management Science, 41(3), 435–441.

    Article  MATH  Google Scholar 

  • Salo, A., & Punkka, A. (2011). Ranking intervals and dominance relations for ratiobased efficiency analysis. Management Science, 57(1), 200–214.

    Article  MATH  Google Scholar 

  • Semple, J. (1997). Constrained games for evaluating organizational performance. European Journal of Operational Research, 96(1), 103–112.

    Article  MathSciNet  MATH  Google Scholar 

  • Sexton, T. R., Silkman, R. H., & Hogan, A. J. (1986). Data envelopment analysis: Critique and extensions. In R. H. Silkman (Ed.), Measuring efficiency: An assessment of data envelopment analysis (Vol. 1986, pp. 73–105). San Francisco: Jossey-Bass.

    Google Scholar 

  • Sharma, S., & Thomas, V. (2008). Inter-country R&D efficiency analysis: An application of data envelopment analysis. Scientometrics, 76(3), 483–501.

    Article  Google Scholar 

  • Souza, G. S., Alves, E., & Avila, A. F. D. (1999). Technical efficiency of production in agricultural research. Scientometrics, 46(1), 141–160.

    Article  Google Scholar 

  • Wang, M. Q., & Li, Y. J. (2014). Supplier evaluation based on Nash bargaining game model. Expert Systems with Applications, 41(9), 4181–4185.

    Article  Google Scholar 

  • Wu, J., & Liang, L. (2012). A multiple criteria ranking method based on game cross-evaluation approach. Annals of Operations Research, 197(1), 191–200.

    Article  MathSciNet  MATH  Google Scholar 

  • Wu, J., Liang, L., & Chen, Y. (2009a). DEA game cross-efficiency approach to Olympic rankings. Omega, 37(4), 909–918.

    Article  Google Scholar 

  • Wu, J., Liang, L., & Yang, F. (2009b). Achievement and benchmarking of countries at the Summer Olympics using cross efficiency evaluation method. European Journal of Operational Research, 197(2), 722–730.

    Article  MATH  Google Scholar 

  • Wu, D., Luo, C., Liang, L., & Dolgui, A. (2014). Efficiency evaluation model with constraint resource: an application to banking operations. Journal of the Operational Research Society, 65(1), 14–22.

    Article  Google Scholar 

Download references

Acknowledgements

This study is supported by the Grants from National Natural Science Foundation of China (Nos. 71673261 and 71373254) and from The Research Team of Natural Science Foundation of Guangdong Province in China (2016A030312005). The authors are very grateful for the valuable comments and suggestions from the anonymous reviewer, which significantly improved the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiancheng Guan.

Additional information

Kairui Zuo and Jiancheng Guan have contributed equally to this paper.

Appendix

Appendix

See Tables 5, 6 and 7.

Convergence of the algorithm

Convergence of the algorithm for the overall process

We prove the convergence of the algorithm for the overall process in two steps. With Eq. (10), for any t = 2, 3, 4, …, and j = 1, 2, …, n, we have

  1. (I)

    \(\alpha_{j}^{1} \le \alpha_{j}^{t}\)

  2. (II)

    \(\alpha_{j}^{1} \le \alpha_{j}^{3} \le \alpha_{j}^{5} \le \cdots \le \alpha_{j}^{2t - 1} \le \alpha_{j}^{2t} \cdots \alpha_{j}^{6} \le \alpha_{j}^{4} \le \alpha_{j}^{2}\)

Proof

(I) Let \(\alpha_{d}^{{\rm CCR}}\) to be CCR efficiency for DMU d in Eq. (8) and weights \({}^{l}v_{d}^{*} ,{}^{l}u_{d}^{*} ,l = 1,2, \ldots ,k\) optimal weights for DMU d in Eq. (8). Obviously, \({}^{l}v_{d}^{*} ,{}^{l}u_{d}^{*} ,l = 1,2, \cdots ,k\) is feasible to Eq. (10). Let \(\alpha_{d} = \alpha_{d}^{{\rm CCR}}\) in Eq. (10). We have \(\frac{1}{n}\sum\nolimits_{d = 1}^{n} {\sum\nolimits_{l = 1}^{k} {{}^{l}u_{d}^{*} {}^{l}Y_{j} } } = {}^{\text{cross-efficiency}}E_{j} = \alpha_{j}^{1}\). Because \(\alpha_{d}^{{\rm CCR}}\) is the maximum efficiency that DMU d can achieve, i.e. \(\alpha_{d}^{t} \le \alpha_{d}^{{\rm CCR}}\), then the feasible region of Eq. (10) will not be reduced when \(\alpha_{d} = \alpha_{d}^{{\rm CCR}}\) is replaced with \(\alpha_{d} = \alpha_{d}^{t}\). Thus, the optimal value will always be at least as large as \(\sum\nolimits_{l = 1}^{k} {{}^{l}u_{j}^{d*} (\alpha_{d}^{\text{CCR}} ){}^{l}Y_{j} }\), meaning that \(\alpha_{j}^{t + 1} = \frac{1}{n}\sum\nolimits_{d = 1}^{n} {\sum\nolimits_{l = 1}^{k} {{}^{l}u_{j}^{d*} (\alpha_{d}^{t} ){}^{l}Y_{j} } } \ge \frac{1}{n}\sum\nolimits_{d = 1}^{n} {\sum\nolimits_{l = 1}^{k} {{}^{l}u_{j}^{d*} (\alpha_{d}^{\text{CCR}} ){}^{l}Y_{j} } } \ge \alpha_{j}^{1}\). Therefore, \(\alpha_{j}^{t} \ge \alpha_{j}^{1}\) for all t.

(II) First, we prove \(\alpha_{j}^{2} \ge \alpha_{j}^{4} \ge \alpha_{j}^{3} \ge \alpha_{j}^{1}\). From \(\alpha_{j}^{1} \le \alpha_{j}^{t}\), we know that \(\alpha_{j}^{2} \ge \alpha_{j}^{1}\). Therefore, when t = 2 and \(\alpha_{d} = \alpha_{d}^{1}\) is replaced with \(\alpha_{d} = \alpha_{d}^{2}\), the feasible region of Eq. (10) reduces. Thus, \(\sum\nolimits_{l = 1}^{k} {{}^{l}u_{j}^{d*} (\alpha_{d}^{1} ){}^{l}Y_{j} } \ge \sum\nolimits_{l = 1}^{k} {{}^{l}u_{j}^{d*} (\alpha_{d}^{2} ){}^{l}Y_{j} }\) for d = 1, 2, …, n, where \({}^{l}u_{j}^{d*} (\alpha_{d}^{1} )\) and \({}^{l}u_{j}^{d*} (\alpha_{d}^{2} )\) represent optimal values of \({}^{l}u_{j}^{d}\) in Eq. (10) associated with \(\alpha_{d}^{1}\) and \(\alpha_{d}^{2}\), respectively. We then have \(\alpha_{d}^{2} = \frac{1}{n}\sum\nolimits_{d = 1}^{n} {\sum\nolimits_{l = 1}^{k} {{}^{l}u_{j}^{d*} (\alpha_{d}^{1} ){}^{l}Y_{j} } } \ge \frac{1}{n}\sum\nolimits_{d = 1}^{n} {\sum\nolimits_{l = 1}^{k} {{}^{l}u_{j}^{d*} (\alpha_{d}^{2} ){}^{l}Y_{j} } } = \alpha_{d}^{3}\) for all j indicating that \(\alpha_{j}^{2} \ge \alpha_{j}^{3}\). Since \(\alpha_{j}^{3} \ge \alpha_{j}^{1}\), we have \(\frac{1}{n}\sum\nolimits_{l = 1}^{k} {{}^{l}u_{j}^{d*} (\alpha_{d}^{1} ){}^{l}Y_{j} } \ge \frac{1}{n}\sum\nolimits_{l = 1}^{k} {{}^{l}u_{j}^{d*} (\alpha_{d}^{3} ){}^{l}Y_{j} }\) indicating that \(\alpha_{j}^{2} \ge \alpha_{j}^{4}\). Since \(\alpha_{j}^{2} \ge \alpha_{j}^{3}\), we have \(\frac{1}{n}\sum\nolimits_{l = 1}^{k} {{}^{l}u_{j}^{d*} (\alpha_{d}^{3} ){}^{l}Y_{j} } \ge \frac{1}{n}\sum\nolimits_{l = 1}^{k} {{}^{l}u_{j}^{d*} (\alpha_{d}^{2} ){}^{l}Y_{j} }\) indicate that \(\alpha_{j}^{4} \ge \alpha_{j}^{3}\). Therefore, we have \(\alpha_{j}^{2} \ge \alpha_{j}^{4} \ge \alpha_{j}^{3} \ge \alpha_{j}^{1}\) for all j.

Furthermore, we use mathematical induction to prove that

$$\alpha_{j}^{2a} \ge \alpha_{j}^{2a + 2} \ge \alpha_{j}^{2a + 1} \ge \alpha_{j}^{2a- 1} , \quad j = 1,2, \ldots ,n;\;\;a = 1,2, \ldots$$

Note that when a = 1, we have \(\alpha_{j}^{2} \ge \alpha_{j}^{4} \ge \alpha_{j}^{3} \ge \alpha_{j}^{1}\) which meets \(\alpha_{j}^{2t} \ge \alpha_{j}^{2t + 2}\), \(\alpha_{j}^{2t + 2} \ge \alpha_{j}^{2t + 3}\), \(\alpha_{j}^{2t + 3} \ge \alpha_{j}^{2t + 1}\).

Assume that when t = \(\varDelta\), we have \(\alpha_{j}^{2\varDelta } \ge \alpha_{j}^{2\varDelta + 2}\), \(\alpha_{j}^{2\varDelta + 2} \ge \alpha_{j}^{2\varDelta + 3}\), and \(\alpha_{j}^{2\varDelta + 3} \ge \alpha_{j}^{2\varDelta + 1}\);

When \(t = \varDelta + 1\)

Since \(\alpha_{j}^{2\varDelta + 3} \ge \alpha_{j}^{2\varDelta + 1}\), we have \(\sum\nolimits_{l = 1}^{k} {{}^{l}u_{j}^{d*} (\alpha_{d}^{2\varDelta + 1} ){}^{l}Y_{j} } \ge \sum\nolimits_{l = 1}^{k} {{}^{l}u_{j}^{d*} (\alpha_{d}^{2\varDelta + 3} ){}^{l}Y_{j} }\). Then we have \(\frac{1}{n}\sum\nolimits_{d = 1}^{n} {\sum\nolimits_{l = 1}^{k} {{}^{l}u_{j}^{d*} (\alpha_{d}^{2\varDelta + 1} ){}^{l}Y_{j} } } \ge \frac{1}{n}\sum\nolimits_{d = 1}^{n} {\sum\nolimits_{l = 1}^{k} {{}^{l}u_{j}^{d*} (\alpha_{d}^{2\varDelta + 3} ){}^{l}Y_{j} } }\) indicating that \(\alpha_{j}^{2\varDelta + 2} \ge \alpha_{j}^{2\varDelta + 4}\).

Since \(\alpha_{j}^{2\varDelta + 2} \ge \alpha_{j}^{2\varDelta + 3}\), we have \(\sum\nolimits_{l = 1}^{k} {{}^{l}u_{j}^{d*} (\alpha_{d}^{2\varDelta + 3} ){}^{l}Y_{j} } \ge \sum\nolimits_{l = 1}^{k} {{}^{l}u_{j}^{d*} (\alpha_{d}^{2\varDelta + 2} ){}^{l}Y_{j} }\). Then we have \(\frac{1}{n}\sum\nolimits_{d = 1}^{n} {\sum\nolimits_{l = 1}^{k} {{}^{l}u_{j}^{d*} (\alpha_{d}^{2\varDelta + 3} ){}^{l}Y_{j} } } \ge \frac{1}{n}\sum\nolimits_{d = 1}^{n} {\sum\nolimits_{l = 1}^{k} {{}^{l}u_{j}^{d*} (\alpha_{d}^{2\varDelta + 2} ){}^{l}Y_{j} } }\) indicating that \(\alpha_{j}^{2\varDelta + 4} \ge \alpha_{j}^{2\varDelta + 3}\).

Since \(\alpha_{j}^{2\varDelta + 2} \ge \alpha_{j}^{2\varDelta + 4}\), we have \(\sum\nolimits_{l = 1}^{k} {{}^{l}u_{j}^{d*} (\alpha_{d}^{2\varDelta + 4} ){}^{l}Y_{j} } \ge \sum\nolimits_{l = 1}^{k} {{}^{l}u_{j}^{d*} (\alpha_{d}^{2\varDelta + 2} ){}^{l}Y_{j} }\). Then we have \(\frac{1}{n}\sum\nolimits_{d = 1}^{n} {\sum\nolimits_{l = 1}^{k} {{}^{l}u_{j}^{d*} (\alpha_{d}^{2\varDelta + 4} ){}^{l}Y_{j} } } \ge \frac{1}{n}\sum\nolimits_{d = 1}^{n} {\sum\nolimits_{l = 1}^{k} {{}^{l}u_{j}^{d*} (\alpha_{d}^{2\varDelta + 2} ){}^{l}Y_{j} } }\) indicating that \(\alpha_{j}^{2\varDelta + 5} \ge \alpha_{j}^{2\varDelta + 3}\).

So we prove that when t = \(\varDelta + 1\),\(\alpha_{j}^{2\varDelta + 2} \ge \alpha_{j}^{2\varDelta + 4}\), \(\alpha_{j}^{2\varDelta + 4} \ge \alpha_{j}^{2\varDelta + 3}\), and \(\alpha_{j}^{2\varDelta + 5} \ge \alpha_{j}^{2\varDelta + 3}\). In the other words, \(\alpha_{j}^{1} \le \alpha_{j}^{3} \le \alpha_{j}^{5} \le \cdots \le \alpha_{j}^{2t - 1} \le \alpha_{j}^{2t} \cdots \alpha_{j}^{6} \le \alpha_{j}^{4} \le \alpha_{j}^{2}\) has been proved.□

Convergence of the algorithm for the subprocess

We prove the convergence of the algorithm for the subprocess in two steps. With Eq. (11), for any t = 2, 3, 4, …; j = 1, 2, …, n, and l = 1, 2, …, k we have

  1. (III)

    \({}^{l}\alpha_{j}^{1} \le {}^{l}\alpha_{j}^{t}\)

  2. (IV)

    \({}^{l}\alpha_{j}^{1} \le {}^{l}\alpha_{j}^{3} \le {}^{l}\alpha_{j}^{5} \le \cdots \le {}^{l}\alpha_{j}^{2t - 1} \le {}^{l}\alpha_{j}^{2t} \cdots {}^{l}\alpha_{j}^{6} \le {}^{l}\alpha_{j}^{4} \le {}^{l}\alpha_{j}^{2}\)

Proof

(III) Let \(\alpha_{d} = \alpha_{d}^{\text{CCR}} ,{}^{l}\alpha_{d} = {}^{l}\alpha_{d}^{\text{CCR}} ,l = 1,2, \ldots ,k\) in Eq. (11), where \(\alpha_{d}^{\text{CCR}}\) is the CCR efficiency for DMU d and \({}^{l}\alpha_{d} = {}^{l}\alpha_{d}^{\text{CCR}} ,l = 1,2, \ldots ,k\) are the CCR efficiencies for subprocesses of DMU d . The weights \({}^{l}v_{d}^{*} ,{}^{l}u_{d}^{*} ,l = 1,2, \ldots ,k\) is the optimal solution of DMU d in Eq. (8). Obviously, \({}^{l}v_{d}^{*} ,{}^{l}u_{d}^{*} ,l = 1,2, \ldots ,k\) are feasible to Eq. (11). Thus, when \(\alpha_{d} = \alpha_{d}^{{\rm CCR}} ,{}^{l}\alpha_{d} = {}^{l}\alpha_{d}^{{\rm CCR}} ,l = 1,2, \cdots k\), we have \(\frac{1}{n}\sum\nolimits_{d = 1}^{n} {{}^{1}u_{j}^{d*} (\alpha_{d}^{\text{CCR}} ,{}^{1}\alpha_{d}^{\text{CCR}} ,{}^{2}\alpha_{d}^{\text{CCR}} , \ldots ,{}^{k}\alpha_{d}^{\text{CCR}} ){}^{1}Y_{j} } \ge \frac{1}{n}\sum\nolimits_{d = 1}^{n} {{}^{1}u_{d}^{*} {}^{1}Y_{j} } = {}^{1}\alpha_{j}^{1}\) where the \({}^{1}u_{j}^{d*} (\alpha_{d}^{\text{CCR}} ,{}^{1}\alpha_{d}^{\text{CCR}} ,{}^{2}\alpha_{d}^{\text{CCR}} , \ldots ,{}^{k}\alpha_{d}^{\text{CCR}} )\) represent optimal values of \({}^{l}u_{j}^{d}\). Since \(\alpha_{d} = \alpha_{d}^{\text{CCR}} ,{}^{l}\alpha_{d} = {}^{l}\alpha_{d}^{\text{CCR}} ,l = 1,2, \ldots ,k\) is the maximal score of DMU d , i.e. \(\alpha_{d}^{t} \le \alpha_{d}^{\text{CCR}}\), when \(\alpha_{d} = \alpha_{d}^{\text{CCR}} ,{}^{l}\alpha_{d} = {}^{l}\alpha_{d}^{\text{CCR}} ,l = 1,2, \ldots ,k\) is replaced with \(\alpha_{d} = \alpha_{d}^{t} ,{}^{l}\alpha_{d} = {}^{l}\alpha_{d}^{t} ,l = 1,2, \ldots ,k\) the feasible region of Eq. (11) will not be reduced. Therefore, \({}^{1}\alpha_{j}^{t} \ge {}^{1}\alpha_{j}^{1}\) for all t.

(IV) Let l = 1. Like we have discussed in Proof (II), we have:

  1. (D)

    \(\alpha_{j}^{2} \ge \alpha_{j}^{1} ,{}^{l}\alpha_{j}^{2} \ge {}^{l}\alpha_{j}^{1} ,l = 1,2, \cdots k\), thus \({}^{1}\alpha_{j}^{2} \ge {}^{1}\alpha_{j}^{3}\)

  2. (E)

    \(\alpha_{j}^{3} \ge \alpha_{j}^{1} ,{}^{l}\alpha_{j}^{3} \ge {}^{l}\alpha_{j}^{1} ,l = 1,2, \cdots k\), thus \({}^{1}\alpha_{j}^{2} \ge {}^{1}\alpha_{j}^{4}\)

  3. (F)

    \(\alpha_{j}^{2} \ge \alpha_{j}^{3} ,{}^{l}\alpha_{j}^{2} \ge {}^{l}\alpha_{j}^{3} ,l = 1,2, \cdots k\), thus \({}^{1}\alpha_{j}^{4} \ge {}^{1}\alpha_{j}^{3}\)

Therefore, we have \({}^{l}\alpha_{j}^{2} \ge {}^{l}\alpha_{j}^{4} \ge {}^{l}\alpha_{j}^{3} \ge {}^{l}\alpha_{j}^{1}\) for any l = 1, 2, …, k. By applying mathematical induction we can prove that for any l = 1, 2, …, k \({}^{l}\alpha_{j}^{1} \le {}^{l}\alpha_{j}^{3} \le {}^{l}\alpha_{j}^{5} \le \cdots \le {}^{l}\alpha_{j}^{2t - 1} \le {}^{l}\alpha_{j}^{2t} \cdots {}^{l}\alpha_{j}^{6} \le {}^{l}\alpha_{j}^{4} \le {}^{l}\alpha_{j}^{2}\).□

Nash equilibrium

We will prove that the best game cross efficiency which obtain from the algorithm proposed in “The parallel DEA game cross-efficiency model” section to be a Nash equilibrium point in this section.

Following Liang et al. (2008), The DEA game for overall process, with the game cross efficiencies as the payoffs can be represented as

$$\varGamma = \left\langle {N,\left( {S_{j} } \right)_{j \in N} ,\left( {\frac{1}{n}\sum\nolimits_{d = 1}^{n} {\sum\nolimits_{l = 1}^{k} {{}^{l}u_{j}^{d*} (\alpha_{d} ){}^{l}Y_{j} } } } \right)_{j \in N} } \right\rangle$$

N is the game player set. \(S_{j}\), which meets that \(S_{j} = \left\{ {{\text{the}}\;{\text{constraints}}\;{\text{of}}\;{\text{Eq}} .\; ( 1 0 )\;{\text{and}}\;\alpha_{d}^{\text{CCR}} \ge \alpha_{d} \ge {}^{\text{cross-efficiency}}E_{d} } \right\}\), is the strategy set.

Based on Debreu (1952), and Glicksberg (1951), if

  1. (V)

    \(S_{j} = \left\{ {{\text{the}}\;{\text{constraints}}\;{\text{of}}\;{\text{Eq}} .\; ( 1 0 )\;{\text{and}}\;\alpha_{d}^{\text{CCR}} \ge \alpha_{d} \ge {}^{\text{cross-efficiency}}E_{d} } \right\},j = 1,2, \ldots ,n\) are nonempty convexsets;

  2. (VI)

    \(F(\alpha_{d} ) = \frac{1}{n}\sum\nolimits_{d = 1}^{n} {\sum\nolimits_{l = 1}^{k} {{}^{l}u_{j}^{d*} (\alpha_{d} ){}^{l}Y_{j} } }\) is a continuous semiconcave function,

\(\varGamma\) has at least one set of Nash equilibrium strategy portfolio.

Proof

(V) When \(\alpha_{d}^{{\rm CCR}} \ge \alpha_{d} \ge {}^{\text{cross-efficiency}}E_{d}\), it easy to know that Eq. (10) is feasible. Therefore \(S_{j} ,j = 1,2, \ldots ,n\) is nonempty. We assume that both \(\{ ({}^{l}v_{j}^{\prime } ,{}^{l}u_{j}^{\prime } ,l = 1,2, \ldots ,k),\alpha_{d}^{\prime } \} \in S_{j}\) and \(\{ ({}^{l}v_{j}^{\prime \prime } ,{}^{l}u_{j}^{\prime \prime } ),\alpha_{d}^{\prime \prime } ,l = 1,2, \ldots ,k\} \in S_{j}\) where \(j,d \in N\). For any \(0 \le \lambda \le 1\), it easy to prove that \(\{ (\lambda {}^{l}v_{j}^{\prime } + (1 - \lambda ){}^{l}v_{j}^{\prime \prime } ,\lambda {}^{l}u_{j}^{\prime } + (1 - \lambda ){}^{l}u_{j}^{''} ,l = 1,2, \ldots ,k),\lambda \alpha_{d}^{\prime } + (1 - \lambda )\alpha_{d}^{\prime \prime } \} \in S_{j}\). Thus, \(S_{j} ,j = 1,2, \ldots ,n\) are convexsets.

(VI) Since Eq. (10) arises by adding a constraint \(\bar{\alpha }_{d} \times \sum\nolimits_{l = 1}^{k} {{}^{l}v_{j}^{d} {}^{l}X_{d} } - \sum\nolimits_{l = 1}^{k} {{}^{l}u_{j}^{d} {}^{l}Y_{d} } \le 0\), into CCR model of DMU j , j = 1, 2, …, n, we have that Eq. (10) becomes the CCR model if \(\alpha_{d} < {}^{\text{cross-efficiency}}E_{d}\), and is infeasible if \(\alpha_{d} > \alpha_{d}^{{\rm CCR}}\). Based on sensitivity analysis of linear programming, Liang et al. (2008) have proved that are \(\frac{1}{n}\sum\nolimits_{d = 1}^{n} {\sum\nolimits_{l = 1}^{k} {{}^{l}u_{j}^{d*} (\alpha_{d} ){}^{l}Y_{j} } }\) continuous functions of \(\alpha_{d}\) if \(\alpha_{d}^{{\rm CCR}} \ge \alpha_{d} \ge {}^{\text{cross-efficiency}}E_{d}\).

To prove that \(\frac{1}{n}\sum\nolimits_{d = 1}^{n} {\sum\nolimits_{l = 1}^{k} {{}^{l}u_{j}^{d*} (\alpha_{d} ){}^{l}Y_{j} } }\) is semiconcave, let \(\mathop \alpha \limits^{1}_{d} ,\mathop \alpha \limits^{2}_{d} \in [\bar{E}_{d} ,\alpha_{d}^{\text{CCR}} ]\) , \(\lambda \in \left[ {1,0} \right]\) and assume that \(\mathop \alpha \limits^{1}_{d} < \mathop \alpha \limits^{2}_{d}\). Furthermore, we use \(\varTheta_{1}\) to represent the feasible region of Eq. (10) when \(\alpha_{d} = \mathop \alpha \limits^{1}_{d}\) and \(\varTheta_{2}\) to represent the feasible region of Eq. (10) when \(\alpha_{d} = \mathop \alpha \limits^{2}_{d}\). It easy to know that \(\mathop \alpha \limits^{1}_{d} \ge \lambda \mathop \alpha \limits^{1}_{d} + (1 - \lambda )\mathop \alpha \limits^{2}_{d} \ge \mathop \alpha \limits^{2}_{d}\). Therefore, the feasible region (\(\varTheta_{3}\)) of Eq. (10) when \(\alpha_{d} = \lambda \mathop \alpha \limits^{1}_{d} + (1 - \lambda )\mathop \alpha \limits^{2}_{d}\) meet that \(\varTheta_{2} \subseteq \varTheta_{3} \subseteq \varTheta_{1}\). \(\varTheta_{2} \subseteq \varTheta_{3} \subseteq \varTheta_{1}\) indicates that \(\sum\nolimits_{l = 1}^{k} {{}^{l}u_{j}^{d*} (\mathop \alpha \limits^{2}_{d} ){}^{l}Y_{j} } \le \sum\nolimits_{l = 1}^{k} {{}^{l}u_{j}^{d*} (\lambda \mathop \alpha \limits^{1}_{d} + (1 - \lambda )\mathop \alpha \limits^{2}_{d} ){}^{l}Y_{j} } \le \sum\nolimits_{l = 1}^{k} {{}^{l}u_{j}^{d*} (\mathop \alpha \limits^{1}_{d} ){}^{l}Y_{j} }\). This means \(\frac{1}{n}\sum\nolimits_{d = 1}^{n} {\sum\nolimits_{l = 1}^{k} {{}^{l}u_{j}^{d*} (\alpha_{d} ){}^{l}Y_{j} } }\) is semi concave.□

After proving that Nash equilibrium strategy portfolio is existing, the next step is to prove that by operating our algorithm we can achieve such a Nash equilibrium point.

First, we define \(f_{j} (\alpha_{1}^{t - 1} ,\alpha_{2}^{t - 1} , \ldots ,\alpha_{n}^{t - 1} )\) as

$$f_{j} \left( {\alpha_{1}^{t - 1} ,\alpha_{2}^{t - 1} , \ldots ,\alpha_{n}^{t - 1} } \right) = \alpha_{j}^{t} = \frac{1}{n}\sum\limits_{d = 1}^{n} {\sum\limits_{l = 1}^{k} {^{l} u_{j}^{d*} \left( {\alpha_{d}^{t - 1} } \right)^{l} Y_{j} } }$$
(14)

let \(\mathop {\alpha^{t} }\limits^{ \to } = [\alpha_{1}^{t} ,\alpha_{2}^{t} , \ldots ,\alpha_{n}^{t} ]^{{\rm T}} ,t = 2,3, \ldots\).

Now define

$$F(\mathop {\alpha^{t - 1} }\limits^{ \to } ) = \left[ {f_{1} \left( {\alpha_{1}^{t - 1} ,\alpha_{2}^{t - 1} , \ldots ,\alpha_{n}^{t - 1} } \right),f_{2} \left( {\alpha_{1}^{t - 1} ,\alpha_{2}^{t - 1} , \ldots ,\alpha_{n}^{t - 1} } \right), \ldots ,f_{n} \left( {\alpha_{1}^{t - 1} ,\alpha_{2}^{t - 1} , \ldots ,\alpha_{n}^{t - 1} } \right)} \right]^{\text{T}} .$$
(15)

We have \(\mathop {\alpha^{t} }\limits^{ \to } = F(\mathop {\alpha^{t - 1} }\limits^{ \to } ),t = 2,3, \ldots\).

Since \(S_{j}\) has been proved to be a nonempty, compact, convexsets, the Cartesian product \(S = S_{1} \times S_{2} \times \cdots \times S_{n}\) is also a nonempty, compact convexset. Furthermore, \(F():S \to S\) is a continuous function from a nonempty, compact, convexset S into itself because \(F(\alpha_{d} ) = \frac{1}{n}\sum\nolimits_{d = 1}^{n} {\sum\nolimits_{l = 1}^{k} {{}^{l}u_{j}^{d*} (\alpha_{d} ){}^{l}Y_{j} } }\) is a continuous semiconcave function. Based on Brouwer’s fixed-point theorem (Brouwer 1911), we know that there must exist \(\mathop {\alpha^{*} }\limits^{ \to } \in S\), such that \(\mathop {\alpha^{*} }\limits^{ \to } = F(\mathop {\alpha^{*} }\limits^{ \to } )\), where \(\mathop {\alpha^{*} }\limits^{ \to } = \left[ {\alpha_{1}^{*} ,\alpha_{2}^{*} , \ldots ,\alpha_{n}^{*} } \right]^{\text{T}}\).□

Recall that the algorithm terminates when \(|\mathop {\alpha^{t} }\limits^{ \to } - \mathop {\alpha^{t - 1} }\limits^{ \to } |\, = \,|F(\mathop {\alpha^{t - 1} }\limits^{ \to } ) - \mathop {\alpha^{t - 1} }\limits^{ \to } |\, < \varepsilon\). Therefore, the smaller the \(\varepsilon\), the closer the solution is to the fixed point. Such a fixed point is a Nash equilibrium (Becker and Chakrabarti 2005). It is easy to prove that the algorithm for subprocess will lead to a Nash equilibrium. Proof procedure is omitted.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuo, K., Guan, J. Measuring the R&D efficiency of regions by a parallel DEA game model. Scientometrics 112, 175–194 (2017). https://doi.org/10.1007/s11192-017-2380-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-017-2380-4

Keywords

Navigation