Skip to main content
Log in

Detecting latent referential articles based on their vitality performance in the latest 2 years

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

In this paper, we propose a methodology to detect latent referential articles through a universal, citation-based investigation. We discuss articles’ dynamic vitality performance, concealed in their citation distributions, in order to understand the mechanisms that govern which articles are likely to be referenced in the future. Articles have diverse vitality performances expressed in the amount of citations obtained in different time periods. Through an examination of the correlation between articles’ future citation count and their past citations, we establish the optimal time period during which it is best to forecast articles’ future referential possibilities. The results show that the latest 2 years is the optimal time period. In other words, the correlation between the articles’ future citation count and their past citation count reaches a maximum value in the most recent 2-year period. The articles with a higher vitality performance in the most recent 2 years have a higher ratio of being cited as references in the future. These results help, not only, in understanding mechanisms of generating references, but also provide an additional indicator for decision makers to evaluate the academic performance of individuals according to their citation performance in the latest 2 years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adam, D. (2002). The counting house. Nature, 415(6873), 726–729.

    Article  Google Scholar 

  • Aksnes, D. W. (2003). Characteristics of highly cited papers. Research Evaluation, 12(3), 159–170.

    Article  Google Scholar 

  • Beel, J., & Gipp, B. (2009). Google Scholar’s ranking algorithm: The impact of citation counts (an empirical study). In Research challenges in information science, third international conference on IEEE (pp. 439–446).

  • Bornmann, L. (2013). The problem of citation impact assessments for recent publication years in institutional evaluations. Journal of Informetrics, 7(3), 722–729.

    Article  Google Scholar 

  • Bornmann, L., & Daniel, H. (2008). What do citation counts measure? A review of studies on citing behavior. Journal of Documentation, 64(1), 45–80.

    Article  Google Scholar 

  • Bornmann, L., & Leydesdorff, L. (2012). Which are the best performing regions in information science in terms of highly cited papers? Some improvements of our previous mapping approaches. Journal of Informetrics, 6(2), 336–345.

    Article  Google Scholar 

  • Bornmann, L., & Leydesdorff, L. (2015). Does quality and content matter for citedness? A comparison with para-textual factors and over time. Journal of Informetrics, 9(3), 419–429.

    Article  Google Scholar 

  • Burrell, Q. L. (2002a). Will this paper ever be cited? Journal of the American Society for Information Science and Technology, 53(3), 232–235.

    Article  Google Scholar 

  • Burrell, Q. L. (2002b). On the nth-citation distribution and obsolescence. Scientometrics, 53(3), 309–323.

    Article  Google Scholar 

  • Burrell, Q. L. (2003). Predicting future citation behavior. Journal of the American Society for Information Science and Technology, 54(5), 372–378.

    Article  Google Scholar 

  • Camacho, M. M. D. M., & Nunez, N. M. (2009). The multilayered nature of reference selection. Journal of the American Society for Information Science and Technology, 60(4), 754–777.

    Article  Google Scholar 

  • Cano, V., & Lind, N. C. (1991). Citation life-cycles of 10 citation-classics. Scientometrics, 22(2), 297–312.

    Article  Google Scholar 

  • Chen, C. (2012). Predictive effects of structural variation on citation counts. Journal of the American Society for Information Science and Technology, 63(3), 431–449.

    Article  Google Scholar 

  • Cozzens, S. E. (1985). Comparing the sciences—Citation context analysis of papers from neuropharmacology and the sociology of science. Social Studies of Science, 15(1), 127–153.

    Article  Google Scholar 

  • Didegah, F., & Thelwall, M. (2013). Which factors help authors produce the highest impact research? Collaboration, journal and document properties. Journal of Informetrics, 7(4), 861–873.

    Article  Google Scholar 

  • Ding, Y., Liu, X., Guo, C., & Cronin, B. (2013). The distribution of references across texts: Some implications for citation analysis. Journal of Informetrics, 7(3), 583–592.

    Article  Google Scholar 

  • Ding, Y., Zhang, G., Chambers, T., Song, M., Wang, X., & Zhai, C. (2014). Content-based citation analysis: The next generation of citation analysis. Journal of the Association for Information Science and Technology, 65(9), 1820–1833.

    Article  Google Scholar 

  • Egghe, L., & Rousseau, R. (2000). Aging, obsolescence, impact, growth, and utilization: Definitions and relations. Journal of the American Society for Information Science and Technology, 51(11), 1004–1017.

    Article  Google Scholar 

  • Fu, L., & Aliferis, C. (2010). Using content-based and bibliometric features for machine learning models to predict citation counts in the biomedical literature. Scientometrics, 85(1), 257–270.

    Article  Google Scholar 

  • Garfield, E. (1955). Citation indexes for science: A new dimension in documentation through association of ideas. Science, 122(3159), 108–111.

    Article  Google Scholar 

  • Garfield, E. (1981). Citation classics—Four years of the human side of science. Current Contents, 22, 5–16.

    Google Scholar 

  • Garfield, E. (2000). Use of Journal Citation Reports and Journal Performance Indicators in measuring short and long term journal impact. Croatian Medical Journal, 41(4), 368–374.

    Google Scholar 

  • Garfield, E. (2002). Highly cited authors. Scientist, 16(7), 10.

    Google Scholar 

  • Haslam, N., Ban, L., Kaufmann, L., Loughnan, S., Peters, K., Whelan, J., et al. (2008). What makes an article influential? Predicting impact in social and personality psychology. Scientometrics, 76(1), 169–185.

    Article  Google Scholar 

  • Haslam, N., & Koval, P. (2010). Predicting long-term citation impact of articles in social and personality psychology. Psychological Reports, 106(3), 891–900.

    Article  Google Scholar 

  • Hu, Z., Chen, C., & Liu, Z. (2013). Where are citations located in the body of scientific articles? A study of the distributions of citation locations. Journal of Informetrics, 7(4), 887–896.

    Article  Google Scholar 

  • Huber, J. C. (1998). Cumulative advantage and success-breeds-success: The value of time pattern analysis. Journal of the American Society for Information Science and Technology, 49(5), 471–476.

    Google Scholar 

  • Kim, K. (2004). The motivation for citing specific references by social scientists in Korea: The phenomenon of co-existing references. Scientometrics, 59(1), 79–93.

    Article  MathSciNet  Google Scholar 

  • King, D. A. (2004). The scientific impact of nations what different countries get for their research spending. Nature, 430, 311–316.

    Article  Google Scholar 

  • Kostoff, R. (2007). The difference between highly and poorly cited medical articles in the journal Lancet. Scientometrics, 72(3), 513–520.

    Article  Google Scholar 

  • Lercher, A. (2013). Correlation over time for citations to mathematics articles. Journal of the American Society for Information Science and Technology, 64(3), 455–463.

    Article  Google Scholar 

  • Li, R., Chambers, T., Ding, Y., Zhang, G., & Meng, L. (2014). Patent citation analysis: Calculating science linkage based on citing motivation. Journal of the Association for Information Science and Technology, 65(5), 1007–1017.

    Article  Google Scholar 

  • Li, Z., Peng, Q. K., & Liu, C. (2016). Two citation-based indicators to measure latent referential value of papers. Scientometrics, 108(3), 1299–1313.

    Article  Google Scholar 

  • Marx, W., & Bornmann, L. (2015). On the causes of subject-specific citation rates in Web of Science. Scientometrics, 102(2), 1823–1827.

    Article  Google Scholar 

  • May, R. M. (1997). The scientific wealth of nations. Science, 275, 793–796.

    Article  Google Scholar 

  • Nicholas, D., Huntington, P., Dobrowolski, T., Rowlands, I., Jamali, H. R., & Polydoratou, P. (2005). Revisiting ‘obsolescence’ and journal article ‘decay’ through usage data: An analysis of digital journal use by year of publication. Information Processing and Management, 41(6), 1441–1461.

    Article  Google Scholar 

  • Onodera, N., & Yoshikane, F. (2015). Factors affecting citation rates of research articles. Journal of the Association for Information Science and Technology, 66(4), 739–764.

    Article  Google Scholar 

  • Peters, H., & Van Raan, A. (1994). On determinants of citation scores: A case study in chemical engineering. Journal of the American Society for Information Science, 45(1), 39–49.

    Article  Google Scholar 

  • Pislyakov, V., & Shukshina, E. (2014). Measuring excellence in Russia: Highly cited papers, leading institutions, patterns of national and international collaboration. Journal of the Association for Information Science and Technology, 65(11), 2321–2330.

    Article  Google Scholar 

  • Price, D. J. de Solla. (1963). Little science, big science. NewYork: Columbia University Press.

  • Price, D. J. de Solla. (1965). Networks of scientific papers: The pattern of bibliographic references indicates the nature of the scientific research front. Science, 149(3685), 510–515.

  • Price, D. J. de Solla. (1976). A general theory of bibliometric and other cumulative advantage processes. Journal of the American Society for Information Science, 27(5), 292–306.

  • Rabow, H. (2005). The discovery of discoveries: Exploring the dissemination of major findings in the life sciences. In Proceedings of the 10th international conference of the international society for scientometrics and informetrics, Karolinska University Press, Stockholm.

  • Rodríguez-Navarro, A. (2011). Measuring research excellence number of Nobel Prize achievements versus conventional bibliometric indicators. Journal of Documentation, 67(4), 582–600.

    Article  Google Scholar 

  • Song, Y., Ma, F., & Yang, S. (2015). Comparative study on the obsolescence of humanities and social sciences in China: Under the new situation of web. Scientometrics, 102(1), 365–388.

    Article  Google Scholar 

  • Spitz, A., & Horvát, E.-Á. (2014). Measuring long-term impact based on network centrality: Unraveling cinematic citations. PLoS ONE, 9(10), e108857.

    Article  Google Scholar 

  • Stegehuis, C., Litvak, N., & Waltman, L. (2015). Predicting the long-term citation impact of recent publications. Journal of Informetrics, 9, 642–657.

    Article  Google Scholar 

  • Sun, J., Min, C., & Li, J. (2016). A vector for measuring obsolescence of scientific articles. Scientometrics, 107(2), 745–757.

    Article  Google Scholar 

  • Tahamtan, I., Afshar, A. S., & Ahamdzadeh, K. (2016). Factors affecting number of citations: A comprehensive review of the literature. Scientometrics, 107(3), 1195–1225.

    Article  Google Scholar 

  • Van Dalen, H. P., & Henkens, K. (1999). How influential are demography journals? Population and Development Review, 25(2), 229–251.

    Article  Google Scholar 

  • Van Dalen, H. P., & Kenkens, K. (2005). Signals in science: On the importance of signaling in gaining attention in science. Scientometrics, 64(2), 209–233.

    Article  Google Scholar 

  • Ventura, O., & Mombrú, A. W. (2006). Use of bibliometric information to assist research policy making. A comparison of publication and citation profiles of Full and Associate Professors at a School of Chemistry in Uruguay. Scientometrics, 69(2), 287–313.

    Article  Google Scholar 

  • Walters, G. D. (2006). Predicting subsequent citations to articles published in twelve crime-psychology journals: Author impact versus journal impact. Scientometrics, 69(3), 499–510.

    Article  Google Scholar 

  • Wang, M., Yu, G., Xu, J., He, H., Yu, D., & An, S. (2012). Development a case-based classifier for predicting highly cited papers. Journal of Informetrics, 6(4), 586–599.

    Article  Google Scholar 

  • Wang, M., Yu, G., & Yu, D. (2011). Mining typical features for highly cited papers. Scientometrics, 87(3), 695–706.

    Article  Google Scholar 

  • Yamashita, Y., & Yoshinaga, D. (2014). Influence of researchers’ international mobilities on publication: A comparison of highly cited and uncited papers. Scientometrics, 101(2), 1475–1489.

    Article  Google Scholar 

  • Yang, S., & Han, R. (2015). Breadth and depth of citation distribution. Information Processing and Management, 51(2), 130–140.

    Article  Google Scholar 

  • Zhang, J. J., & Guan, J. C. (2017). Scientific relatedness and intellectual base: A citation analysis of un-cited and highly-cited papers in the solar energy field. Scientometrics, 110(1), 141–162.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the special funds of Central College Basic Scientific Research Bursary (Grant No. 2572014DB05), the National Natural Science Foundation of China (Grant No. 71473034), and the financial assistance from Postdoctoral Scientific Research Developmental Fund of Heilongjiang Province (Grant No. LBH-Q16003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingyang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Li, S. & Chen, G. Detecting latent referential articles based on their vitality performance in the latest 2 years. Scientometrics 112, 1557–1571 (2017). https://doi.org/10.1007/s11192-017-2433-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-017-2433-8

Keywords

Navigation