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Abstract In many situations we are interested in appraising the value of a
certain characteristic for a given individual relative to the context in which
this value is observed. In recent years this problem has become prominent in
the evaluation of scientific productivity and impact. A popular approach to
such relative valuations consists in using percentile ranks. This is a purely or-
dinal method that may sometimes lead to counterintuitive appraisals, in that
it discards all information about the distance between the raw values within
a given context. By contrast, this information is partly preserved by using
standardization, i.e., by transforming the absolute values in such a way that,
within the same context, the distance between the relative values is monoton-
ically related to the distance between the absolute ones. While there are many
practically useful alternatives for standardizing a given characteristic across
different contexts, the general problem seems to have never been addressed
from a theoretical and normative viewpoint. The main aim of this paper is
to fill this gap and provide a conceptual framework that allows for this kind
of systematic investigation. We then use this framework to prove that, un-
der some rather weak assumptions, the general format of a standardization
function can be determined quite sharply.
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1 Introduction

In a wide variety of human affairs we often need to compare data coming from
different contexts and make important decisions based on this comparison.
For example, a university needs to allocate resources to different departments
depending on their scientific productivity over the last five years. In most
scientific deparments the accepted measure of productivity is the number of
papers published in highly rated international journals. However, mathemati-
cians are known to publish much less than experimental physicists or clinical
researchers. Simply comparing the number of publications makes no sense and,
yet, a decision has to be made. Similar problems arise when an appraisal of
the impact of scientific research is required in terms of some kind of biblio-
metric analysis.! In such situations, decision makers have two options: either
they adopt the skeptical view that only homogeneous data can be compared
to each other and there is no mathematically well-founded procedure to ad-
dress the problem of comparing heterogeneous data; or they look for a suitable
standardization procedure, i.e., a mathematical transformation of the raw data
into values that can be meaningfully compared.

According to the first option the answer is the usual one: decisions have to
be made case by case, considering all the relevant information that is available
and appealing to the discernment ability that belongs to the “tacit dimension”
of expert knowledge. However, such a solution may simply not be an option
in all situations (e.g., institutional evaluation procedures) in which there is a
strong request for accountability, which prompts for explicit and public eval-
uation criteria. In these cases, some kind of standardization may be the only
option. Moreover, the less skeptical may find that a suitable standardization
procedure can considerably help them making a more informed decision. For
this reason, standardization (aka normalization) procedures are playing an
increasing role in the evaluation of research especially when it comes to com-
paring productivity and impact in different fields. There is an active research
area that deals with the problem of standardizing citation counts coming from
different fields in order to make them comparable. The proposals are based
on different criteria. For example some focus on average citation counts (e.g.,
Abramo et al (2012); Albarrdn et al (2011); Li et al (2013); Lundberg (2007);
Moed (2010); Radicchi et al (2008); Van Raan et al (2010); Vinkler (2012);

1 1t is not our intention, in this paper, to take a stand on the controversial issue concern-
ing the impact of bibliometric analysis itself, especially when applied to the evaluation of
individuals, on the overall quality of research. We only aim at a methodological contribution
that is neutral with respect to the different policies that may be adopted to promote the
growth of high quality scientific knowledge. However, our analysis may also shed some light
on the whole problem and be used to support empirical analysis or simulations of different
policies.
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Waltman et al (2011); Zhang et al (2014)), others focus on highly cited publi-
cations (e.g., Leydesdorff et al (2011); Tijssen et al (2002); Van Leeuwen et al
(2003); Waltman and Schreiber (2013)). See Waltman (2016) for a recent and
thorough review of citation impact indicators.

However, the use of these procedures is by no means restricted to research
evaluation and concerns every human activity in which important decisions
need to be made as a result of an appraisal based on data that are not directly
comparable. Models based on one or the other standardization procedure are
widely used to support decision making in many practical applications, e.g.,
usability testing (Tullis and Albert, 2013), (Kindlund, 2005), psychological
testing (Lezak, 1995), (Kaplan and Saccuzzo, 2013), anthropometry (Wang
and Chen, 2012), data mining and cluster analysis (Larose and Larose, 2015),
(Milligan and Cooper, 1988), (Stoddard, 1979), composite indicators (Mlachil
et al, 2014), (OECD, 2005), to mention just a few. There is therefore a growing
need for a conceptual and mathematical characterization of the very notion of
standardization that clarifies its scope and limits.

Oddly enough, we are not aware of any systematic effort to analyse the
standardization problem from a general theoretical viewpoint. This paper aims
to fill this gap and clarify the issue, laying the foundations for further inves-
tigation. In this way we hope to shed light on the widespread practice of
standardizing raw data: on the one hand, we show to what extent the current
practice is justified and what is the general format of a “good” standardiza-
tion procedure; on the other, we show what are the intrisic limitations of any
standardization procedure in terms of the amount of information that it can
consistently handle.

In our view, standardizing the raw data means converting them into values
that express their relative standing with respect to a group of similar data,
i.e., data to which they are deemed to be directly comparable. For exam-
ple, the scientific productivity of a pure mathematician is relativized to the
productivity of the members of his reference context consisting only of pure
mathematicians. This is usually done by means of summarizing statistics con-
cerning the reference context. A very popular standardization procedure in
some fields (e.g., bibliometrics) is the m-score, which consists in dividing the
raw data by their means (Waltman, 2016, Section 6.1). Other quite popular
procedures in various fields are: i) the z-score that transforms each raw value
by subtracting the mean of the values observed in the reference context and di-
viding the result by the standard deviation; ii) maz-min normalization, which
consists in subtracting the minimum value observed in the reference context
and dividing the result by the range (the difference between the maximum and
the minimum values). What are the conceptual grounds of these popular stan-
dardization methods? Can they be described as members of a general class of
standardization functions characterized on the basis of a small set of plausible
axioms? What are the limits on the mathematical form of these functions and
on their “resolution”, i.e. on the number of summarizing statistics that can be
consistently used to partition the raw data into equivalence classes?
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There is no claim that standardizing is the ultimate solution to the prob-
lem of comparing heterogenous data, nor that such a comparison can always
be sensibly made. However, if we must standardize, for example because the
decision process requires an accountable evaluation procedure, then we show
that under some rather weak and natural assumptions, the format of a stan-
dardization procedure is determined quite sharply, and so are its intrinsic
limitations.

2 The Standardization Problem

In general terms, we are interested in appraising the value z; that a certain
characteristic C' takes for a given individual ¢ relative to the values x1,...,x,
that C takes for all the individuals of a certain reference context to which 4
belongs. For a variety of reasons we may judge that the absolute value x; is
not significant per se and what counts is its “relative standing” with respect
to the context x1,...,x, in which it occurs. Thus, we are interested in the
following question:

How does the relative standing of ; with respect to its context (Q)
Z1,...,%T, compare to the relative standing of y; with respect
to its context y1,...,ym?

In its general form, the question is somewhat vague and its actual meaning
depends on how we interpret the elusive notions of “relative standing” and
“context”. By a “context” here we simply mean a set of individuals for which
we deem that the observed values of a certain characteristic of interest are
directly comparable. Clearly, the partition of a population into contexts is the
result of a decision that depends on the problem at hand. Here we assume that
such a partition has been properly decided.

As for the notion of “relative standing”, a natural and popular answer
consists in mapping each absolute value to its percentile rank with respect
to the values observed in its context. While this approach may work well
for certain purposes, it often leads to counterintuitive results. For example,
consider two contexts each consisting of 100 values described by the following
table:

\1 ©9101112--- 100
666 5 2 2
y6---63 2 2... 2

where the values are ordered from highest to lowest. Here the rank of y19 is
higher than the rank of z1; and, yet, some may intuitively judge that the
relative standing of 17 with respect to x is higher than the relative standing
of y1o with respect to y, essentially because the distance between y9 and y1¢
is much greater than the distance between x19 and x1;. This intuition may be
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captured by transforming the raw values into z-scores and showing that the
z-score of x1; is higher than the z-score of y;¢.2

Transforming a value into its z-score is a typical example of what is usually
called “standardization”. In general, by standardization function we mean a
two argument function S, mapping a raw value x and its context x to a real
number, which is intended to measure the relative standing of x with respect
to x.

In our view, a standardization function is one that satisfies the following
key property:

if two values z; and z; belong to the same context x, the dis- (P)
tance between S(z;,x) and S(z;,x) is (strictly) monotonically
related to the distance between x; and x;.

Clearly, this property is not satisfied by purely ordinal methods. To stick to
the above example, the distance between yg and y;¢ is much greater than the
distance between y19 and y;1, while the distance between the respective ranks
is the same.

How much information do we need about the context x to be able to
standardize a given value x occurring in it? On one extreme, we may think that
we need no information about x — say when we feel that comparing absolute
values regardless of the context is adequate for our purposes — in which case no
standardization is needed. On the other, we may insist that we must know all
the values of x, in which case any two contexts are essentially different unless
they are permutations of each other. In most interesting situations, however,
we may be happy with partial information in terms of a suitable finite set of
summarizing statistics f1,..., fn that convey all the information about x that
we deem relevant. The key idea of our approach is that two contexts may be
considered equivalent whenever they take the same values for all the chosen
statistics f1,..., fn. Equivalent contexts cannot be distinguished in terms of
the statistical information that we deem relevant for our purposes and so they
should be treated as identical. In other words:

S(z,x) = F(z, f1(x),..., fn(x)) for some function F and some (S)
fixed set of statistics {f1,..., fn},

where the choice of the relevant statistics f1,..., fn is subjective.

The main aim of this paper is contributing to clarify the question (Q) in
terms of standardization functions of the general form (S). More precisely, the
abstract standardization problem we address boils down to the following two
questions:

Question 1 What sets of statistics can be meaningfully used in (S) to convey
all the (subjectively) relevant information about contexts?

w; —p(w)

o(w) ?
where p(w) and o(w) are the mean and the standard deviation of w. In the example the
z-scores of y10 and x11 are respectively 0.5497 and 2.0948.

2 Recall that the z-score of w; with respect to w = (w1,...,ws,) is equal to
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This involves also considering the possible limitations on the amount of statis-
tical information that can be consistently used in (S). In other words: are there
constraints on the amount of statistical information that can be consistently
used to define a standardization function?

Question 2 Given an appropriate set of statistics, what is the exact functional
form of the standardization function?

In the sequel we shall propose a conceptual framework and a set of intuitive
properties for a reasonable standardization function that will allow us to an-
swer these questions under rather weak assumptions.

3 The Model

For our purposes we can identify a context with the record of values observed
for the individuals belonging to it. This amounts to enumerating the individ-
uals in the context and specifying an n-tuple of real numbers where the ¢-th
element corresponds to the value observed for the i-th individual belonging to
the context, according to the given enumeration. So, from now on, a context
will be formally represented by a subset of the set R™ of all n-tuples of reals,
that we shall often call vectors. Let {2 be the set of all finite contexts with at
least two elements, formally 2 = ;- , R". In this paper we consider a statis-
tic as any function f mapping each context to a real number, provided that f
is permutation invariant, i.e. it yields the same value for any two contexts x
and y such that y is simply a permutation of x. For example, given contexts
x and y such that x = (0.5,1.1,5.6,0.5) and y = (1.1,0.5,0.5,5.6) it must
be the case that f(x) = f(y). Permutation invariance naturally arises from
the widespread assumption of exchangeability of any data vector (z1,...,z,).
In other terms, the ‘labels’ identifying the individual data are uninformative,
in the sense that the information that the z;’s provide is independent of the
order in which they are collected.

As mentioned in the previous section we consider two contexts x and y
as equivalent with respect to a chosen set of summarizing statistics fi,..., fn
whenever f;(x) = fi(y) for all ¢ = 1,...,n. Intuitively, this means that the
two contexts cannot be distinguished from the point of view of the statistical
information in which we are interested and, therefore, the data contained in
them can be directly compared. For example, if the only statistic information
of interest for a given purpose is the mean u, two contexts x and y will be
deemed equivalent if u(x) = p(y). If we reckon that, besides the mean, also
the standard deviation ¢ and the minimum should be taken into account,
then x and y will be deemed equivalent if u(x) = u(y) and o(x) = o(y) and
min(x) = min(y). To take a concrete example for this particular choice of
statistics, the two contexts x = (0,4,3,7) and y = (7,4,0,3,6,1) would be
equivalent, in that their mean (3.5), their standard deviation (2.5) and their
minimun (0) are the same.
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More formally, let @ be an arbitrary finite set of statistics on 2, let 2*
be any subset of {2 consisting of the vectors in which we are interested for
the purpose of standardization,® and let ~¢ be the equivalence relation on 2*
defined as follows: for all x,y € 2%,

x ~g y if and only if f(x) = f(y) for all f € . (1)

It is immediate to verify that the relation ~g¢ is reflexive (for all x, x ~¢ %),
symmetric (for all x,y, x ~¢ y implies y ~¢ x) and transitive (for all x,y, z,
x ~p y and y ~g¢ z imply x ~¢ z). Thus, it is an equivalence relation in
the mathematical sense. As such, it induces a partition of £2* into equivalence
classes.

In the following, we shall denote by [x] the equivalence class of any x € 2*
associated with the equivalence relation ~g. In other words, [x] is the set of
all y such that y ~g¢ x.

Observe that the assumption of permutation invariance for the statistics
in @ avoids the trivial case that [x] = {x} for any x € 2*. Given that any
x € {2* contains at least two elements, then obviously every permutation of
x will also belong to [x]. If we drop this assumption, we don’t have the same
guarantee, as it occurs, for instance, when @ is the set of all projections? on
any {2* containing only vectors whose size is bounded above by some n € N.?
Anyway, we emphasize the fact that the property of permutation invariance
plays absolutely no role in our main result.

Let @ and ¥ be two arbitrary sets of statistics on §2: we say that ¢ and ¥
are equivalent on 2* if the following condition holds for all z,y € 2*:

x ~g y if and only if x ~y y (2)

Intuitively this means that the choice between the sets of statistics @ and
¥ does not make any difference as far as the equivalence of contexts in §2*
is concerned. Clearly, if ¢ and ¥ are equivalent on (2*, the partition of 2*
induced by ~g¢ is equal to the partition induced by ~y, that is if 2%/ ~g=
£2* / ~g. Although this notion of equivalence between sets of statistics can be
understood in its abstract sense, obvious cases occur when @ = {fy,..., f,}
and ¥ = {go f1,...,g90 fn} for some fixed function g (with “o” denoting the
composition of functions). A simplest example occurs when @ contains only
the standard deviation o and ¥ only the variance o2.

We also say that @ is redundant on 2* if there exists at least a ¥ C @ such
that @ and ¥ are equivalent on {2*. Simple typical examples are: ¥ = {0}
and & = {0,0%}; ¥ = {u,0} and & = {u,o0, £}. In general terms, if a set @

3 Depending on the choice of statistics, it may be the case that £2* cannot coincide with
(2. For example, if our standardization function is the z-score or the max-min, 2* cannot
include vectors whose components are all equal, such as (3,3,3,3), for in this case the standard
deviation is 0, and so the standardization function would require dividing by 0.

4 Here by “projection” we mean any mapping from a vector to its value occupying a given
position. So, the j-th projection map proj; is defined as the function mapping each vector
x containing at least j elements on its value x;.

5 Recall we assume that & is finite.
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of statistics is non-redundant, no statistic included in it can be expressed as a
function of the others.

Remark 1 Let @ be an arbitrary set of statistics such that {f1,..., fx,g} C ®.
Assume that g(x) = F(f1(x),..., fr(x)) for all x € 2*, where F is any real
function defined on R¥. Then, the set @ is redundant on £2*, because it is
clearly equivalent to @ \ {g} on £2*.

In what follows, all the proofs are relegated to the Appendix.

Lemma 1 Let @ be an arbitrary set of statistics on §2. Let £21 be a subset of 2
such that 2* C £21. If ® is non-redundant on §2*, then it is also non-redundant
on (21.

We now turn to our main definition. The underlying idea can be informally
explained as follows. Given a set @ of statistics that, according to our judgment,
are sufficient to characterize the equivalence between contexts (with respect
to the problem under consideration), our aim is that of defining a meaningful
two-argument standardization function of the form (S) (specified in Section 2).
This is a function that for any element x; of a vector x yields its standardized
value S(x;,x) with respect to x. This function transforms all vectors in 2*
into their standardized version, in such a way that all the standardized vectors
belong to the same “distinguished” equivalence class, so that their values can
be directly compared. For this purpose we require that the standardization
function satisfies some intuitive constraints specified by A1-A4.

Definition 1 A standardization set-up is a quadruple (S, 2%, §, D) where

(i) S is a real function defined on R x 2* (called standardization function);
(i) @ is a non-redundant set of statistics on §2*;
(ii1) D is a distinguished equivalence class in the partition of 2* induced by
the equivalence relation ~g;

satisfying the following conditions for all x,y € 2*

A1) S(x) € D, where S(x) is an abbreviation for (S(x1,%),. .., S(x,,X)), where
n is the size of x.

A2) if x ~3 y, then S(u,x) > S(v,y) if and only if u > v;

A3) S(z;,x) = z; whenever x € D;

A4) |S(u,x) — S(v,x)| < |S(u,x) — S, x)| if and only if |u—v| < |Ju' — /|
for all u,v,u’,v' € R.

In a standardization set-up, S is the standardization function that transforms
a raw value z; occurring in a context x into a standardized value. The set &
contains the statistics that we deem sufficient to capture all the relevant infor-
mation about the contexts. These are used to define the equivalence relation
~g¢ that induces a suitable partition on a particular subset 2% of (2. With
regard to (iil), D is the class of all standard contexts.

From now on, it is implicitly intended that any f € & is associated with
a certain fixed value, for which we will exclusively use the symbol cy, i.e., the
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value taken by f in all standard contexts. For example, if @ = {f1, fo} where
f1 is the mean and f5 is the standard deviation, typically cy, = 0 and cy, = 1.

Let us now discuss the properties A1-A4. Property A1l states the key prop-
erty of standardization. It says that, when applied to all the elements of a vec-
tor x, a standardization function transforms all contexts into standard ones.
Since standards contexts are all equivalent to each other, standardized val-
ues can be directly compared. Property A2 implies that when two contexts
are equivalent, then S is strictly increasing in its first argument and pre-
serves equality.® Property A3 says that when the context is already in the
distinguished class D of standard contexts, we are happy to leave its values
unchanged. Notice that, in conjunction with Property Al, this implies that
S(S(x)) = S(x). Property A4 corresponds to the characterizing property (P)
of standardization functions discussed in Section 2.

To give an example of a standardization set-up consider the quadruple
(S, 2%, &,D) where & = {u,0} (i.e, the mean and the standard deviation),
" ={xeN:0x)#0}), D={x:pux)=00(x)=1} and S is the z-score
function. Notice that in this case the set £2* C (2 is the set of all vectors in {2
for which the z-score is defined. Although we are free to choose £2* as the set
of all contexts on which we are interested for the problem under consideration,
the most general case is when it coincides with the set of all contexts for which
the standardization function S is defined.

One remarkable consequence of our main result, expressed in Theorem 1
below, is that our definition of standardization set-up dramatically restricts
the non-redundant sets @ of statistics that may occur as third element of the
quadruple — i.e., the amount of statistical information that can be consistently
used to define a standardization function of the form (S) — to those that
contain at most two elements. For example, the set & = {u, o, min} that we
mentioned above to illustrate the equivalence relation ~g, while being non-
redundant, cannot possibly be employed in the definition of a standardization
set-up without violating one of the defining properties of S. As we shall see,
Theorem 1 also imposes further restrictions on the type of statistics that @
may contain.

Remark 2 In the following, when we consider an arbitrary standardization set-
up (S, 2%, @, D), by Lemma 1 we can always assume without loss of generality
that 2% is maximal, in the sense that there does not exist any 2; C {2 such
that (2% is a proper subset of {2 and (S, 21, P, D) is still a standardization
set-up.

In other words, 2* is maximal when it contains all the vectors in {2 it can
possibly contain, provided that the function S is always defined and all the
conditions in the definition of a standardization set-up are satisfied.

6 For technical convenience, we assume that the standardization function is mathemat-
ically well-defined even when the first argument is an arbitrary real value that does not
belong to the context in the second argument, as is the case with the usual standardization
functions. The same assumption is made for Property A4.
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For a > 0, we say that a statistic f is positively homogenous of degree
a (briefly, a-positively homogenous) if f(Ax) = A\*f(x) for every x € {2 and
every constant A > 0. For example, mean, standard deviation, maximum, min-
imum and range are all positively homogenous of degree 1, for u(Ax) = Au(x),
o(Ax) = Ao(x), etc. On the other hand, variance is positively homogenous
of degree 2, for 0?(Ax) = A20%(x). When we simply speak of a positively ho-
mogenous statistic f, we mean that f is a-positively homogenous for some
a > 0.

Let us say that a vector is flat if all its elements are equal and let us write
a to denote the flat vector whose elements are all equal to a € R. We shall call
E the set of all flat vectors. We call any statistic f such that, for all x € {2
and alla € E, f(x+ a) = f(x) + a a location statistic . Examples of location
statistics are mean, maximum, minimum, median. With a slight terminological
abuse” we call any statistic f such that f(x+a) = f(x) a dispersion statistic.
Examples are: standard deviation, variance and range.

Remark 8 We emphasize the fact that, unlike the case of dispersion statistics,
the only possibility for a location statistic to be positively homogeneous is when
the degree « is equal to 1. In fact, let f be a location statistic and fix any x €
2,a € F and A > 0: on the one hand, applying in turn the definition of location
statistic and a-positive homogeneity, we have that f(A(x+a)) = A\*f(x+a) =
A%(f(x)+a). On the other hand, reversing the order of application of the above
properties, we get f(A(x+a)) = f((Ax)+ (Aa)) = f(Ax) + Aa = A* f(x) + Aa.
Therefore, we obtain that A*a = Aa, which necessarily implies @ = 1 by the
arbitrariness of a.

Remark 4 If f and g are location statistics, it is immediate to verify that g— f
is a dispersion statistic; moreover, according to the previous remark, if f and
g are positively homogeneous, so is g — f. For example, given the two location
statistics max and min, the difference max(x) —min(x) is a dispersion statistic
and is positively homogenous (of degree 1).

Now we are ready to state our main result.

Theorem 1 For every standardization set-up (S, 2*, P, D) such that ¢ con-
tains at least two elements, if all the functions in @ are location or dispersion
statistics and positively homogenous, then:

T1) @ = {f,g} where f is a location statistic and g is either a location statistic
or a dispersion statistic;
T2) if g is a dispersion statistic, there exists an a > 0 such that:

) = (225 (w760 + e, ®

7 Statistics are usually classified into three general classes, that is, location statistics (e.g.,
mean, median, mode, quantiles, minimum and maximum), dispersion statistics (e.g., vari-
ance, standard deviation, range, interquartile range), and shape statistics (e.g., skewness,
kurtosis). In our terminology, the class of dispersion statistics includes also that of the shape
statistics.
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with 2* = {x € £2: g(x) # 0},
T3) if g is a location statistic, we have that:

ux:icgfcf u— f(x c
Slo,x) = B = ) + e (4)

with 2* = {x € 2: g(x) — f(x) # 0}.

While the above theorem shows, somewhat unexpectedly, that the statisti-
cal information specified in @ to establish the equivalence of contexts cannot
consist of more than two statistics, in the next two corollaries we show what
happens in the special case in which @ contains, respectively, only one disper-
sion statistic and only one location statistic.

Corollary 1 Let (S, 2*,®, D) be a standardization set-up such that ® = {f},
where f is a positively homogenous dispersion statistic. Then, there exist an
a > 0 and a function p : 2% — R satisfying the conditions

C1) p(x) =ply) if f(x)=[f(y)
C2) p(x)=04if xe D,

such that: )
S(u,x) = (72 )" u+ px), (5)
where 2* C{x € 2: f(x) #0}.

Before stating a corollary analogous to the previous one, we need a preliminary
lemma.

Lemma 2 Let f be an arbitrary location statistic. Then, there does not exist

any v € R such that f~1({r}) ={r=(r,...,r) € E}.

Corollary 2 Let (S, 2*,®, D) be a standardization set-up such that ® = {f},
where f is a positively homogenous location statistic. Then, there exists a func-
tion p : 2 — R satisfying C1 and the conditions

C3) p(x) > 0 for all x € 2%;
C4) p(x)=11if xe D,

such that:
S(u,x) = p(x)(u — f(x)) + cy. (6)

Let us now recall the two fundamental questions asked at the end of Sec-
tion 2, namely: 1) What sets of statistics can be meaningfully used by a
standardization function to convey all the (subjectively) relevant information
about contexts? 2) Given an appropriate set of statistics, what is the exact
functional form of the standardization function?

Theorem 1, together with Corollaries 1 and 2, provide an answer to both
our initial questions under the assumption that all the functions in @ are loca-
tion or dispersion statistics and positively homogenous. Question 1 is answered
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by showing that (i) @ cannot contain more than two statistics,® (ii) at least
one of these is a location statistic and at most one is a dispersion statistic.
Question 2 is answered by showing that the form of S is completely determined
by Eq. (3) or (4).

Note that by Remarks 3 and 4, Eq. (4) is a special case of Eq. (3), so that
one can always rearrange a set-up in such a way that & contains exactly one
location statistic and one dispersion statistic. Besides the z-score function the
so-called robust z-scores, such as

u — med(x)

Slux) = irq(x)

)

where med is the median and irq is interquartile range, or

S(u, x) = L= medx)

)

mad(x)

where mad is the median absolute deviation, are also special cases of Eq. (3)
(with @ = 1). Moreover, the equally well-known max-min normalization

u — min(x)

S(u,x) =

max(x) — min(x)

is a special case of Eq. (4). Notice that, according to our result, the standard-
ization functions of this form make use of a maximal amount of statistical
information concerning the contexts in £2*, for no further statistical informa-
tion can be possibly used for standardization purposes.

There exist different examples of standardization functions which make use
of a non-maximal amount of statistical information and belong to the models
proposed in Corollaries 1 or 2, where @ = {f} contains only one statistic, such
as:

u

S(u,x) =

)

o(x)
where f is the dispersion statistic given by the standard deviation, or

u

S(u,x) =

max(x) — min(x)’

where f is the dispersion statistic given by the difference between the maxi-
mum and the minimum, or the m-score:

any (7)

where f is the location statistic given by the mean, or

S(u,x):ﬁ(x),

8 Recall that @ is assumed to be non-redundant.
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where f is the location statistic given by the maximum. The first two examples
are very special cases of Eq. (5), with a = ¢y = 1 and p(x) = 0, while Egs. (7)
and (8) are particular cases of Eq. (6), with ¢; = 1 and p(x) = 1/f(x).
Note that, in the latter case, the maximal £2* coincides with the set {x € 2 :
max{x} > 0}: this point is worth of further comment. In fact, in the literature,
it is possible to find standardization functions which correspond to Eq. (8),
but such that the respective domains (2* are not maximal: this is the case,
for example, of the standardization procedure denoted by Z3 and illustrated
in Milligan and Cooper (1988), where the authors specify that the involved
variables must be positive or, equivalently in our terminology, that the domain
£2* must be {x € 2:x; >0 for all i}.

Finally, the rather popular standardization procedure based on ranking
(the function Z7 in Milligan and Cooper (1988)) does not belong to the model
investigated in this paper in that it fails to satisfy the characterizing condition
(P) discussed in Section 2.

4 An Application

In Zhang et al (2014), the authors analyze the normalization effect of m-score
and z-score with respect to raw citations and the relative merits of these two
normalization methods. The main approach followed by the authors in order to
test the effects of various normalization methods consists in the following steps:
(i) put together publications of different fields; (ii) sort them in decreasing
order according to their normalized citation counts; (iii) select the global top
t% publications; (iv) distribute them according to their corresponding fields;
(v) calculate the percentages of publications falling into the top t% in each
field. Based upon an idea of Radicchi et al (2008), the authors conclude that
the most effective normalization method is the one which exhibits the highest
uniformity between the global top t% publications and the top t% in each
field.

We shall illustrate the contribution made by our theoretical analysis to
the practical application of such approach for publications belonging to two
different fields under an arbitrary standardization procedure.

Let x = (1,...,%m) and ¥y = (y1,...,yn) be the vectors whose compo-
nents represent the citations of the m and n papers belonging to two different
fields, respectively. We shall assume that the components of both vectors are
arranged in decreasing order. After fixing a distinguished set T' = {t1,...,¢s}
of possible values that ¢ can take, we pick up a specific t; € T it is then easy
to see that the top ;% publications in the first and the second field are given
by {zk : k < jm(t:)} and {yx : k < jn(t:)}, respectively, where j,(¢;) denotes
the integer part of (¢; p)/100 for any p € N. Given any standardization set-up
(S, 2*,®, D), owing to A2, we know that the top t% publications in each single
field remain the same regardless of the normalization process. Now, it can be
shown that we have a perfect correspondence between the top t;% publications
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in every field and the global top t;% normalized publications if, and only if,
max{S(2;,, (t:)+1,X), S (Y, t)+1,¥)} < min{S(z;,, 1), %), S(Yj. ), ¥) I (9)

For instance, suppose that m = 1500, n = 1300 and ¢; = 1, i.e. we are in-
terested in the top 1% publications in each field and in the top 1% global
normalized ones. Accordingly, j,,,(1) = 15 and j,(1) = 13, so the top 1% of
the publications of the two fields are exactly {z1,...,z15} and {y1,...,v13},
respectively. Moreover, according to Eq. (9), our normalization method ex-
hibits the highest uniformity, at least for the percentage of 1%, when

max{S(x16,%), S(y14,y)} < min{S(z15,%), S(y13,¥)}

Now, if we analyze in detail Eq. (9), it is immediate to see that we have only
the following four cases:

Case (
max{S (2, (t:)+1, %), S W, (t)+1, ¥)} = 5@, t)+1, %);
mln{S Qijm ti ), );S(yjn(t )} S(mﬂm(t )’ )

Case (
max{S L (t:)+15 ))S(yjn(t +1,Y )} = (mjm ti)+1: X X);
min{S(z;,, (1), %) S(Yj, t): ¥)} = S(Wj, (), ¥)-

Case (iii)
max{S(z;,, t,)+1,%): SWj, t0)+1, ¥)} = SWj ) +1,¥);
min{S(z;,,t,),%); S W (2:), ¥)} = S(Yj, ), ¥)-

Case (

max{s(%m(ti)ﬂax)vS(ygn(t +LY) = (ygnt)+1= Y);
min{S(z;,,(,),%), S (), (1), ¥)} = S(Tj,,(2,), %)

The cases (iii) and (iv) are analogous to the cases (i) and (ii), respectively, so
it suffices to treat the first two ones. In case (i), Eq. (9) boils down to

S(@j,, (t)+1:%) < S(@5,,, (4, %),

which is assured by property A2, seeing that x; ()41 < ¥;,, (t,) by assump-
tion. Thus, in case (i), as well as case (iii), Eq. (9) is always satisfied. Otherwise,
in case (ii), Eq. (9) amounts to

S(@j,, )1 %) < S(Yj, (1), Y)- (10)

Suppose now that S satisfies the assumptions of Theorem 1. Then, according
to the proof of such theorem (for details see Eq. (16) in Appendix), there exist
two permutation invariant functions a,b : £2* — R such that, for all © € R:

S(u,x) = a(x)u + b(x). (11)
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By applying Eq. (11) yields

S(@),, (t)+1,X) = a(X)z;, (1,41 + b(x) (12)

and
S(x1,%x) = a(x)z1 + b(x).

The combination of the above formula with Eq. (12) leads to

S(w,, (141, %) = S(x1,%x) — a(x)(z1 — Tj, (1,)+1) (13)

and, analogously, it can be shown that

SWjnt)>¥) = SW1,y) —a(y) (1 — ), 1)) (14)

Taking into account Eq. (10), by means of Eq. (13) and Eq. (14) we derive
that, in case (ii), Eq. (9) holds true if, and only if,

S(w1,x) — a(x)(v1 — 25, 1)+1) < SW1,y) —a(y) (Y1 — Yj,t.)) (15)

and similarly for case (iv). Besides the initial terms S(z1,x) and S(y1,y), it
is clear that the fulfillment of Eq. (15) is strongly dependent on the crucial
function a, which is nothing but the so-called scaling factor, whose importance
has been emphasized in many papers (see, for instance, Abramo et al (2012)).
However, we must not forget that the distribution of the components of the
vectors x and y can also play a significant role for the satisfaction of Eq. (9).
For example, if we compare the m-score and the z-score, whose scaling factors
are given by the reciprocals of the mean and the standard deviation, respec-
tively, when the vectors x and y are such that m = n and z = yi + ¢ for all
k=1,...,n and for some ¢ € N, we claim that Eq. (9) is always satisfied for
the z-score, but not generally for the m-score. First of all, observe that, as a
consequence of the fact that the mean is a location statistic and the standard
deviation is a dispersion statistic, we have u(x) = p(y) + q and o(x) = o(y).
Therefore, if we start with the z-score, we obtain that
S x) = px) _xr—p(y)—q _ yr—py)

o(x) a(y) a(y)

= S(yx,y)

for all kK = 1,...,n. This immediately implies that, fixing any ¢;, both the
equalities

max{S(x;, t:)+1, %), SWj, t)+1,¥)} = (@5, t)+1,%) = S(Wj, ) +1,Y)

and

min{S('rjn(ti)’ X)’ S(yjn(ti)7 Y)} = S(xjn(ti)’ X) = S(yjn(ti)a y)
hold true. In other words, both cases (i) and (iii) occur, hence, as previ-
ously shown, Eq. (9) is satisfied for every level ¢t of any arbitrary 7. On
the contrary, let us prove that with such vectors and the further assumption
0 < Ui, (t)+1 = Yjn(t:) < H(y) the m-score does not verify Eq. (9). We assert
that the assumption 0 < y; (t,)+1 = ¥, (t;) < i(y) implies the occurrence of
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case (ii). Indeed, under such hypothesis, an elementary algebraic computation

shows that
Yiut)+1 14 < Yin(t)+1

w(y) +q u(y)

Therefore, the next chain of inequalities directly follows:

Tin(ta) 41 _ Yin()+1 T4 Yin ()41
1(x) wy) +q n(y)

S(xjn(ti)+lyx) = = S(yjn(ti)+17y)~

In other words, we have shown that

max{S(z;, t,)+1,%): S W), (1) +1,¥)} = S(@j,, (1) +1, %)

and, analogously, it can be shown that

min{S(z;, ), %), S W, 0, Y)} = S (W t): ),

so proving the assertion. As previously stated, this means that Eq. (9) is
fulfilled if, and only if, Eq. (15) is verified. Recalling that a(z) = 1/u(z) for all
z such that p(z) > 0, it is not difficult to see that Eq. (15) may be rewritten

as . i
Jn(t:)+1 < Jn (i)

px) T oply)
Since xp = yr + ¢ for all k and u(x) = u(y) + ¢, the previous inequality
amounts to

Yin(t)+1 T4 < Yin(ts)

wly)+q — uy)’
or, equivalently, after a simple algebraic manipulation,
yjn(ti)
Yjn(t:) — Yin(t:)+1 Zq(lf )
Jn (t) Jn (ti)+ IU(Y)

which clearly contradicts our assumption 0 < y;, ¢.)+1 = Yj,.t:) < K(Y), 50
definitely proving the claim. As a consequence, at least for the proposed dis-
tribution, our conclusion is opposite to the one drawn in Zhang et al (2014),
where the authors state that the mean-based method is generally better per-
forming, because it exhibits the highest uniformity between the global top t%
publications and the top t% in each field. Notice also that this effect, in our
theoretical example, is independent of the skewness of the distribution.

5 Conclusions

Theorem 1 is, at the same time, bad news and good news. It is bad news
because it shows that standardization is confined by the straight-jacket of
set-ups containing no more than two statistics. This provides a strong upper
limit on the statistical information that we can consistently use to discriminate
between classes of directly comparable data. It is good news because it shows
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that a small set of natural requirements on standardization allows us to obtain
a quite sharp characterization of its mathematical form.

Our results can be applied in a variety of areas to test whether a proposed
standardization procedure complies with them, that is, belongs to one of the
classes characterized in Theorem 1, Corollary 1 and Corollary 2. If it does,
our notion of standardization set-up and its properties can provide a prelim-
inary mathematical justification for it, restricting the discussion to the most
appropriate choice of the location or dispersion statistics to include in @, and
on whether or not it may be more appropriate to use standardization func-
tions based on one statistic only, or to adopt a more refined version based on
two statistics, that is, according to our main theorem, the maximal amount of
statistical information that can be managed by a standardization function.

If it does not, our result can still shed light on the problem under investi-
gation, for this implies that one of the properties of a standardization set-up
must be violated, and this could be a good reason either for discarding the pro-
posed procedure or for motivating why the violated properties are unsuitable
for the problem in question.

Appendix
Proof of Lemma 1

Suppose ab absurdo that & is redundant on §2;. By definition, we know that there exists
a proper subset ¥ of @ such that ¢ and ¥ are equivalent on (2;. Particularly, this means
that g(x) = g(y) for all ¢ € ¢ whenever x,y € {21 are such that f(x) = f(y) for all
f € . However, being ¢ non-redundant on §2* by assumption, there exist xo,yo € 2* and
a g € ¢\ ¥ such that f(xo) = f(yo) for all f € ¥, but g(xo) # g(yo). Since xo,yo0 € {21,
this clearly contradicts the above property, so closing the proof.

Proof of Theorem 1

Let (S, 2%, P, D) be a standardization set-up such that all the functions in ¢ are location
or dispersion statistics and positively homogeneous, with @ D {f, g}.
Observe that it follows from clause A4 in Definition 1 that for all u,v € R and all
X € 2%,
[S(u+v,x) — S(u,x)| = |S(u,x) — S(u—v,x)|.

Moreover, u — (u—v) has the same sign as (u+v) —u. Applying Property A2, it follows that
S(u+v,x)—S(u, x) also has the same sign as S(u,x) —S(u—v, x) and so S(u+v,x)—S(u, x)
must be equal to S(u,x) — S(u — v,x). Notice also that, within a given equivalence class
H € 2%/ ~g, the standardization function S is independent of its second argument (by A2),
since the value of S is preserved under substitutions of the vector in the second argument
with an equivalent one. So, let Sir : R — R be the one-argument function defined as follows:
Sm(u) = z if and only if S(u,w) = z for w € H. Then the above equation can be written
as:
S (u+v) — Sg(u) =Sg(u) — Sg(u—w),

for all u,v € R. By an elementary algebraic manipulation, such property reads as

SH<u;v> _ SH(u);SH(v).
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The above equation means that both Sy and —Sp are midconvex on R, and recalling that,
being Sy monotone, it is also measurable, as a consequence of a result proved by Blumberg,
and independently by Sierpinski (see, for instance, Roberts and Varberg (1973)), it follows
that Sy is an affine function. Consequently, there exist real constants ay and by, depending
only on H, such that, for all u € R:

SH(U) =agu-+bg.

Generalizing the previous argument, we can always associate with any x € 2* two real
constants, denoted by a[y) and by, depending only on [x], such that, for all u € R:

S(u,x) = a[x]u+b[x]. (16)

Notice that ajy is forced to be positive by A2. We now distinguish the following two cases:
(1) @ contains at least one dispersion statistic and (2) @ contains no dispersion statistic.

Case 1. & O {f,g} contains a dispersion statistic, say g. Given any x € 2%, denote
by by the vector of E given by bpj = (bjx],---;b[x). Then, recalling that S(x) is an
abbreviation for (S(z1,x),...,S(zn,x)) for some n € N, it follows from (16), the definition
of dispersion statistic and the positive homogeneity of g that there exists an o > 0 such
that:

9(5(x)) = g(apgx +bpqg) = glaggx) (17)
= a&]g(x).

At the same time, since S(x) € D, owing to Al we deduce that g(S(x)) = ¢4, which,
combined with Eq. (17), leads to

afg9(x) =cg forall x € 2" (18)

We assert that ¢y # 0: otherwise, by Eq. (18), recalling that a[x) > 0 for all x € 2%, we would
obtain that g is identically zero on £2*. In this case, it is easy to see that @ and @ \ {g} are
equivalent on 2%, so contradicting the requirement that @ is non-redundant in Definition 1
and proving the assertion. As a straightforward consequence of the assertion and Eq. (18),
one finds that g(x) # 0 for all x € 2%, showing that £2* is a subset of {x € 2: g(x) # 0}.

Now, observe that, if & contains another dispersion statistic, say g’, then, by Eq. (18),
it is not difficult to show that there exists an o’ > 0 such that ¢'(x) =c- (g(x))o‘//‘* for all
x € 2%, where ¢ = ¢y - (cg)’o"/o‘. Consequently, @ and @ \ {g’} are clearly equivalent on
2* against the requirement that @ is non-redundant. Therefore, @ can contain at most one
dispersion statistic.

Since, by assumption, ¢ D {f, g} and all the functions in & are location or dispersion
statistics, it follows that f is a location statistic. Repeating the argument illustrated before
Egs. (17) and (18), just replacing the definition of dispersion statistic with the one of location
statistic, and recalling Remark 3, we deduce that:

F(5(%)) = fapgx + b)) = f(apgX) + bix] (19)
= apf(x) + by
= Cf.

Hence, resorting to Egs. (18) and (19) and after a simple algebraic manipulation, Eq. (16)
boils down to Eq. (3). Further, & cannot contain any other location statistic, say f’; for,
applying again Eq. (19) with f’ in place of f, we obtain that f’(x) = F(f(x), g(x)), where
F(u,v) = u + co'/®, with ¢ = (cpr —cy) - cgl/oﬂ Thus, owing to Remark 1, ¢ contains
a redundant set of statistics given by {f,g, f’'}, against the assumption that & is non-
redundant. This implies that & = {f, g} and S must have the form stated in Eq. (3).

Finally, recalling Remark 2, it is now absolutely clear that 2* is maximal if and only if
it coincides with the whole set {x € 2 : g(x) # 0}, so closing the case of the presence of a
dispersion statistic in .
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Case 2: ® D {f, g} contains no dispersion statistic. Then, by assumption, all the statis-
tics in @ are location statistics, particularly f and g. Now, exploiting Eq. (19), we obtain
that

by = cf —axf(x) forall x € 2. (20)
Repeating the same argument for g, we have that:
ap9(x) +bx) = ¢g for all x € 2*. (21)
If we insert Eq. (20) into Eq. (21), we get:
ap)(9(x) — f(x)) =cg —cy forall x € 27, (22)

We claim that ¢ — ¢y # 0: otherwise, by Eq. (22), recalling that afx) > 0 for all x € 27,
we would derive that f = g on §2*, so clearly contradicting the requirement that & is non-
redundant in Definition 1 and proving the claim. As a straightforward consequence of the
claim and Eq. (22), one finds that g(x) — f(x) # 0 for all x € 2%, showing that 2* is a
subset of {x € 2: g(x) — f(x) # 0}.

Now, resorting to Egs. (22) and (20) and after a simple algebraic manipulation, it is easy
to check that Eq. (16) boils down to Eq. (4). Further, ¢ cannot contain any other location
statistic, say f’; for, applying again Eq. (19), with f’ in place of f, and Eq. (20), we obtain
that f/(x) = F(f(x), g(x)), where F(u,v) = ciu + cav, with

o — cgfcf/7 o — 7 fo'
cg —cy cg —cy
Thus, owing to Remark 1, ¢ contains a redundant set of statistics given by {f, g, f'}, against
the assumption that @ is non-redundant. Therefore, & = {f, g} and S must have the form
stated in Eq. (4).

Finally, recalling Remark 2, it is now absolutely clear that 2* is maximal if and only if
it coincides with the whole set {x € 2 : g(x) — f(x) # 0}, so closing this case.

This concludes the proof of the theorem.

Proof of Corollary 1

By Case 1 of Theorem 1, after the assignment p(x) := b[x], we immediately deduce that
S satisfies Eq. (5) and that 2* C {x € 2 : f(x) # 0}. Note that C1 is a straightforward
consequence of the fact that by, = bp,) whenever x ~g y, ie. f(x) = f(y). Finally, C2
directly stems from condition A3.

Proof of Lemma 2

Suppose ab absurdo that such an r exists. Let a € E: then, by definition of location statistic,
we have that f(r+a) = f(r)+a and, at the same time, f(a+r) = f(a)+r. Thus, exploiting
the assumption f(r) = r, we derive that f(a) = a for any a € E. Now, fix any x ¢ E: by
assumption, we have that f(x) = r — h for some h # 0. Then, fixing h = (h,...,h) € E,
we get f(x+h) = f(x)+h=r, hence x+h € f~1({r}), which is a contradiction, because
x + h is evidently different from r, since it neither belongs to E.

Proof of Corollary 2

By virtue of Eq. (20), after the assignment p(x) := a[y), we immediately deduce that S
satisfies Eq. (6). Note that C1 is a straightforward consequence of the fact that aj) = afy
whenever x ~g y, i.e. f(x) = f(y). Condition C3 is due to the fact that, as recalled in the
proof of Theorem 1, a[x] is forced to be positive for any = € 2* by A2. Finally, as direct
consequence of the previous lemma, we know that there exists at least a x € D such that
x; # cy for some i. Thus, since condition A3 applied to Eq. (6) leads to p(x)(z; — cf) =
z; — cf, C4 easily follows.
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