Skip to main content
Log in

What connections lead to good scientific performance?

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

This paper concentrates on the connections in the collaboration network and aims to explore what kinds of connections improve the joint output of the two nodes in connection, using the collaboration data of top institutions in the field of Information Science and Library Science for the period 2007–2016. More intensive connections are found between top institutions, and most institutions are connected into the largest component. The effect of international connection on performance is compared between US and non-US institutions. The homophily of centrality, tie strength and h-index measured as assortativity coefficient is described to show how institutions of similar properties tend to connect with each other in the graph. Furtherly, a negative binomial regression model is employed to investigate the relationship between the homogenous connections and the citation counts received by the connections. Characteristics of connections that contribute to good performance are then obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbasi, A. (2016). A longitudinal analysis of link formation on collaboration networks. Journal of Informetrics, 10(3), 685–692.

    Article  Google Scholar 

  • Abbasi, A., Altmann, J., & Hossain, L. (2011). Identifying the effects of co-authorship networks on the performance of scholars: A correlation and regression analysis of performance measures and social network analysis measures. Journal of Informetrics, 5(4), 594–607.

    Article  Google Scholar 

  • Abbasi, A., Hossain, L., & Leydesdorff, L. (2012). Betweenness centrality as a driver of preferential attachment in the evolution of research collaboration networks. Journal of Informetrics, 6(3), 403–412.

    Article  Google Scholar 

  • Badar, K., Frantz, T. L., & Jabeen, M. (2016). Research performance and degree centrality in co-authorship networks: The moderating role of homophily. Aslib Journal of Information Management, 68(6), 756–771.

    Article  Google Scholar 

  • Badar, K., Hite, J. M., & Ashraf, N. (2015). Knowledge network centrality, formal rank and research performance: Evidence for curvilinear and interaction effects. Scientometrics, 105(3), 1553–1576.

    Article  Google Scholar 

  • Barabasi, A. L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286(5439), 509–512.

    Article  MathSciNet  MATH  Google Scholar 

  • Bonacich, P. (1987). Power and centrality: A family of measures. American Journal of Sociology, 92(5), 1170–1182.

    Article  Google Scholar 

  • Bordons, M., Aparicio, J., González-Albo, B., & Díaz-Faes, A. A. (2015). The relationship between the research performance of scientists and their position in co-authorship networks in three fields. Journal of Informetrics, 9(1), 135–144.

    Article  Google Scholar 

  • Borgatti, S. P., Mehra, A., Brass, D. J., & Labianca, G. (2009). Network analysis in the social sciences. Science, 323(5916), 892–895.

    Article  Google Scholar 

  • Dehdarirad, T., & Nasini, S. (2017). Research impact in co-authorship networks: A two-mode analysis. Journal of Informetrics, 11(2), 371–388.

    Article  Google Scholar 

  • Ebadi, A., & Schiffauerova, A. (2015). How to become an important player in scientific collaboration networks? Journal of Informetrics, 9(4), 809–825.

    Article  Google Scholar 

  • Freeman, L. C. (1979). Centrality in social networks conceptual clarification. Social Networks, 1(3), 215–239.

    Article  MathSciNet  Google Scholar 

  • Frenken, K., Hardeman, S., & Hoekman, J. (2009). Spatial scientometrics: Towards a cumulative research program. Journal of Informetrics, 3(3), 222–232.

    Article  Google Scholar 

  • Glänzel, W., & Schubert, A. (2001). Double effort = Double impact? A critical view at international co-authorship in chemistry. Scientometrics, 50(2), 199–214.

    Article  Google Scholar 

  • Han, P., Shi, J., Li, X., Wang, D., Shen, S., & Su, X. (2014). International collaboration in LIS: Global trends and networks at the country and institution level. Scientometrics, 98(1), 53–72.

    Article  Google Scholar 

  • Hâncean, M. G., & Perc, M. (2016). Homophily in coauthorship networks of East European sociologists. Scientific Reports, 6, 36152.

    Article  Google Scholar 

  • He, B., Ding, Y., Tang, J., Reguramalingam, V., & Bollen, J. (2013). Mining diversity subgraph in multidisciplinary scientific collaboration networks: A meso perspective. Journal of Informetrics, 7(1), 117–128.

    Article  Google Scholar 

  • Hirsch, J. E. (2005). An index to quantify an individual’s scientific research output. Proceedings of the National Academy of Sciences of the United States of America, 102(46), 16569–16572.

    Article  MATH  Google Scholar 

  • Hoekman, J., Frenken, K., & Tijssen, R. J. W. (2010). Research collaboration at a distance: Changing spatial patterns of scientific collaboration within Europe. Research Policy, 39(5), 662–673.

    Article  Google Scholar 

  • Katz, J. S., & Martin, B. R. (1997). What is research collaboration? Research Policy, 26(1), 1–18.

    Article  Google Scholar 

  • Leeuwen, T. N. V. (2009). Strength and weakness of national science systems: A bibliometric analysis through cooperation patterns. Scientometrics, 79(2), 389–408.

    Article  Google Scholar 

  • Li, E. Y., Liao, C. H., & Yen, H. R. (2013). Co-authorship networks and research impact: A social capital perspective. Research Policy, 42(9), 1515–1530.

    Article  Google Scholar 

  • Lungeanu, A., & Contractor, N. S. (2015). The effects of diversity and network ties on innovations: The emergence of a new scientific field. American Behavioral Scientist, 59(5), 548–564.

    Article  Google Scholar 

  • Mcpherson, M., Smithlovin, L., & Cook, J. M. (2001). Birds of a feather: Homophily in social networks. Annual Review of Sociology, 27(1), 415–444.

    Article  Google Scholar 

  • Newman, M. E. J. (2001). Scientific collaboration networks. I. Network construction and fundamental results. Physical Review E Statistical Nonlinear & Soft Matter Physics, 64(2), 016131.

    Article  Google Scholar 

  • Newman, M. E. J. (2002). Mixing patterns in networks. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 67(2), 026126.

    Article  MathSciNet  Google Scholar 

  • Nguyen, T. V., Ho-Le, T. P., & Le, U. V. (2017). International collaboration in scientific research in Vietnam: An analysis of patterns and impact. Scientometrics, 110(2), 1–17.

    Article  Google Scholar 

  • Nomaler, Ö., Frenken, K., & Heimeriks, G. (2013). Do more distant collaborations have more citation impact? Journal of Informetrics, 7(4), 966–971.

    Article  Google Scholar 

  • Pepe, A., & Rodriguez, M. A. (2010). Collaboration in sensor network research: An in-depth longitudinal analysis of assortative mixing patterns. Scientometrics, 84(3), 687–701.

    Article  Google Scholar 

  • Persson, O. (2010). Are highly cited papers more international? Scientometrics, 83(2), 397–401.

    Article  Google Scholar 

  • Ribeiro, L. C., Rapini, M. S., Silva, L. A., & Albuquerque, E. M. (2018). Growth patterns of the network of international collaboration in science. Scientometrics, 114(3), 159–179.

    Article  Google Scholar 

  • Sabidussi, G. (1966). The centrality index of a graph. Psychometrika, 31(4), 581–603.

    Article  MathSciNet  MATH  Google Scholar 

  • Suárez-Balseiro, C., García-Zorita, C., & Sanz-Casado, E. (2009). Multi-authorship and its impact on the visibility of research from Puerto Rico. Information Processing and Management, 45(4), 469–476.

    Article  Google Scholar 

  • Ubfal, D., & Maffioli, A. (2011). The impact of funding on research collaboration: Evidence from a developing country. Research Policy, 40(9), 1269–1279.

    Article  Google Scholar 

  • Verleysen, F. T., & Weeren, A. (2016). Clustering by publication patterns of senior authors in the social sciences and humanities. Journal of Informetrics, 10(1), 254–272.

    Article  Google Scholar 

  • Wagner, C. S., Whetsell, T. A., & Leydesdorff, L. (2017). Growth of international collaboration in science: Revisiting six specialties. Scientometrics, 110(3), 1633–1652.

    Article  Google Scholar 

  • Wang, J. (2016). Knowledge creation in collaboration networks: Effects of tie configuration. Research Policy, 45(1), 68–80.

    Article  Google Scholar 

  • Whittington, K. B. (2018). A tie is a tie? Gender and network positioning in life science inventor collaboration. Research Policy, 47(2), 511–526.

    Article  Google Scholar 

  • Wuchty, S., Jones, B. F., & Uzzi, B. (2007). The increasing dominance of teams in production of knowledge. Science, 316(5827), 1036–1039.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Tu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tu, J. What connections lead to good scientific performance?. Scientometrics 118, 587–604 (2019). https://doi.org/10.1007/s11192-018-02997-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-018-02997-7

Keywords

Navigation