Skip to main content
Log in

A quantitative exploration on reasons for citing articles from the perspective of cited authors

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

Citation is regarded as one of the “norms of science” (Merton in Am Sociol Rev 22(6):635–659, 1957) and is deeply researched by the field of scientometrics. The motivations authors have for citing one another are considered significant and have been the subject of extensive qualitative research such as content analysis, questionnaires, and interviews of citing authors. However, the existing qualitative studies have covered a limited number of samples. To expand the dataset, this paper proposes a quantitative method applied to detecting citation reasons from the angle of citation networks and the attributes of cited authors, including their publication count (the number of single-authored publications, collaborative and first-authored publications as well as collaborative but non-first-authored publications, and number of whole publications), citation count, research topic interests, and gender. By applying the Exponential Random Graph Models (ERGMs), the current study revealed that authors in the field of information retrieval tend to cite those with more single-authored, collaborative and first-authored, and collaborative but not first-authored publications. Besides, in this field, the number of publications, similar topical domains, and same gender are proven to be significantly favorable in selecting references in our experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aghagolzadeh, M., Barjasteh, I., & Radha, H. (2012). Transitivity matrix of social network graphs. In Proceedings of the 2012 IEEE statistical signal processing workshop (pp. 145–148), August 5–8, 2012, Ann Arbor, MI, USA.

  • Baldi, S. (1998). Normative versus social constructivist processes in the allocation of citations: A network-analytic model. American Sociological Review, 63(6), 829–846.

    Article  Google Scholar 

  • Barabási, A. L., Jeong, H., Néda, Z., Ravasz, E., Schubert, A., & Vicsek, T. (2002). Evolution of the social network of scientific collaborations. Physica A: Statistical Mechanics and its Applications, 311(3), 590–614.

    Article  MathSciNet  MATH  Google Scholar 

  • Bornmann, L., & Daniel, H. (2008). What do citation counts measure? A review of studies on citing behavior. Journal of Documentation, 64(1), 45–80.

    Article  Google Scholar 

  • Boyer-Kassem, T., & Imbert, C. (2015). Scientific collaboration: Do two heads need to be more than twice better than one? Philosophy of Science, 82(4), 667–688.

    Article  Google Scholar 

  • Bozeman, B., & Boardman, C. (2014). Research collaboration and team science: A state-of-the-art review and agenda. New York, PA: Springer.

    Book  Google Scholar 

  • Brooks, T. A. (1986). Evidence of complex citer motivations. Journal of the American Society for Information Science, 37(1), 34–36.

    Article  Google Scholar 

  • Cano, V. (1989). Citation behavior: Classification, utility, and location. Journal of the American Society for Information Science, 40(4), 284–290.

    Article  Google Scholar 

  • Carpenter, M. P., & Narin, F. (1981). The adequacy of the Science Citation Index (SCI) as an indicator of international scientific activity. Journal of the American Society for Information Science, 32(6), 430–439.

    Article  Google Scholar 

  • Cases, D. O., & Higgins, G. M. (2000). How can we investigate citation behavior? A study of reasons for citing literature in communication. Journal of the Association for Information Science and Technology, 51(7), 635–645.

    Google Scholar 

  • Chen, C. (2012). Predictive effects of structural variation on citation counts. Journal of the American Society for Information Science and Technology, 63(3), 431–449.

    Article  Google Scholar 

  • Chubin, D., & Moitra, S. (1975). Content analysis of references: Adjunct or alternative to citation counting? Social Studies of Science, 5(4), 423–441.

    Article  Google Scholar 

  • Cole, S., & Singer, B. (1991). A theory of limited differences. In H. Zuckerman, J. R. Cole, & J. T. Bruer (Eds.), The outer circle: Women in the scientific community. London: W.W. Norton and Company.

    Google Scholar 

  • Cozzens, S. E. (1985). Comparing the sciences: Citation context analysis of papers from neuropharmacology and the sociology of science. Social Studies of Science, 15(1), 127–153.

    Article  Google Scholar 

  • Cronin, B. (1984). The citation process: The role and significance of citations in scientific communication. London: Taylor Graham.

    Google Scholar 

  • de Solla Price, D. J. (1976). A general theory of bibliometric and other cumulative advantage processes. Journal of the American Society for Information Science, 27(5), 292–306.

    Article  Google Scholar 

  • Ding, Y., & Cronin, B. (2011). Popular and/or prestigious? Measures of scholarly esteem. Information Processing and Management, 47(1), 80–96.

    Article  Google Scholar 

  • Duncan, E. (1981). Qualified citation indexing: Its relevance to educational technology. In E. Duncan and R. McAleese (Eds.), Information retrieval in educational technology. Proceedings of the first symposium on information retrieval in educational technology, April 1, 1981, Aberdeen (pp. 70–79). Aberdeen, Scotland: University of Aberdeen.

  • Erikon, M. G., & Erlandson, P. (2014). A taxonomy of motives to cite. Social Studies of Science, 44(4), 625–637.

    Article  Google Scholar 

  • Garfield, E. (1955). Citation Indexes for science: A new dimension in documentation through association of ideas. Science, 122(3159), 108–111.

    Article  Google Scholar 

  • Garfield, E. (1964). Can citation indexing be automated? In Proceedings symposium of the statistical association methods for mechanized documentation (pp. 2–4), March 17–19, 1964, Washington D.C.

  • Garfield, E. (1965). Can citation indexing be automated. In Statistical association methods for mechanized documentation, symposium proceedings (Vol. 269, pp. 189–192). Washington, DC: National Bureau of Standards, Miscellaneous Publication 269

  • Garfield, E. (1972). Citation analysis as a tool in journal evaluation. Science, 178(4060), 471–479.

    Article  Google Scholar 

  • Garfield, E. (1998). Random thoughts on citationology, its theory and practice: Comments on theories of citation. Scientometrics, 43(1), 67–76.

    Article  Google Scholar 

  • Gilbert, G. N. (1977). Referencing as persuasion. Social Studies of Science, 7(1), 113–122.

    Article  Google Scholar 

  • Gross, P. L. K. (1927). College libraries and chemical education. Science, 66(1713), 385–389.

    Article  Google Scholar 

  • Handcock, M. S., Hunter, D. R., Butts, C. T., Goodreau, S. M., & Morris, M. (2003). Statnet: Software tools for the statistical modeling of network data. Retrieved April 1, 2017, from http://statnetproject.org.

  • Hendley, M. (2012). Citation behavior of undergraduate students: A study of history, political science, and sociology papers. Behavioral and Social Sciences Librarian, 31(2), 96–111.

    Article  Google Scholar 

  • Hirsch, J. E. (2005). An index to quantify an individual’s scientific research output. Proceeding of the National Academy Science of United States of America, 102(46), 16569–16572.

    Article  MATH  Google Scholar 

  • Jeong, H., Néda, Z., & Barabási, A. L. (2003). Measuring preferential attachment in evolving networks. Europhysics Letters, 61(4), 567–572.

    Article  Google Scholar 

  • Kapseon, K. (2004). The motivation for citing specific references by social scientists in Korea: The phenomenon of co-existing references. Scientometrics, 59(1), 79–93.

    Article  Google Scholar 

  • Lawrence, S. (2001). Free online availability substantially increases a paper’s impact. Nature, 411(6837), 521.

    Article  Google Scholar 

  • Li, Z., Peng, Q. K., & Liu, C. (2016). Two citation-based indicators to measure latent referential value of papers. Scientometrics, 108(3), 1299–1313.

    Article  Google Scholar 

  • Lipetz, B. A. (1965). Improvement of the selectivity of citation indexes to science literature through inclusion of citation relationship indicators. Journal of the Association for Information Science and Technology, 16(2), 81–90.

    Google Scholar 

  • Liu, M. (1993). Study of citing motivation of Chinese scientists. Journal of Information Science, 19(1), 13–23.

    Article  Google Scholar 

  • Marx, W., & Bornmann, L. (2015). On the causes of subject-specific citation rates in Web of Science. Scientometrics, 102(2), 1823–1827.

    Article  Google Scholar 

  • McDowell, J. M., & Smith, J. K. (1992). The effect of gender-sorting on propensity to coauthor: Implications for academic promotion. Economic Inquiry, 30(1), 68–82.

    Article  Google Scholar 

  • Merton, R. K. (1957). Priorities in scientific discovery: A chapter in the sociology of science. American Sociological Review, 22(6), 635–659.

    Article  Google Scholar 

  • Merton, R. K. (1968). The Matthew effect in science. Science, 159(3810), 56–63.

    Article  Google Scholar 

  • Milojević, S. (2010). Modes of collaboration in modern science: Beyond power laws and preferential attachment. Journal of the American Society for Information Science and Technology, 61(7), 1410–1423.

    Article  Google Scholar 

  • Newman, M. E. (2001). Clustering and preferential attachment in growing networks. Physical Review E, 64(2), 025102.

    Article  Google Scholar 

  • Newman, M. E., & Park, J. (2003). Why social networks are different from other types of networks. Physical Review E, 68(3), 036122.

    Article  Google Scholar 

  • Prabha, H. G. (1983). Some aspects of citation behavior: A pilot study in business administration. Journal of the American Society for Information Science, 34(3), 202–206.

    Article  MathSciNet  Google Scholar 

  • Robins, G., Pattison, P., Kalish, Y., & Lusher, D. (2007a). An introduction to exponential random graph (p*) models for social networks. Social Networks, 29(2), 173–191.

    Article  Google Scholar 

  • Robins, G., Pattison, P., & Wang, P. (2009). Closure, connectivity and degree distributions: Exponential random graph (p*) models for directed social networks. Social Networks, 31(2), 105–117.

    Article  Google Scholar 

  • Robins, G., Snijders, T., Wang, P., Handcock, M., & Pattison, P. (2007b). Recent developments in exponential random graph (p*) models for social networks. Social Networks, 29(2), 192–215.

    Article  Google Scholar 

  • Sandstrom, U., Wadskog, D., & Karlsson, S. (2005), Research institutes and universities: does collaboration pay? In P. Ingwersen and B. Larsen (Eds.), Proceedings of the tenth international conference of the international society for scientometrics and informetrics, Karolinska University Press, Stockholm.

  • Silverman, R. J. (1985). Higher education as a maturing field? Evidence from referencing practices. Research in Higher Education, 23(2), 150–183.

    Article  Google Scholar 

  • Sinha, A., Shen, Z., Song, Y., Ma, H., Eide, D., Hsu, B. J. P., & Wang, K. (2015). An overview of Microsoft Academic Service (MAS) and applications. In Proceedings of the 24th international conference on World Wide Web (pp. 243–246), May 18–22, 2015, Florence.

  • Soper, M. E. (1976). Characteristics and use of personal collections. Library Quarterly, 46(4), 397–415.

    Article  Google Scholar 

  • Stack, S. (2004). Gender, children and research productivity. Research in Higher Education, 45(8), 891–920.

    Article  Google Scholar 

  • Tang, J., Jin, R., & Zhang, J. (2008). A topic modeling approach and its integration into the random walk framework for academic search. In Proceeding of the eighth IEEE international conference on data mining (pp. 1055–1060), December 15–19, 2008, Pisa.

  • Torvik, V. I., & Agarwal, S. (2016). Ethnea: An instance-based ethnicity classifier based on geo-coded author names in a large-scale bibliographic database. In Proceedings of the international symposium on science of science, March 22–23, 2016, Library of Congress, Washington D.C.

  • Van Raan, A. F. J., Visser, M. S., Van Leeuwen, T. N., & Van Wijk, E. (2003). Bibliometric analysis of psychotherapy research: Performance assessment and position in the journal landscape. Psychotherapy Research, 13(4), 511–528.

    Article  Google Scholar 

  • Wang, M., Li, S., & Chen, G. (2017). Detecting latent referential articles based on their vitality performance in the latest 2 years. Scientometrics, 112(3), 1557–1571.

    Article  Google Scholar 

  • Wang, D., Song, C., & Barabási, A. L. (2013). Quantifying long-term scientific impact. Science, 342(6154), 127–132.

    Article  Google Scholar 

  • Wang, M., Yu, G., & Yu, D. (2008). Measuring the preferential attachment mechanism in citation networks. Physica A: Statistical Mechanics and its Application, 387(18), 4692–4698.

    Article  Google Scholar 

  • Wang, M., Yu, G., & Yu, D. (2009). Effect of the age of papers on the preferential attachment in citation networks. Physica A: Statistical Mechanics and its Applications, 388(19), 4273–4276.

    Article  Google Scholar 

  • Wasserman, S., & Pattison, P. (1996). Logit models and logistic regressions for social networks: I. An introduction to Markov graphs and p. Psychometrika, 61(3), 401–425.

    Article  MathSciNet  MATH  Google Scholar 

  • Weinstock, M. (1971). Citation indexes. Encyclopedia of Library and Information Science, 5, 16–40.

    Google Scholar 

  • Wuchty, S., Jones, B. F., & Uzzi, B. (2007). The increasing dominance of teams in production of knowledge. Science, 316(5827), 1036–1039.

    Article  Google Scholar 

  • Yin, Y., & Wang, D. (2017). The time dimension of science: Connecting the past to the future. Journal of Informetrics, 11(2), 608–621.

    Article  Google Scholar 

  • Yu, Q., Long, C., Lv, Y., Shao, H., & He, P. (2014). Predicting co-author relationship in medical co-authorship networks. PLoS ONE, 9(7), e101214.

    Article  Google Scholar 

  • Zhang, C., Bu, Y., Ding, Y., & Xu, J. (2018). Understanding scientific collaboration: Homophily, transitivity, and preferential attachment. Journal of the Association for Information Science and Technology, 69(1), 72–86.

    Article  Google Scholar 

  • Zhao, D., & Strotmann, A. (2008). Evolution of research activities and intellectual influences in Information Science 1996–2005: Introducing author bibliographic coupling analysis. Journal of the American Society for Information Science and Technology, 59(13), 2070–2086.

    Article  Google Scholar 

  • Zhao, D., & Strotmann, A. (2014). The knowledge base and research front of Information science 2006-2010: An author co-citation and bibliographic coupling analysis. Journal of the Association for Information Science and Technology, 65(5), 996–1006.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers and Dr. Wolfgang Glänzel for their kind help on improving the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Bu, Y. & Xu, Y. A quantitative exploration on reasons for citing articles from the perspective of cited authors. Scientometrics 116, 675–687 (2018). https://doi.org/10.1007/s11192-018-2787-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-018-2787-6

Keywords

Navigation