Skip to main content
Log in

General properties of the evolution of research fields: a scientometric study of human microbiome, evolutionary robotics and astrobiology

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

How do research fields evolve? This study confronts this question here by developing an inductive analysis based on emerging research fields of human microbiome, evolutionary robotics and astrobiology (also called exobiology). Data analysis considers papers associated with subject areas of authors from starting years to 2017 per each research field under study. Findings suggest some empirical properties of the evolution of research fields: the first property states that the evolution of a research field is driven by few disciplines (3–5) that generate more than 80% of documents (concentration of scientific production); the second property states that the evolution of research fields is path-dependent of critical disciplines: they can be parent disciplines that have originated the research field or new disciplines emerged during the evolution of science; the third property states that the evolution of research fields can be also due to a new discipline originated from a process of specialization within applied or basic sciences and/or convergence between disciplines. Finally, the fourth property states that the evolution of specific research fields can be due to both applied and basic sciences. These results here can explain and generalize some characteristics of the evolution of scientific fields in the dynamics of science. Overall, then, this study begins the process of clarifying and generalizing, as far as possible, the general properties of the evolution of research fields to lay a foundation for the development of sophisticated theories of the evolution of science.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. cf., Coccia and Wang (2016, p. 2059) for categorization of applied and basic fields of research.

  2. “ ‘normal science’ means research firmly based upon one or more past scientific achievements that some particular scientific community acknowledges for a time as supplying the foundation for its further practice’’ (Kuhn 1962, p. 10, original emphasis).

  3. x-axis indicates the time (years).

References

  • Adams, J. (2012). The rise of research networks. Nature, 490(7420), 335–356.

    Article  Google Scholar 

  • Adams, J. (2013). The fourth age of research. Nature, 497(7451), 557–560.

    Article  Google Scholar 

  • Allison, P. D., & Stewart, J. A. (1974). Productivity differences among scientists: Evidence for accumulative advantage. American Sociological Review, 39(4), 596–606.

    Article  Google Scholar 

  • Andersen, H. (1998). Characteristics of scientific revolutions. Endeavour, 22(1), 3–6.

    Article  Google Scholar 

  • Börner, K., Glänzel, W., Scharnhorst, A., & den Besselaar, P. V. (2011). Modeling science: studying the structure and dynamics of science. Scientometrics, 89, 347–348.

    Article  Google Scholar 

  • Börner, K., & Scharnhorst, A. (2009). Visual conceptualizations and models of science. Journal of Informetrics, 3, 161–172.

    Article  Google Scholar 

  • Boyack, K. W. (2004). Mapping knowledge domains: Characterizing PNAS. Proceedings of The National Academy of Sciences of The United States of America (PNAS), 101(suppl. 1), 5192–5199.

    Article  Google Scholar 

  • Boyack, K. W., Klavans, R., & Börner, K. (2005). Mapping the backbone of science. Scientometrics, 64(3), 351–374.

    Article  Google Scholar 

  • Coccia, M. (2005). A scientometric model for the assessment of scientific research performance within public institutes. Scientometrics, 65(3), 307–321.

    Article  Google Scholar 

  • Coccia, M. (2011). The interaction between public and private R&D expenditure and national productivity. Prometheus, 29(2), 121–130.

    Article  Google Scholar 

  • Coccia, M. (2014). Structure and organisational behaviour of public research institutions under unstable growth of human resources. International Journal of Services Technology and Management, 20(4/5/6):251.

    Article  Google Scholar 

  • Coccia, M. (2016a). Radical innovations as drivers of breakthroughs: characteristics and properties of the management of technology leading to superior organisational performance in the discovery process of R&D labs. Technology Analysis & Strategic Management, 28(4), 381–395. https://doi.org/10.1080/09537325.2015.1095287.

    Article  Google Scholar 

  • Coccia, M. (2016b). Sources of technological innovation: Radical and incremental innovation problem-driven to support competitive advantage of firms. Technology Analysis & Strategic Management, 29(9), 1048–1061.

    Article  MathSciNet  Google Scholar 

  • Coccia, M. (2017). The source and nature of general purpose technologies for supporting next K-waves: Global leadership and the case study of the U.S. Navy’s Mobile User Objective System. Technological Forecasting and Social Change, 116(March), 331–339. https://doi.org/10.1016/j.techfore.2016.05.019.

    Article  Google Scholar 

  • Coccia, M., & Bozeman, B. (2016). Allometric models to measure and analyze the evolution of international research collaboration. Scientometrics, 108(3), 1065–1084.

    Article  Google Scholar 

  • Coccia, M., & Cadario, E. (2014). Organisational (un) learning of public research labs in turbulent context. International Journal of Innovation and Learning, 15(2), 115.

    Article  Google Scholar 

  • Coccia, M., & Falavigna, G., & Manello, A. (2015). The impact of hybrid public and market-oriented financing mechanisms on the scientific portfolio and performances of public research labs: A scientometric analysis. Scientometrics, 102(1), 151–168.

    Article  Google Scholar 

  • Coccia, M., & Rolfo, S. (2009). Project management in public research organisations: Strategic change in complex scenarios. International Journal of Project Organisation and Management, 1(3), 235.

    Article  Google Scholar 

  • Coccia, M., & Rolfo, S. (2010). New entrepreneurial behaviour of public research organisations: Opportunities and threats of technological services supply. International Journal of Services Technology and Management, 13(1/2), 134.

    Article  Google Scholar 

  • Coccia, M., & Rolfo, S. (2013). Human resource management and organizational behavior of public research institutions. International Journal of Public Administration, 36(4), 256–268.

    Article  Google Scholar 

  • Coccia, M., & Wang, L. (2016). Evolution and convergence of the patterns of international scientific collaboration. Proceedings of the National Academy of Sciences of the United States of America, 113(8), 2057–2061. www.pnas.org/cgi/doi/10.1073/pnas.1510820113.

  • Crane, D. (1972). Invisible colleges: Diffusion of knowledge in scientific communities. Chicago, IL: University of Chicago Press.

    Google Scholar 

  • David, P. A. (1994). Positive feedbacks and research productivity in science: Reopening another black box. In O. Granstrand (Ed.), Economics of technology. Amsterdam: Elsevier Science.

    Google Scholar 

  • de Beaver, B. D., & Rosen, R. (1978). Studies in scientific collaboration. Part 1. The professional origins of scientific co-authorship. Scientometrics, 1, 65–84.

    Article  Google Scholar 

  • De Solla Price, D. J. (1986). Little science, big science… and beyond. Columbia University Press, New York, Ch. 3.

  • Dogan, M., & Pahre, R. (1990). Creative marginality: Innovation at the intersections of social sciences. Boulder, CO: Westview Press.

    Google Scholar 

  • Fanelli, D., & Glänzel, W. (2013). Bibliometric evidence for a hierarchy of the sciences. PLoS ONE, 8(6), e66938. https://doi.org/10.1371/journal.pone.0066938.

    Article  Google Scholar 

  • Floreano, D., Husbands, P., & Nolfi, S. (2008). Evolutionary Robotics. In B. Siciliano & O. Khatib (Eds.), Springer handbook of robotics. Berlin: Springer.

    Google Scholar 

  • Fox, M. F. (1983). Publication productivity among scientists: A critical review. Social Studies of Science, 13(2), 285–305. https://doi.org/10.1177/030631283013002005.

    Article  Google Scholar 

  • Frame, J. D., & Carpenter, M. P. (1979). International research collaboration. Social Studies of Science, 9(4), 481–497.

    Article  Google Scholar 

  • Freedman, P. (1960). The principles of scientific research (First edition 1949). London: Pergamon Press.

    Google Scholar 

  • Gibbons, M., Limoges, C., Nowotny, H., Schwatzman, S., Scott, P., & Trow, M. (1994). The new production of knowledge: The dynamics of science and research in contemporary society. London: Sage Publications.

    Google Scholar 

  • Guimera, R., Uzzi, B., Spiro, J., & Amaral, L. (2005). Team assembly mechanisms determine collaboration network structure and team performance. Science, 308(5722), 697–702.

    Article  Google Scholar 

  • International Journal of Astrobiology. (2018). https://www.cambridge.org/core/journals/international-journal-of-astrobiology. Accessed May 2018.

  • Jamali, H. R., & Nicholas, D. (2010). Interdisciplinarity and the information-seeking behavior of scientists. Information Processing and Management, 46, 233–243.

    Article  Google Scholar 

  • Jeffrey, P. (2003). Smoothing the Waters: Observations on the Process of Cross-Disciplinary Research Collaboration. Social Studies of Science, 33(4), 539–562.

    Article  Google Scholar 

  • Kitcher, P. (2001). Science, truth, and democracy, Chps. 5–6. New York, NY: Oxford University Press.

    Book  Google Scholar 

  • Klein, J. T. (1996). Crossing boundaries. Knowledge, disciplinarities and interdisciplinarities. Charlottesville, VA: University Press of Virginia.

    Google Scholar 

  • Kuhn, T. S. (1962). The structure of scientific revolutions (2nd enlarged ed.). Chicago, IL: The University of Chicago Press.

    Google Scholar 

  • Lakatos, I. (1978). The Methodology of scientific research programmes: Philosophical papers (Vol. 1). Cambridge, MA: Cambridge University Press.

    Book  Google Scholar 

  • Latour, B. (1987). Science in action. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Latour, B., & Woolgar, S. (1979). Laboratory life: The social construction of scientific facts. London and Beverly Hills: Sage.

    Google Scholar 

  • Lederberg, J. (1960). Exobiology: Approaches to life beyond the earth. Science, 132(3424), 393–400.

    Article  Google Scholar 

  • Lee, S., & Bozeman, B. (2005). The impact of research collaboration on scientific productivity. Social Studies of Science, 35(5), 673–702.

    Article  Google Scholar 

  • Levin, S. G., & Stephan, P. E. (1991). Research productivity over the life cycle: Evidence for academic scientists. American Economic Review, 81(1), 114–132.

    Google Scholar 

  • Merton, R. K. (1957). Priorities in scientific discovery: A chapter in the sociology of science. American Sociological Review, 22(6), 635–659. https://doi.org/10.2307/2089193.

    Article  Google Scholar 

  • Merton, R. K. (1968). The Matthew Effect in Science. Science, 159(3810), 56–63. https://doi.org/10.1126/science.159.3810.56.

    Article  Google Scholar 

  • Morillo, F., Bordons, M., & Gómez, I. (2003). Interdisciplinarity in Science: A Tentative Typology of Disciplines and Research Areas. Journal of the American Society for Information Science and Technology, 54(13), 1237–1249.

    Article  Google Scholar 

  • Mulkay, M. (1975). Three models of scientific development. The Sociological Review, 23, 509–526.

    Article  Google Scholar 

  • NASA. (2018a). Astrobiology at NASA-Life in the Universe. https://astrobiology.nasa.gov/about/history-of-astrobiology/.

  • NASA. (2018b). NASA Astrobiology Institute (NAI). https://nai.nasa.gov/about/. Accessed July 2018.

  • NASA. (2018c). Exobiology. https://astrobiology.nasa.gov/research/astrobiology-at-nasa/exobiology/. Accessed July 2018.

  • Newman, M. E. J. (2001). The structure of scientific collaboration networks. Proceedings of The National Academy of Sciences of The United States of America (PNAS), 98(2), 404–409.

    Article  MathSciNet  Google Scholar 

  • Newman, M. E. J. (2004). Coauthorship networks and patterns of scientific collaboration. Proceedings of the National Academy of Sciences of the United States of America (PNAS), 101(suppl. 1), 5200–5205.

    Article  Google Scholar 

  • Pan, R. K., Kaski, K., & Fortunato, S. (2012). World citation and collaboration networks: Uncovering the role of geography in science. Scientific Reports, 2(902), 1–7.

    Google Scholar 

  • Popper, K. (1959). The logic of scientific discovery. London: Hutchinson.

    MATH  Google Scholar 

  • Ramsden, P. (1994). Describing and explaining research productivity. Higher Education, 28, 207–226. https://doi.org/10.1007/bf01383729.

    Article  Google Scholar 

  • Relman, D. A. (2002). New technologies, human-microbe interactions, and the search for previously unrecognized pathogens. Journal of Infectious Diseases, 186(SUPPL. 2), S254–S258.

    Article  Google Scholar 

  • Riesch, H. (2014). Philosophy, history and sociology of science; Interdisciplinary and complex social identities. Studies in History and Philosophy of Science, 48, 30–37.

    Article  Google Scholar 

  • Rucker, R. B. (1980). Towards robot consciousness. Speculations in Science and Technology, 3(2), 205–217.

    Google Scholar 

  • Scharnhorst, A., Börner, K., & Besselaar, P. (2012). Models of science dynamics: Encounters between complexity theory and information sciences. Dordrecht: Springer.

    Book  Google Scholar 

  • Scopus. (2018). https://www.scopus.com/search/form.uri?zone=TopNavBar&origin=sbrowse&display=basic. Accessed December 2018.

  • Shanahan, F. (2002). The host-microbe interface within the gut. Bailliere’s Best Practice and Research in Clinical Gastroenterology, 16(6), 915–931.

    Article  Google Scholar 

  • Simonton, D. K. (2002). Great psychologists and their times: Scientific insights into psychology’s history. Washington DC: APA Books.

    Book  Google Scholar 

  • Simonton, D. K. (2004). Psychology’s status as a scientific discipline: its empirical placement within an implicit hierarchy of the sciences. Review of General Psychology, 8(1), 59–67.

    Article  Google Scholar 

  • Small, A. W. (1905). General sociology. Chicago, IL: University of Chicago.

    Google Scholar 

  • Small, H. (1999). Visualizing science by citation mapping. Journal of the American Society for Information Science and Technology, 50(3), 799–813.

    Article  Google Scholar 

  • Smith, L. D., Best, L. A., Stubbs, D. A., Johnston, J., & Bastiani, A. A. (2000). Scientific graphs and the hierarchy of the sciences: A Latourian survey of inscription practices. Social Studies of Science, 30(1), 73–94.

    Article  Google Scholar 

  • Stephan, P. E. (1996). The economics of science. Journal of Economic Literature, 34(3), 1199–1235.

    Google Scholar 

  • Stephan, P. E., & Levin, S. G. (1992). How science is done; Why science is done. In P. Stephan & S. Levin (Eds.), Striking the Mother Lode in science: The importance of age, place and time, Chapter 2 (pp. 11–24). New York, NY: Oxford University Press.

    Google Scholar 

  • Storer, N. W. (1967). The hard sciences and the soft: Some sociological observations. Bulletin of the Medical Library Association, 55(1), 75–84.

    Google Scholar 

  • Storer, N. W. (1970). The internationality of science and the nationality of scientists. International Social Science Journal, 22(1), 80–93.

    Google Scholar 

  • Sun, X., Kaur, J., Milojević, S., Flammini, A., & Menczer, F. (2013). Social dynamics of science. Scientific Reports, 3(1069), 1–6. https://doi.org/10.1038/srep01069.

    Article  Google Scholar 

  • The American Microbiome Institute. (2015). http://www.microbiomeinstitute.org/humanmicrobiome. Accessed, 20 April, 2018.

  • Tijssen, R. J. W. (2010). Discarding the ‘Basic Science/Applied Science’ dichotomy: A knowledge utilization triangle classification system of research journals. Journal of the American Society for Information Science and Technology, 61(9), 1842–1852.

    Article  Google Scholar 

  • van Raan, A. F. J. (2000). On growth, ageing, and fractal differentiation of science. Scientometrics, 47, 347–362.

    Article  Google Scholar 

  • Wagner, C. (2008). The new invisible college: Science for development. Washington DC: Brookings Institution Press.

    Google Scholar 

  • Woods. E. B. (1907). Progress as a sociological concept. American Journal of Sociology, 12(6), 779–821. Stable URL: http://www.jstor.org/stable/2762650.

  • Wuchty, S., Jones, B. F., & Uzzi, B. (2007). The increasing dominance of teams in production of knowledge. Science, 316(1036), 1036–1039.

    Article  Google Scholar 

  • Young, R. S., & Johnson, J. L. (1960). Basic research efforts in astrobiology. IRE Transactions on Military Electronics, MIL-4(2), 284–287.

    Article  Google Scholar 

Download references

Acknowledgements

The research in this paper was conducted while the author was a visiting scholar of the Center for Social Dynamics and Complexity at the Arizona State University funded by CNR - National Research Council of Italy and The National Endowment for the Humanities (Research Grant No. 0003005-2016). I thank the fruitful suggestions and comments by Ken Aiello, Sara I. Walker and seminar participants at the Beyond-Center for Fundamental Concepts in Science (Arizona State University in Tempe, USA). Older versions of this paper circulated as working papers. The author declares that he has no relevant or material financial interests that relate to the research discussed in this paper. Usual disclaimer applies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Coccia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coccia, M. General properties of the evolution of research fields: a scientometric study of human microbiome, evolutionary robotics and astrobiology. Scientometrics 117, 1265–1283 (2018). https://doi.org/10.1007/s11192-018-2902-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-018-2902-8

Keywords

JEL Classification

Navigation