Skip to main content
Log in

DeepPatent: patent classification with convolutional neural networks and word embedding

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

Patent classification is an essential task in patent information management and patent knowledge mining. However, this task is still largely done manually due to the unsatisfactory performance of current algorithms. Recently, deep learning methods such as convolutional neural networks (CNN) have led to great progress in image processing, voice recognition, and speech recognition, which has yet to be applied to patent classification. We proposed DeepPatent, a deep learning algorithm for patent classification based on CNN and word vector embedding. We evaluated the algorithm on the standard patent classification benchmark dataset CLEF-IP and compared it with other algorithms in the CLEF-IP competition. Experiments showed that DeepPatent with automatic feature extraction achieved a classification precision of 83.98%, which outperformed all the existing algorithms that used the same information for training. Its performance is better than the state-of-art patent classifier with a precision of 83.50%, whose performance is, however, based on 4000 characters from the description section and a lot of feature engineering while DeepPatent only used the title and abstract information. DeepPatent is further tested on USPTO-2M, a patent classification benchmark data set that we contributed with 2,000,147 records after data cleaning of 2,679,443 USA raw utility patent documents in 637 categories at the subclass level. Our algorithms achieved a precision of 73.88%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Altuntas, S., Dereli, T., & Kusiak, A. (2015). Forecasting technology success based on patent data. Technological Forecasting and Social Change, 96, 202–214.

    Article  Google Scholar 

  • Azam, N., & Yao, J. (2012). Comparison of term frequency and document frequency based feature selection metrics in text categorization. Expert Systems with Applications, 39(5), 4760–4768.

    Article  Google Scholar 

  • Bengio, Y., Ducharme, R., Vincent, P., & Jauvin, C. (2003). A neural probabilistic language model. Journal of Machine Learning Research, 3(6), 1137–1155.

    MATH  Google Scholar 

  • Benzineb, K., & Guyot, J. (2011). Automated patent classification. Current Challenges in Patent Information Retrieval, 29, 239–261.

    Article  Google Scholar 

  • Blum, A. L., & Langley, P. (1997). Selection of relevant features and examples in machine learning. Artificial Intelligence, 97(1), 245–271.

    Article  MathSciNet  Google Scholar 

  • Brants, T., & Franz, A. (2006). Web 1T 5-gram Version 1.

  • Chen, Y.-L., & Chang, Y.-C. (2012). A three-phase method for patent classification. Information Processing and Management, 48(6), 1017–1030.

    Article  Google Scholar 

  • D’hondt, E., Verberne, S., Weber, N., Koster, K., & Boves, L. (2012). Using skipgrams and pos-based feature selection for patent classification. Computational Linguistics in the Netherlands Journal, 2, 52–70.

    Google Scholar 

  • Derieux, F., Bobeica, M., Pois, D., & Raysz, J. P. (2010). Combining semantics and statistics for patent classification. In CLEF 2010 LABs and workshops, notebook papers, 22–23 September 2010, Padua, Italy.

  • D’hondt, E., & Verberne, S. (2010). CLEF-IP 2010: Prior art retrieval using the different sections in patent documents. In CLEF (notebook papers/LABs/workshops).

  • D’hondt, E., Verberne, S., Koster, C., & Boves, L. (2013). Text representations for patent classification. Computational Linguistics, 39(3), 755–775.

    Article  Google Scholar 

  • Fall, C. J., Törcsvári, A., Benzineb, K., & Karetka, G. (2003). Automated categorization in the international patent classification. ACM SIGIR forum.

  • Grawe, M. F., Martins, C. A., & Bonfante, A. G. (2017). Automated patent classification using word embedding. In 16th IEEE international conference on machine learning and applications (ICMLA).

  • Guyot, J., Benzineb, K., Falquet, G., & Shift, S. (2010). myClass: A mature tool for patent classification. In CLEF (notebook papers/LABs/workshops).

  • Hinton, G. E., McClelland, J. L., & Rumelhart, D. E. (1984). Distributed representations [M]. Pittsburgh, PA: Carnegie-Mellon University.

    Google Scholar 

  • Kim, Y. (2014). Convolutional neural networks for sentence classification. arXiv preprint arXiv:1408.5882.

  • Kim, Y. G., Suh, J. H., & Park, S. C. (2008). Visualization of patent analysis for emerging technology. Expert Systems with Applications, 34(3), 1804–1812.

    Article  Google Scholar 

  • Kingma, D., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.

  • Korde, V., & Mahender, C. N. (2012). Text classification and classifiers: A survey. International Journal of Artificial Intelligence & Applications, 3(2), 85.

    Article  Google Scholar 

  • Koster, C. H., Beney, J. G., Verberne, S., & Vogel, M. (2011). Phrase-based document categorization. In K. Mayer & A. J. Trippe (Eds.), Current challenges in patent information retrieval (pp. 263–286). Berlin: Springer.

    Chapter  Google Scholar 

  • Laurens, V. D. M. (2014). Accelerating t-SNE using tree-based algorithms. Journal of Machine Learning Research, 15(1), 3221–3245.

    MathSciNet  MATH  Google Scholar 

  • Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324.

    Article  Google Scholar 

  • Lee, S., Lee, H. J., & Yoon, B. (2012). Modeling and analyzing technology innovation in the energy sector: Patent-based HMM approach. Computers & Industrial Engineering, 63(3), 564–577.

    Article  Google Scholar 

  • Lemley, M. A., & Feldman, R. (2016). Patent licensing, technology transfer, and innovation. The American Economic Review, 106(5), 188–192.

    Article  Google Scholar 

  • Lewis, D. D. (1992). An evaluation of phrasal and clustered representations on a text categorization task. In Proceedings of the 15th annual international ACM SIGIR conference on research and development in information retrieval.

  • Li, Q., Maggitti, P. G., Smith, K. G., Tesluk, P. E., & Katila, R. (2013). Top management attention to innovation: The role of search selection and intensity in new product introductions. Academy of Management Journal, 56(3), 893–916.

    Article  Google Scholar 

  • Li, Z., Tate, D., Lane, C., & Adams, C. (2012). A framework for automatic TRIZ level of invention estimation of patents using natural language processing, knowledge-transfer and patent citation metrics. Computer-Aided Design, 44(10), 987–1010.

    Article  Google Scholar 

  • Luong, T., Socher, R., & Manning, C. D. (2013). Better word representations with recursive neural networks for morphology. In CoNLL.

  • Meireles, M. R. G., Ferraro, G., & Geva, S. (2016). Classification and information management for patent collections: A literature review and some research questions. Information Research 21(1), paper 705.

  • Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013a). Efficient Estimation of Word Representations in Vector Space. arXiv:13013781v3.

  • Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013b). Distributed representations of words and phrases and their compositionality. In Advances in neural information processing systems, MountainView.

  • Najafabadi, M. M., Villanustre, F., Khoshgoftaar, T. M., Seliya, N., Wald, R., & Muharemagic, E. (2015). Deep learning applications and challenges in big data analytics. Journal of Big Data, 2(1), 1.

    Article  Google Scholar 

  • Park, H., Yoon, J., & Kim, K. (2013). Identification and evaluation of corporations for merger and acquisition strategies using patent information and text mining. Scientometrics, 97(3), 883–909.

    Article  Google Scholar 

  • Park, Y., Yoon, J., & Phillips, F. (2017). Application technology opportunity discovery from technology portfolios: Use of patent classification and collaborative filtering. Technological Forecasting & Social Change, 118, 170–183.

    Article  Google Scholar 

  • Pennington, J., Socher, R., & Manning, C. D. (2014). Glove: Global vectors for word representation. In EMNLP.

  • Piroi, F., Lupu, M., Hanbury, A., & Zenz, V. (2011). CLEF-IP 2011: Retrieval in the intellectual property domain. In CLEF 2011 labs and workshop, notebook papers, 19–22 September 2011, Amsterdam, The Netherlands.

  • Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986) Learning representations by back-propagating errors [J]. Nature, 323(6088), 533–536.

    Article  Google Scholar 

  • Sahlgren, M. (2008). The distributional hypothesis. Italian Journal of Linguistics, 20(1), 33–54.

    Google Scholar 

  • Taddy, M. (2015). Document classification by inversion of distributed language representations. arXiv preprint arXiv:1504.07295.

  • Taylor, G. W., Fergus, R., LeCun, Y., & Bregler, C. (2010). Convolutional learning of spatio-temporal features. In European conference on computer vision.

  • Trappey, A. J., Hsu, F.-C., Trappey, C. V., & Lin, C.-I. (2006). Development of a patent document classification and search platform using a back-propagation network. Expert Systems with Applications, 31(4), 755–765.

    Article  Google Scholar 

  • Trappey, A. J., Trappey, C. V., Wu, C.-Y., & Lin, C.-W. (2012). A patent quality analysis for innovative technology and product development. Advanced Engineering Informatics, 26(1), 26–34.

    Article  Google Scholar 

  • Verberne, S., & D’hondt, E. (2011). Patent classification experiments with the linguistic classification system LCS in CLEF-IP 2011. In CLEF (notebook papers/labs/workshop).

  • Verberne, S., Vogel, M., & D’hondt, E. (2010). Patent classification experiments with the linguistic classification system LCS. In CLEF (notebook papers/LABs/workshops).

  • Wagner, S., & Wakeman, S. (2016). What do patent-based measures tell us about product commercialization? Evidence from the pharmaceutical industry. Research Policy, 45(5), 1091–1102.

    Article  Google Scholar 

  • WIPO. (2018). World intellectual property indicators 2017. Geneva: World Intellectual Property Organization.

    Google Scholar 

  • Wu, C.-H., Ken, Yun, & Huang, Tao. (2010). Patent classification system using a new hybrid genetic algorithm support vector machine. Applied Soft Computing, 10(4), 1164–1177.

    Article  Google Scholar 

  • Zhang, X., Zhao, J., & LeCun, Y. (2015). Character-level convolutional networks for text classification. In Advances in neural information processing systems.

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant Nos. 51475097, 91746116 and 51741101, the China Scholarship Council, and Science and Technology Foundation of Guizhou Province under Grant Nos. JZ[2014], Talents[2015]4011, and [2016]5013, and Collaborative Innovation[2015]02. We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan X Pascal GPU used for this research (Grant No. 61640209).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Hu or Jianjun Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Hu, J., Cui, Y. et al. DeepPatent: patent classification with convolutional neural networks and word embedding. Scientometrics 117, 721–744 (2018). https://doi.org/10.1007/s11192-018-2905-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-018-2905-5

Keywords

Mathematics Subject Classification

JEL Classification

Navigation