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Abstract 

Information retrieval systems for scholarly literature rely heavily not only on text matching but 
on semantic- and context-based features. Readers nowadays are deeply interested in how 
important an article is, its purpose and how influential it is in follow-up research work. 
Numerous techniques to tap the power of machine learning and artificial intelligence have been 
developed to enhance retrieval of the most influential scientific literature. In this paper, we 
compare and improve on four existing state-of-the-art techniques designed to identify 
influential citations. We consider 450 citations from the Association for Computational 
Linguistics corpus, classified by experts as either important or unimportant, and further extract 
64 features based on the methodology of four state-of-the-art techniques. We apply the Extra-
Trees classifier to select 29 best features and apply the Random Forest and Support Vector 
Machine classifiers to all selected techniques. Using the Random Forest classifier, our 
supervised model improves on the state-of-the-art method by 11.25%, with 89% Precision-
Recall area under the curve. Finally, we present our deep-learning model, the Long Short-Term 
Memory network, that uses all 64 features to distinguish important and unimportant citations 
with 92.57% accuracy. 

Keywords: Citation-context analysis, deep learning, influential citations, machine learning 

 
Introduction  

We aim to investigate the problem of distinguishing cited work as either important or 

unimportant to the development of a scholarly publication. This is a vital task in qualitatively 
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measuring the impact of publications in our growing scientific literature and in the behavioral 

analysis of scientific domains. The algorithms and techniques to approach a certain problem, 

as well as the writing style of the author (Hassan et al., 2017), contribute greatly to making an 

article influential.  

 

Traditionally, the absolute number of citations that an article receives is used to measure the 

impact of a scientific article (Abu-Jbara et al., 2013). Similarly, citation-based quantitative 

bibliometric metrics, such as Impact Factor (Garfield, 2006), G-index (Egghe, 2006), H-Index 

(Hirsch, 2005, 2010) and Scopus's source-normalized impact per paper (SNIP) (Waltman et 

al., 2013) are effective evaluators of the quantitative aspect of scientific articles. However, the 

question is whether all citations are as important as each other (Hassan et al., 2018). The 

citation count is defined as the number of times a specific article has been referred to in 

preceding scientific literature (Lindsey, 1989). However, the reference could concern the 

adoption of a particular method or be a mere acknowledgement of relevant background work. 

Valenzuela et al. (2015) argue that we cannot consider all citations as being of the same 

importance. While the number of citations of scientific publications can account for their 

quantitative impact (Borgman, 1990; Luukkonen, 1992), as a qualitative measure of impact not 

all citations can be considered equal.  

 

Moravcsik et al. (1975) found that about 40% of citations in their corpus of articles gave a 

perfunctory general acknowledgement. This explains the importance of a citation’s context, 

since clearly a large number of citations are insignificant (Small et al., 1980). Various 

annotation schemes have been devised to judge the importance of a cited work. In general, 

authors of scientific articles are most concerned with how useful a citation is in context. 

Recently, Teufel et al. (2006), Amjad et al. (2013), Valenzuela et al. (2015), Hassan et al. 

(2017) and Hassan et al. (2018) present various models to identify the importance or 
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unimportance of scientific articles as they are referred to in some works. They identify various 

features of the citation’s context (the text and sections surrounding a citation). Our 

contributions in this research direction are as follows:  

 

1) We present a supervised machine-learning classification model named Hassan_29 to select 

the best-performing features using the Extra-Trees classifier, which improves on the state-

of-the-art classifier by Valenzuela et al. (2015) by 11.25%, with 89% under the Precision-

Recall (PR) curve, using the Random Forest (RF) classifier. 

 

2) We present the Long Short-Term Memory (LSTM)-based deep-learning model to 

distinguish between important and unimportant citations, and this outperforms traditional 

machine-learning models, achieving an accuracy of 92.5%.  

 

Related Work 

Conventionally, citation analysis has been used to measure the quality of an article in the 

scientific literature, hence the tracking of citations plays a vital role. It has been argued that not 

all citations are equal, therefore a classification is needed to distinguish the important from the 

unimportant.  

 

Brief Review of Citation Context  

Nanba and Okumura (1999) used cue phrases to classify a citation type as basic, comparison 

or ‘other’. These cue phrases around a citation were selected manually, and the overall system 

achieved an accuracy of 83%. Pham and Hoffmann (2003) proposed a new system to reduce 

the time spent in manually listing the cue words. The system consists of ripple-down rules. The 

rules are simple patterns comprising a random number of words and gaps between them. This 
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system classifies citations into basic, support, limitation and comparison. The system performs 

better than that of Nanba and Okumura (1999) and achieves good accuracy. Nakov et al. (2004) 

recognized the use of context in text summarization. They provided the information to 

summarize literature using important facts, for example the text around the citation. 

 

Bertin et al. (2017) considered multiple in-text references and their position in an article. For 

this purpose, they used a dataset of 80,000 research articles. They analysed two characteristics: 

the position of Multiple In-text References (MIR) and the total number of references that make 

up a MIR. Cohan and Goharian (2017) first addressed the problem of inaccurate citation-

context extraction, suggesting a new method for making an automatic summary of research 

articles by using the context of citations. They used a dataset from the biomedical and 

computational linguistics domain. Peritz (1983) introduced a method for labelling citations for 

the assessment of both quality and context. She stated that existing classification systems are 

inappropriate as the role of citation varies between one discipline and another, and proposed a 

new scheme of eight categories. She observed that the negational (or disagreement) class 

occurs most frequently in the literature.  

 

Brief Review of Citation Classification 

Garfield (1965) was among the founders of bibliometric methods and a pioneer in the field of 

scientometrics, proposing a citation classification scheme that acknowledges that authors might 

have contrasting perspectives when citing publications. He speculated on the various reasons 

why an author might cite an article, as shown in Table 1. Moravcsik and Murugesan (1975) 

classified citations into: conceptual vs operational; evolutionary or juxtapositional; organic or 

perfunctory; and confirmative and. Chubin and Moitra (1975) adapted the scheme of 

Moravcsik and Murugesan (1975) by making absolute categories manually. Their taxonomy 
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uses the classification categories of affirmative, negational, basic and supplementary. Their 

results also show that the one that occurs most frequently in the literature is negational citation. 

Table 1: Reasons for citing an article 

Sr no. Reason to cite an article 
1 To pay homage 
2 To give credit 
3 To identify methodology and equipment 
4 To provide background studies 
5 To correct own work 
6 To correct the work of others 
7 To criticize 
8 To substantiate a claim 
9 To give notification of a forthcoming work 

10 To provide a lead to poorly indexed or uncited work 
11 To authenticate data and classes of fact 
12 To identify the original publication in which a concept is explained 
13 To identify the original publication or other work defining an eponymous idea or term 
14 To disclaim the work and concepts of other 
15 To spread the claims of others regarding the property. 

 

Oppenheim and Renn (1978) proposed a unique scheme to classify citations in the physical 

sciences, explaining why older articles are cited more than newer ones. Their study revealed 

that 40% of citations are for historical reasons, and only the remaining 60% are citations of 

previous articles in any active sense. Frost (1979) proposed a scheme to study the nature of 

citations to criticize and to handle citations and quotations in the principal literature on German 

literary works. Most of her categories correlate to those of Weinstock, and her main 

development lies in recommending two new categories to discriminate between the humanities 

and scientific works. Finney (1979) was the first to introduce an automated citation classifier. 

She introduced a seven-category scheme to classify citations in the medical literature, 

suggesting that the classification of scientific literature should be based on the cue words 

around a citation and on the location of a citation in the article. Her system fails, due to its 

small number of citation categories.  
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Garzone and Mercer (2000) used 200 manually selected rules to expand the classification to 

35 categories, consisting of the following generic types: affirmational; negational; tentative; 

assumptive; developmental; methodological; future research; contrastive; and, finally, citations 

that utilize the conceptual. Their model achieved fair performance on six unseen articles. 

Conrad and Dabney (2001) proposed a system to distinguish citations that are manually 

checked by professional editors. The system comprises 20 hand-coded rules to identify distinct 

patterns. The system grants various forms of words and the presence of synonyms and gaps, 

but the explicit rules for language are not shown. Testing the system on an unseen dataset 

achieved a precision of 9.15% and recall of 59.09%, which indicates that the generation of 

rules achieves high precision.  

 

Teufel et al. (2006) suggested a method to classify the citation function automatically by using 

several shallow and linguistically inspired features: a finite grammar using strings with part-

of-speech-based recognition of actions. These features are used in association with their 

location and verb tense. The authors adopted the supervised classification model IBk, with 10-

fold cross-validation, and achieved an accuracy of 79% and an F1 measure of 68%. Agarwal 

et al. (2010) also proposed an automated model for the classification of citations. They used 

the annotated corpus of full-text biomedical articles and the supervised classification 

techniques of Support Vector Machine (SVM) and Multinomial Naïve Bayes (MNB). The 

features that they used are unigrams and bigrams, and the rank of a feature was defined by 

manual information. They achieved an F-measure of 76.5%, and the SVM model outperformed 

the MNB model. 

 

Xu et al. (2013) proposed a citation classification using three classes: functional; ambiguous; 

and perfunctory. They used distinct features for this classification, such as cue patterns, 
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positional features, network-based features and structural features. These measure the 

relationship between the author and the article. Ding et al. (2014) proposed a method to identify 

important citations in scholarly big literature. Citations mentioned for the purpose of using or 

extending the work are considered to be important citations. The authors divided citations into 

related work, comparison, using the work and extending the work. They used the supervised 

classification models SVM and RF, using a three-fold class validation, and achieved overall 

accuracy of 80% with both. Pride and Knoth (2017) worked on the classification of citations 

on the basis of their individual importance. Their results confirmed that multiple in-text 

references are highly predictive of influence.  

 

More recently, Hassan et al. (2017) extended the work of Valenzuela et al. (2015) by exploring 

novel features to classify citations as either important or unimportant. Their new features 

perform the best of the five supervised classification techniques of SVM, K-Nearest Neighbor 

(KNN), Naïve Bayes, Decision Tree and RF. Their RF model outperforms Valenzuela’s model, 

achieving an overall accuracy of 84%.  

 

Brief Review of Citation Sentiment 

Athar (2011) worked on the problem of determining positive and negative sentiments in the 

citations in scientific articles using the appended category of objective, along with a handful of 

features for classification. Pang and Lee (2008) worked on citation classification using 

sentiment analysis and opinion mining. This type of citation analysis concludes that an author 

cites a particular article either for support or to determine its weaknesses. Amjad et al. (2013) 

extended the work of Teufel et al. (2006) by suggesting a mechanism to identify the citation 

context, classify the citations and perform sentiment analysis. Different context-level and 

polarity-level features were needed for this task. They used the supervised classification model 
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of SVM with 10-fold cross-validation, achieving an accuracy of 81.4%. Their results show that 

adding context to the citation improves the results and that two-way classification outperforms 

other methods. Zhang et al. (2007) suggested a method to differentiate legal citations, because 

the citations in any single specific work will target a distinct case or issue. They built a network 

of citations, bearing in mind the legal principles. Each citation focuses on single legal case, so 

the number of cases that the researcher has to manage is reduced.  

 

Table 2: Literature review summary 

Type Reference 

Citation Context  
Nanba & Okumura (1999); Pham & Hoffmann (2003); Nakov & 
Okumura (2004); Bertin & Atanassova (2017); Cohan & Goharian 
(2017); Taşkın & AI (2017); Peritz (1983) 

Citation 
Classification 

Moravcsik & Murugesan (1975); Teufel et al. (2006); Hassan et al. 
(2017); Garfield (1965); Chubin et al. (1975); Oppenheim & Renn 
(1978); Frost (1979); Finney (1979); Garzone & Mercer (2000); 
Conrad & Dabney (2001); Agarwal et al. (2010); Xu et al. (2013); 
Ding et al. (2014); Pride & Knoth (2017) 

Citation Sentiment  Amjad et al. (2013); Athar (2011); Pang & Lee (2008); Zhang & 
Koppaka (2007); Hou et al. (2011); Balaban (2012) 

 

Hou et al. (2011) introduced a new scheme of counting citations in text. They divided the 

citations into two groups namely: closely related references and less related references. Of the 

total 651 articles examined in the fields of Biochemistry & Molecular Biology and Genetics & 

Heredity in the Web of Science, the authors showed that on average the closely related 

references appeared 3.35 times in full-text, compared to the less related references with 1.88 

times only. Balaban (2012) proposed a technique to give more weight to citations from 

renowned authors. He also suggested that a citation of an article that had been published in a 

journal with a low impact factor should be regarded as more important. Consequently, the 

worth of a citation is inversely related to the impact factor of the journal in which the cited 

article was published. 
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Data and Method 

We used a manually annotated and publicly available dataset from the Association for 

Computational Linguistics (ACL) (Valenzuela et al., 2015). There are 20,527 articles available 

in this ACL anthology.1 These contain a total 106,509 citations, of which 450 were randomly 

selected then annotated as incidental or important (0/1), as shown in Table 3. Note that we refer 

these citation as tagged citations from here on. As shown in Table 4 as Citation frequency, each 

citing article may have tagged citations that occur one or more times. The tagged citations were 

further verified by a group of two experts, who were provided with the full text of the articles. 

The inter-annotator agreement was 93.9%. Note that, in this dataset, the annotators considered 

14.6% of the citations to be important and 85.4% as incidental (unimportant).  

Table 3: Citation labelling 

Label Label tag Description 
0 incidental/ unimportant indicates unimportant citations 
1 important indicates important citations 

 

Table 4: Annotated dataset 

Annotator Article ID Cited by Citation frequency 
A A97-1011 A00-2017 1 
A C00-1072 P02-1058 2 
B … … … 

 

Data Extraction and Pre-processing 

We used the following pre-processing steps to extract citations and features from the dataset 

of articles: a) we appended the article’s given ID (e.g. P05-1044) with the anthology’s URL 

(www.aclweb.org/anthology/[article’s ID here]) to retrieve the full-text article from the ACL 

anthology in pdf format; b) we used Poppler’s pdf-to-text (http://poppler.freedesktop.org) to 

extract the text from the pdf file of each research article; c) furthermore, we used regular 

                                                   
1 http://allenai.org/data.html 
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expressions to identify the occurrence of a particular (tagged) citation in the text; d) we used 

the Stanford Parser2 to parse the citation text and obtain the text surrounding a particular 

citation (i.e. citation context window of four sentences), as depicted in Table 5. A citation 

context window consists of one sentence before the tagged citation and two sentences after 

(Abu-Jbara et al., 2013); the above methodology also identifies citations (other than tagged 

citations) occurring within the citation context window; e) on these sets of sentences (citation 

windows), we used OpenNLP3 library, for parts of speech (POS) tagging, as identified in Table 

6; f) finally, to identify the sections in which the citation occurred, ParsCit4 was used identify 

the section of the tagged citation. Note that if the citation frequency (Table 4) in the citing 

article is more than one, logical OR is taken for all binary features and the mean is taken for 

continuous features. 

 

Table 5: Extracted citation context. 

Article Cited by Citation context window 

A00-1043 C00-2140 

“We shorten the output of the summarizer to a telegraphic style"; that 
way, more information can be included in a summary of k words (or n 
bytes).”  
“Since we only use shallow methods for textual analysis that do not 
generate a dependency structure, we cannot use complex methods for text 
reduction as described, e.g., in (Jing, 2000).” 
“Our method simply excludes words occurring in the stop-list from the 
summary, except for some highly informative words such as ‘I’ or ‘not’.” 
“Since we want to enable interactive summarization which allows a user 
to browse through a dialogue quickly to search for information he is 
interested in, we have integrated our summarization system into a JAVA 
based graphical user interface (“Meeting Browser”) (Bett et al., 2000).” 

 

 

 

                                                   
2 https://nlp.stanford.edu/software/lex-parser.shtml 
3 http://opennlp.apache.org/ 
4 http://parscit.comp.nus.edu.sg 
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Table 6: POS tagging of citation context provided in Table 5 

Tag Token Section 

Noun Output, summarizer, style, way, information, summary, words, bytes, 
methods, analysis, dependency, structure, text, reduction, stop-list, user, 
browse, dialogue, search, JAVA, interface, browser. 

Experiment 

Pronoun We, our, he, I 
Verb Shorten, can, included, use, do, generate, described, excludes, occurring, 

want, enable, allows, interested, integrated, based, meeting 
Adverb Only, simply, highly, quickly 
Adjective More, shallow, textual, complex, informative, interactive, summarization, 

graphical 
Determiners This, that, these, those (predefined) 

 

 

Finally, creating citation context windows and tokenizing them helped us to extract window 

features (i.e. other references, multiple references, reference count, is separate, etc.). The POS 

tagging helped to extract various features, such as the demonstrative determiner, closest verb/ 

adjective/adverb, contain 1st/3rd person pronoun or contain closest noun phrase, and so on. 

 

Deployed Models 

In this section, we describe the data extraction and machine-learning approaches deployed by 

Amjad et al. (2013), Valenzuela et al. (2015), Teufel et al. (2006) and Hassan et al. (2017). 

From here on, we refer to each as described in Table 7.  

 

Teufel Model: In their work, Teufel et al. (2006) extracted 12 basic features to describe the 

various capacities in which a citation may be used. All features, along with an identifier, are 

presented in Table 8. Each was divided into four categories: weakness; comparison; 

sentiments; and neutral. Further, they classified them as weak, positive or neutral. They 

achieved an accuracy of 83% using IBk (k=3) classifier, using WEKA. Teufel created four 
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additional features (Negative, Positive, Contrast and Neutral+) by combining the features 

mentioned below. 

 

Table 7: Alias of approaches described in articles 

Referring article Venue Approach name 
Teufel et al. (2006) EMNLP (2006) Teufel model 

Amjad et al. (2013) NAACL (2013) Amjad model 

Valenzuela et al. (2015) AAAI (2016) Valenzuela model 

Hassan et al. (2017) JCDL (2017) Hassan model 

 

 
Table 8: Teufel’s features 

Feature  ID Description 
Weak T-F1 Citing article mention weakness of cited article 
CoCoGM T-F2 Citing article compare/contrast methods or goals with cited article 
CoCo- T-F3 Citing article work is superior to cited article 
CoCoRO T-F4 Comparison of 2 cited articles 
CoCoXY T-F5 Contrast between cited articles 
PBas T-F6 Author uses cited work as base 
PUse T-F7 Author uses tools/algorithm of cited article 
PModi T-F8 Author modifies cited work 
PMod T-F9 Citation used to motivate current work 
PSim T-F10 Similarity of cited and citing work 
PSup T-F11 Citing and cited work are compatible 
Neut T-F12 Neutral description of cited work 

 

 
Amjad Model: Amjad et al. (2013) applied reference tagging, reference grouping and non-

syntactic reference removal to extract three sets of features. These are defined as context 

identification, purpose of citation and polarity. A total of 22 features were extracted, as 

presented in Table 9. The authors applied SVM (kernel=linear, c=1.0) to context-identification 

features and achieved a precision of 92% and a recall of 76.4%. 

 

Among the contextual features, they noted that lexical features were generally more important 

than structural features. In their classification of a citation’s purpose, they achieved an accuracy 

of 70.5%. They noted from their results that authors first make a citation by using a neutral 
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sentence, then follow it with a critical one. They computed and compared Pearson correlation 

coefficients among the polarity and purpose features. They found a high correlation between 

Use and Basis, and concluded that when authors present new technology the algorithms and 

corpora used by that scientific research start a trend, and thus generate more citations. 

Table 9: Amjad’s features 

Feature  ID Description 
Demonstrative determiner A-F1 Citation context contains demonstrative determiner 
Conjunctive adverb A-F2 Citation context contains conjunctive adverb 
Position A-F3 Position of citing sentence 
Contains closest noun phrase A-F4 Citation context contains closest noun phrase 

Other reference A-F5 Citation context contains reference other than target 
Mention of target A-F6 Citation context contains the mention of target reference 
Multiple references A-F7 Target citation sentence contains multiple references 
Criticizing A-F8 Citing article mentions weakness/strengths of cited article 
Comparison A-F9 Citing article compares/contrasts work with cited article 
Use A-F10 Citing article uses the work of cited article 
Substantiating A-F11 Citing article is similar/supports the cited work 
Basic A-F12 Citing article uses cited article as a starting point 
Neutral A-F13 Citing article 
Reference count A-F14 Number of references in context 
Is separate A-F15 Citation occurs separately 
Closest verb/adjective/adverb A-F16 Distance of closest verb, adjective or adverb 
Self-citation A-F17 Citation is self-citation 
Contains 1st/3rd person pronoun A-F18 Context contains 1st/3rd person pronoun 
Negation cue A-F19 Context contains negation cue 
Speculation cue A-F20 Context contains speculation cue 
Subjectivity cue A-F21 Context contains subjectivity cue 
Contrary expression A-F22 Context contains contrary expression 
Section A-F23 Section of citation 

 

Table 10: Valenzuela’s features 

Feature  Feature ID Description 
F1  V-F1  Direct citations 
F2  V-F2  Direct citations per section 
F3  V-F3  Indirect citations 
F4 V-F4  Author overlap 
F5  V-F5  Is useful 
F6 V-F6  In figure/table 
F7 V-F7  Inverse no. of references 
F8 V-F8  All citations 
F9 V-F9  Abstract similarity 
F10 V-F10  Page rank 
F11 V-F11 Total citing articles 
F12 V-F12 Domain of the cited article 
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Valenzuela Model: Valenzuela et al.’s (2015) extracted features mostly relate to the nature of 

the citation and the section in which it appears. A description of these features is provided in 

Table 10. The authors constructed a supervised classification model with SVM (kernel=RBF) 

and RF. Both classifiers obtained an encouraging 80% of the area under the curve (AUC). They 

incorporated their model into a search engine for scientific literature. 

 
Hassan Model: Hassan et al. (2017) extended the work of Valenzuela et al. (2015) and 

presented 13 features. These are categorized into three groups: context-based features; cue 

word-based features; and textual features. They constructed a model with five classifiers, 

namely RF, SVM, KNN, Decision Tree and Naïve Bayes. RF was their best-performing 

classifier, with an encouraging AUC of 91%. This showed that the RF classifier discriminated 

very well between important and unimportant citations.  The authors applied the Extra-Trees 

Classifier to compare the performance of individual features and showed that Feature H-F13 

(Abstract and text similarity), as presented in Table 11, is more informative than the others. It 

is followed by H-F1 (Total citations received by reference) and H-F11 and H-F12 (Cue words 

for using and extending existing work). Note that that they merged H-F9 and H-F10 as H-F9, 

and merged H-F11 and H-F12 as H-F12, since they found a significant overlap of keywords 

among these features. 
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Table 11: Hassan’s features 

Feature  ID Description 
F1 H-F1 Total citations received by reference 
F2 H-F2 Total citations 
F3 H-F3 Citations in introduction section 
F4 H-F4 Citations in literature review section 
F5 H-F5 Citations in method section 
F6 H-F6 Citations in experiment section 
F7 H-F7 Citations in discussion section 
F8 H-F8 Citations in conclusion section 
F9 H-F9 Cue words for related work 
F10 H-F10 Cue words for comparative citations 
F11 H-F11 Cue words for using and extending existing work 
F12 H-F12 Cue words for extending existing work 
F13 H-F13 Abstract and text similarity 
F14 H-F14 Author overlap 

 

Proposed Models 
We propose two supervised traditional machine-learning models, namely SVM and RF, and an 

LSTM-based deep-learning model to address the problem of citation classification. 

 

Supervised model. For the purpose of comparison, we employed supervised classification 

techniques by applying the SVM (Auria et al., 2008) and RF (Breiman, 2011) classifiers to the 

feature set presented by each model. SVM finds the optimal boundaries of the outputs by 

transforming data using a specific kernel. Here, we applied a non-linear Radial Basis Kernel 

(RBF) for transformation (Cao, Naito, & Ninomiya, 2008). The RBF function is provided in 

Eq. 1. 

𝑘 𝑥, 𝑧 = e'( ∥ 𝑥 − 𝑧 ∥ 2, 𝛾 > 0 (1) 

 

Here	e'0 is a constant, while x and z represent vectors in some feature space. RF is a supervised 

machine-learning algorithm that, as its full name suggests, creates a forest of classification 

trees and splits the feature nodes randomly. We computed the precision, recall, F1-score and 
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Precision-Recall (PR) curve to compare the performance of each model on same dataset. The 

parameter settings for both SVM and RF are presented in Table 12.   

 

Table 12: Classifier parameter settings for each model 

Model Tuned parameter 
 SVM RF 

kernel Ɣ C estimators max_features 
Teufel RBF .1 1 100 5 
Amjad RBF .1 1 100 5 
Valenzuela RBF .1 1 100 5 
Hassan RBF 2 .5 100 5 
Hassan_29 RBF .1 1 100 5 

 

These settings are tuned parameters for each set of features and are analogous to the parameters 

used by Abu-Jbara et al. (2013) and Hassan et al. (2017). We selected SVM and RF because 

three of the compared adopted models – by Abu-Jbara et al. (2013), Valenzuela et al. (2015) 

and Hassan et al. (2017) – outperformed the other classifiers. To extract their best features, we 

employed the Extra-Trees classifier (Geurts et al., 2006), also known as the ‘Extremely 

randomized trees classifier’, to split the complete selection of data at each step and randomly 

select a decision boundary. For the final feature selection for our model, we selected all 29 

features that had an Extra-Trees classifier score of more than 0.01. We named the machine-

learning model ‘Hassan_29’ (see Appendix A, Table A-1).  

 

Deep-learning model. In recent years, deep-learning neural networks have overthrown 

conventional machine-learning algorithms in both supervised and unsupervised tasks 

(Schmidhuber, 2015). The deep-learning classification model can be thought of comprising 

layers of non-linear units that perform transformation and feature extraction tasks (Di Ciaccio 

et al., 2015). A Deep Neural Network (DNN) consists of a number of hidden layers, on which 

each utilizes the output of the layer before as its input. An improved variation of Neural 

Networks is a Recurrent Neural Network (RNN), with a short-term memory to retain the 
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contextual information from previous results. Fig. 1 shows our LSTM-based deep-learning 

model and its pseudocode. 

 

We used the Keras implementation of the LSTM network (Hochreiter et al., 1997) to solve our 

classification problem. LSTM is a variant of an RNN that uses the short-term memory of an 

RNN neuron and makes it last longer. This is accomplished through a special module in LSTM 

that controls the information to be used. Our implementation of the Keras LSTM model uses 

TensorFlow at the backend (Abadi & TensorFlow, 2016). It consists of six layers, each dividing 

the dimensions (neurons) of the previous layers in two.  

 

 

Figure 1: LSTM-based deep-learning model and pseudocode 

 

Finally, to convert the weighted results of each neuron into output and to introduce non-

linearity in our network, we applied a sigmoid activation function at each layer. A sigmoid 

function is suitable here because most of our features were between 0 and 1, or normalized 

between 0 and 1. Eq. 2 represents the output of a neuron (z), where w represents the weights 

and x represents the inputs. This output is fed to Eq. 3, where we matched the weight to the 

activation σ(z). 
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Results and Discussion 

This section describes our results from a series of experiments. We divided our data into two 

parts, consisting of training then testing the data using three-fold cross-validation. We trained 

our model on training data and then evaluated it on testing data. Our aim in these experiments 

was to compare four state-of-the-art techniques and compare them with a newly proposed 

model for the classification of citations as important or unimportant. For this purpose, we used 

PR curves, using five different supervised classifiers and comparing the results with the deep-

learning model. The classifiers that we used in our experiment are Naïve Bayes, SVM, RF, 

Decision Tree and KNN.  

 

Figure 2: PR curve for SVM and RF classifier across the deployed models, using 10-fold cross-
validation 
 
Table 12 shows a summary of the classification results of all five models, including our 

machine-learning based proposed model, Hassan_29. We applied SVM and RF on the features 

extracted through methodologies, and the parameter settings for each model are shown in Table 
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11. All models performed fairly well in predicting the important and unimportant citations. 

According to our results, RF outperforms SVM in all models. In addition to this summary of 

the classification results, we show the PR curve of each model in Fig. 2. This shows that our 

model has greater precision than other models in terms of recall, with an f-measure reaching 

0.91 for the RF models.  

 

The results show that, with Valenzuela, Hassan and Hassan_29, RF outperforms SVM. The 

reasons behind these results are that these models have of a mixture of continuous and numeric 

features, and that the citation features contain outliers. In such conditions, RF performs well. 

In addition to RF and SVM, we also used KNN, Decision Tree and Naïve Bayes on the 29 

influential features by using three-fold cross-validation techniques and observed PR curve. As 

can be seen in Fig. 3 (left side), RF still outperforms all the other classifiers, with a PR= 0.89. 

SVM also gives a better performance, with a PR=0.88, while Naïve Bayes performed the worst 

of all, with a PR=0.58.  

 

Table 12: Evaluation report of models 

Model Precision Recall F1 Classifier 
Teufel 0.83 0.84 0.83 SVM 

0.83 0.84 0.83 RF 
Amjad 0.81 0.82 0.81 SVM 

0.78 0.80 0.79 RF 
Valenzuela 0.73 0.72 0.72 SVM 

0.73 0.74 0.74 RF 
Hassan 0.84 0.84 0.82 SVM 

0.89 0.89 0.89 RF 
Hassan_29 0.89 0.87 0.84 SVM 

0.91 0.91 0.91 RF 
 

Furthermore, we used ROC curves to evaluate our model and show how well it differentiates 

the important from the unimportant citations. We used a three-fold cross-validation technique 

to train the classifier. Fig. 3 (right side) shows the ROC curves for all five models. We found 
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that RF beats all the other classifiers, with an ROC=0.97. RF achieved better performance with 

an ROC=0.95 and SVM also performed well, with an ROC=0.91. We concluded that, overall, 

the RF classifier is a better predictor than the others. Overall, RF has better results due to its 

ability to classify effectivity even when there is deviance in the data. The Naïve Bayes classifier 

performs worst, because the data size is small and the assumptions on which Naïve Bayes is 

based appear not to hold with the experimental dataset. It cannot learn the interactions between 

the features and is not robust in learning, hence, resulting in poor performance. 

 

Figure 3: PR and ROC curve for SVM, KNN, Decision Tree and Naïve Bayes classifier on 29 
influential features, using 10-fold cross-validation 

 
Finally, we deployed our deep-learning model with the Keras DNN. Our model consists of an 

input layer with 52 units and five hidden layers of 26, 13, 7, 3 and 1 units respectively. Each 

layer uses a sigmoid as the activation function. Testing and training sets are in a ratio of 9:1 

and were randomly picked numerous times. Our models achieved an average accuracy of 

92.57%, which is very good, considering the size of the inputs. Fig. 4 shows the learning rate 

at testing, and the training losses and accuracy through 50 epochs. Our model showed 

significant improvement up to 30 epochs, then the training and testing accuracy levelled off. 

Overall, our deep-learning model outperformed traditional machine-learning models with an 

accuracy of 92.57%. However, given the small dataset, the improvement on traditional machine 

learning and deep learning is not clearly evident. 
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Figure 4: Training losses and accuracy through 50 epochs 

 

Conclusion 

Our work is the first attempt to compare the state-of-the-art models for classifying the 

importance of a citation using the same dataset. We have shown that our machine-learning 

model, with top 29 features, outperforms all existing state-of-the-art models. In addition, our 

deep-learning based LSTM model, with all 64 features, does exceptionally well in identifying 

the importance of a citation for a given article, with an accuracy of more than 92%. 

 

Citation-based indices are a major tool used by research administrators for academic 

assessment. The most renowned indices such as h-index, impact factor, source-normalized 

impact per paper, and so on, are quantitative in nature and give no credit to the importance of 

the context of a citation within an article. Moreover, these indices use absolute citation counts, 

which may fail to distinguish the significance of an important work. Therefore, bibliometric 

indices that measure the impact of a scientific article on the basis of its context are of paramount 

importance. We believe that identifying the context in which an article may be vital and prove 

to be a more informative measure of its impact.  
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Our approach can be used to enhance state-of-the-art specialist information extraction 

techniques, such as the meta-knowledge annotation scheme of Thompson et al. (2010) and the 

hypothesis or new-knowledge detection scheme of Shardlow et. al. (2018). For example, the 

incorporation of the relative importance of a citation can help to refine the knowledge 

type/category encapsulated in a statement.  

  

Another key application of our work would be in establishing the ‘global’ and ‘local’ 

importance of a research article. For example, rather than scoring articles by the total number 

of citations that they receive, more sophisticated schemes can be developed to establish the 

importance of individual citations within an article. These ‘local’ scores for a cited article can 

be collected for all citations of the article in question, and a ‘global’ importance score 

synthesised. Using such global importance scores, one can establish the ‘actual/qualitative’ 

significance of an article. 

 

A potential limitation of our work lies in the definitions of ‘important’ and ‘incidental’ 

(unimportant) citations. This study adopted the definitions that came with the standard dataset, 

yet these may not necessarily be accurate. Another limitation of our work is the difficulty to 

adapt it to scholarly big data, since some of the proposed features are manually computed. 

When scaling up this study to larger datasets, such features could be extracted using cue word 

based approaches. For example, conjunctive adverbs (A-F2) can be obtained by specifying cue 

words and parsing the sentence to compute their occurrence. Similarly, for features such as H-

F1, automated crawlers can be built to extract feature data from the web and, for features such 

as H-F13, sentiment-based models can be built to check and validate the similarity score. 
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Overall, our proposed technique contributes to the emerging field of bibliometric-enhanced 

information retrieval by increasing the query search capabilities of search engines and semantic 

search approaches on Web 2.0 (De Vocht et al., 2017; Jiang & Yang, 2018). Last but not least, 

this work can help improve citation-based full-text summarization techniques.  

Note that the data and code to reproduce all the analysis presented this paper may be 

downloaded from the following URL: https://github.com/slab-itu/imp_citations. 
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Appendix A  
 
Table A-1: Scores of the top 29 features selected using Extra-Trees classifier 

Feature name Feature ID Classification score 
Method H-F5 0.067301 

Citation in article H-F2 0.055028 

PUse T-F7 0.046484 

Author_overlap V-F4 0.039698 

Section A-F23 0.039119 

abs_cite_similarity V-F9 0.037921 

Contrast T-F13 0.037383 

Normalized_cites_per_year V-F8 0.033105 

Use A-F10 0.031846 
Total citation V-F1 0.030411 

Related_work H-F9 0.028996 

Reference count A-F14 0.028723 

Closest verb/adverb/adjective A-F16 0.028289 

Substantiating A-F11 0.028132 

Compare H-F10 0.026866 

Using H-F11 0.025311 

Demonstrative determiner A-F1 0.023467 

Contain closest noun phrase A-F4 0.021491 

Basics A-F12 0.020505 

Introduction H-F3 0.020111 
Multiple references A-F7 0.019426 

Conjunctive adverb A-F2 0.018472 

PSim T-F10 0.018177 

PSup T-F11 0.017775 

Neutral+ T-F15 0.016902 

PBas T-F6 0.016614 

Is separate A-F15 0.016511 

1st/3rd personal pronoun A-F18 0.016458 

Speculation A-F20 0.015999 
 

 
 


