Skip to main content
Log in

Key nodes mining in the inventor–author knowledge diffusion network

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

This paper discusses the mining of key nodes from the flow of knowledge in science and technology journals to technology patents at the community level. The knowledge flow network is established with spatial dimensions based on technological patent citations, scientific journals, and cooperation among researchers. The extensity centrality-Newman and commonly used degree indices are applied to isolate the nodes which occupy important positions among communities in the knowledge flow network. Suggestions are proffered accordingly to make full use of the key nodes’ roles as “bridges” to promote knowledge flow from science and technology journals to technology patents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Azagra-Caro, J. M., & Consoli, D. (2016). Knowledge flows, the influence of national R&D structure and the moderating role of public–private cooperation. Journal of Technology Transfer, 41(1), 152–172.

    Article  Google Scholar 

  • Borgatti, S. P., Everett, M. G., & Shirey, P. R. (1990). LS sets, lambda sets and other cohesive subsets. Social Networks, 12(4), 337–357.

    Article  MathSciNet  Google Scholar 

  • Boyack, K. W., & Klavans, R. (2008). Measuring science–technology interaction using rare inventor–author names. Journal of Informetrics, 2(3), 173–182.

    Article  Google Scholar 

  • Breschi, S., & Catalini, C. (2010). Tracing the links between science and technology: An exploratory analysis of scientists’ and inventors’ networks. Research Policy, 39(1), 14–26.

    Article  Google Scholar 

  • Callaert, J., Grouwels, J., et al. (2012). Delineating the scientific footprint in technology: Identifying scientific publications within non-patent references. Scientometrics, 91(2), 383–398.

    Article  Google Scholar 

  • Callaert, J., Looy, B. V., et al. (2006). Traces of prior art: An analysis of non-patent references found in patent documents. Scientometrics, 69(1), 3–20.

    Article  Google Scholar 

  • Chen, L. (2017). Do patent citations indicate knowledge linkage? The evidence from text similarities between patents and their citations. Journal of Informetrics, 11(1), 63–79.

    Article  Google Scholar 

  • Chen, Z., & Guan, J. (2015). The core-peripheral structure of international knowledge flows: Evidence from patent citation data. R&D Management, 46(1), 62–79.

    Article  MathSciNet  Google Scholar 

  • Darvish, H., & Tonta, Y. (2016). Diffusion of nanotechnology knowledge in Turkey and its network structure. Scientometrics, 107(2), 569–592.

    Article  Google Scholar 

  • De Sordi, J. O., Conejero, M. A., & Meireles, M. (2016). Bibliometric indicators in the context of regional repositories: Proposing the D-index. Scientometrics, 107(1), 1–24.

    Article  Google Scholar 

  • Ductor, L., Fafchamps, M., Goyal, S., & Leij, M. J. V. D. (2011). Social networks and research output. Review of Economics and Statistics, 96(5), 936–948.

    Article  Google Scholar 

  • Egghe, L. (2014). Impact coverage of the success-index. Journal of Informetrics, 8(2), 384–389.

    Article  Google Scholar 

  • Fatt, C. K., Ujum, E. A., & Ratnavelu, K. (2010). The structure of collaboration in the Journal of Finance. Scientometrics, 85(3), 849–860.

    Article  Google Scholar 

  • Finardi, U. (2011). Time relations between scientific production and patenting of knowledge: The case of nanotechnologies. Scientometrics, 89(1), 37.

    Article  Google Scholar 

  • Forti, E., Franzoni, C., et al. (2013). Bridges or isolates? Investigating the social networks of academic inventors. Research Policy, 42(8), 1378–1388.

    Article  Google Scholar 

  • Gao, X., & Guan, J. (2012). Network model of knowledge diffusion. Scientometrics, 90(3), 749–762.

    Article  Google Scholar 

  • Girvan, M., & Newman, M. E. J. (2001). Community structure in social and biological networks. Proceedings of the National Academy of Sciences of the United States of America, 99(12), 7821.

    Article  MathSciNet  MATH  Google Scholar 

  • Giuliani, E., & Bell, M. (2005). The micro-determinants of meso-level learning and innovation: Evidence from a Chilean wine cluster. Research Policy, 34(1), 47–68.

    Article  Google Scholar 

  • Groh, G., & Fuchs, C. (2011). Multi-modal social networks for modeling scientific fields. New York: Springer.

    Book  Google Scholar 

  • Guan, J., & Liu, N. (2015). Invention profiles and uneven growth in the field of emerging nano-energy. Energy Policy, 76(1), 146–157.

    Article  Google Scholar 

  • Harorimana, D., & Harebamungu, M. (2013). Innovation, proximity, and knowledge gatekeepers-is proximity a necessity for learning and innovation? International Journal of Innovation and Learning, 14(2), 177–196.

    Article  Google Scholar 

  • Hassan, S. U., & Haddawy, P. (2013). Measuring international knowledge flows and scholarly impact of scientific research. Scientometrics, 94(1), 163–179.

    Article  Google Scholar 

  • Huang, M. H., Chen, S. H., Lin, C. Y., & Chen, D. Z. (2014). Exploring temporal relationships between scientific and technical fronts: A case of biotechnology field. Scientometrics, 98(2), 1085–1100.

    Article  Google Scholar 

  • Jansen, D., Görtz, R. V., & Heidler, R. (2010). Knowledge production and the structure of collaboration networks in two scientific fields. Scientometrics, 83(1), 219–241.

    Article  Google Scholar 

  • Koka, B. R., Madhavan, R., et al. (2006). The evolution of interfirm networks: Environmental effects on patterns of network change. Academy of Management Review, 31(3), 721–737.

    Article  Google Scholar 

  • Lai, C. H. (2015). Applying knowledge flow mining to group recommendation methods for task-based groups. Journal of the Association for Information Science and Technology, 66(3), 545–563.

    Article  Google Scholar 

  • Letina, S. (2016). Network and actor attribute effects on the performance of researchers in two fields of social science in a small peripheral community. Journal of Informetrics, 10(2), 571–595.

    Article  Google Scholar 

  • Li, H. J., Zhan, B., Li, A., Liu, Z., & Shi, Y. (2016). Fast and accurate mining the community structure: Integrating center locating and membership optimization. IEEE Transactions on Knowledge and Data Engineering, 28(9), 2349–2362.

    Article  Google Scholar 

  • Li, R., Chambers, T., Ding, Y., Zhang, G., & Meng, L. (2014). Patent citation analysis: Calculating science linkage based on citing motivation. Journal of the Association for Information Science and Technology, 65(5), 1007–1017.

    Article  Google Scholar 

  • Li, Y., Zhang, G., Feng, Y., & Wu, C. (2015). An entropy-based social network community detecting method and its application to scientometrics. Scientometrics, 102(1), 1003–1017.

    Article  Google Scholar 

  • Liao, C. H. (2011). How to improve research quality? Examining the impacts of collaboration intensity and member diversity in collaboration networks. Scientometrics, 86(3), 747–761.

    Article  Google Scholar 

  • Lin, C., Wu, J. C., & Yen, D. C. (2012). Exploring barriers to knowledge flow at different knowledge management maturity stages. Information & Management, 49(1), 10–23.

    Article  Google Scholar 

  • Lissoni, F. (2010). Academic inventors as brokers. Research Policy, 39(7), 843–857.

    Article  Google Scholar 

  • Liu, N., & Guan, J. (2015). Dynamic evolution of collaborative networks: Evidence from nano-energy research in China. Scientometrics, 102(3), 1895–1919.

    Article  MathSciNet  Google Scholar 

  • Liu, X., Jiang, S., Chen, H., Larson, C. A., & Roco, M. C. (2015). Modeling knowledge diffusion in scientific innovation networks: An institutional comparison between China and US with illustration for nanotechnology. Scientometrics, 105(3), 1953–1984.

    Article  Google Scholar 

  • Lu, H., & Feng, Y. (2009). A measure of authors’ centrality in co-authorship networks based on the distribution of collaborative relationships. Scientometrics, 81(2), 499–511.

    Article  Google Scholar 

  • Newman, M. E. J. (2001a). The structure of scientific collaboration networks. Proceedings of the National Academy of Sciences of the United States of America, 98(2), 404–409.

    Article  MathSciNet  MATH  Google Scholar 

  • Newman, M. E. J. (2001b). Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality. Physical Review E, 64(1), 016132.

    Article  MathSciNet  Google Scholar 

  • Park, H.-W., & Suh, S.-H. (2011). Scientific and technological knowledge flow and technological innovation: Quantitative approach using patent citation. In: Technology Management in the Energy Smart World.

  • Petruzzelli, A. M., Albino, V., et al. (2010). Leveraging learning behavior and network structure to improve knowledge gatekeepers’ performance. Journal of Knowledge Management, 14(5), 635–658.

    Article  Google Scholar 

  • Qu, Y., Shi, W., & Shi, X. (2015). Inferring overlapping community structure with degree-corrected block model. Physica A: Statistical Mechanics and its Applications, 419(419), 48–54.

    Article  Google Scholar 

  • Qu, Y., Shi, W., & Shi, X. (2017). An improved algorithm for generalized community structure inference in complex networks. Physica A: Statistical Mechanics and its Applications, 478, 41–48.

    Article  MathSciNet  MATH  Google Scholar 

  • Rner, K., Dall’Asta, L., Ke, W., & Vespignani, A. (2005). Studying the emerging global brain: Analyzing and visualizing the impact of co-authorship teams: Research Articles. Complexity, 10(4), 57–67.

    Article  Google Scholar 

  • Roach, M., & Cohen, W. M. (2013). Lens or prism? Patent citations as a measure of knowledge flows from public research. Management Science, 59(2), 504.

    Article  Google Scholar 

  • Roper, S., & Hewitt-Dundas, N. (2015). Knowledge stocks, knowledge flows and innovation: Evidence from matched patents and innovation panel data. Research Policy, 44(7), 1327–1340.

    Article  Google Scholar 

  • Sahoo, S. (2016). Analyzing research performance: Proposition of a new complementary index. New York: Springer.

    Google Scholar 

  • Shin, J. C., Lee, S. J., & Kim, Y. (2012). Knowledge-based innovation and collaboration: A triple-helix approach in Saudi Arabia. Scientometrics, 90(1), 311–326.

    Article  Google Scholar 

  • Shirabe, M. (2014). Identifying SCI covered publications within non-patent references in U.S. utility patents. Scientometrics, 101(2), 999–1014.

    Article  Google Scholar 

  • Sung, H. Y., Wang, C. C., Huang, M. H., et al. (2015). Measuring science-based science linkage and non-science-based linkage of patents through non-patent references. Journal of Informetrics, 9(3), 488–498.

    Article  Google Scholar 

  • Swedberg, R. (1995). Structural holes: The social structure of competition by Ronald S. Burt. Social Science Electronic Publishing, 42(22), 7060–7066.

    Google Scholar 

  • Tsay, M. Y. (2015). Knowledge flow out of the domain of information science: A bibliometric and citation analysis study. Scientometrics, 102(1), 487–502.

    Article  Google Scholar 

  • Tutzauer, F. (2007). Entropy as a measure of centrality in networks characterized by path-transfer flow. Social Networks, 29(2), 249–265.

    Article  MATH  Google Scholar 

  • Verbeek, A., Debackere, K., & Luwel, M. (2003). Science cited in patents: A geographic “flow” analysis of bibliographic citation patterns in patents. Scientometrics, 58(2), 241–263.

    Article  Google Scholar 

  • Waltman, L., Eck, N. J. V., & Noyons, E. C. M. (2010). A unified approach to mapping and clustering of bibliometric networks. Journal of Informetrics, 4(4), 629–635.

    Article  Google Scholar 

  • Wang, G., & Guan, J. (2011). Measuring science-technology interactions using patent citations and author-inventor links: An exploration analysis from Chinese nanotechnology. Journal of Nanoparticle Research, 13(12), 27–42.

    Google Scholar 

  • Wu, C. Y., & Mathews, J. A. (2012). Knowledge flows in the solar photovoltaic industry: Insights from patenting by Taiwan, Korea, and China. Research Policy, 41(3), 524–540.

    Article  Google Scholar 

  • Yan, E., Ding, Y., & Kong, X. (2013a). Monitoring knowledge flow through scholarly networks. Proceedings of the American Society for Information Science and Technology, 49(1), 1–5.

    Article  Google Scholar 

  • Yan, X., Zhai, L., & Fan, W. (2013b). C-index: A weighted network node centrality measure for collaboration competence. Journal of Informetrics, 7(1), 223–239.

    Article  Google Scholar 

  • Yu, G., Wang, M. Y., & Yu, D. R. (2010). Characterizing knowledge diffusion of nanoscience and nanotechnology by citation analysis. Scientometrics, 84(1), 81–97.

    Article  Google Scholar 

  • Zhang, G., Feng, Y., Yu, G., Liu, L., & Hao, Y. (2017a). Analyzing the time delay between scientific research and technology patents based on the citation distribution model. Scientometrics, 111, 1–20.

    Article  Google Scholar 

  • Zhang, G., Liu, L., Feng, Y., Shao, Z., & Li, Y. (2014). Cext-N index: A network node centrality measure for collaborative relationship distribution. Scientometrics, 101(1), 291–307.

    Article  Google Scholar 

  • Zhang, G., Yu, G., Feng, Y., Liu, L., & Yang, Z. (2017b). Improving the publication delay model to characterize the patent granting process. Scientometrics, 111(3), 1–17.

    Google Scholar 

  • Zhang, Y., Kou, M., Chen, K., Guan, J., & Li, Y. (2016). Modelling the Basic Research Competitiveness Index (BR-CI) with an application to the biomass energy field. Scientometrics, 108(3), 1–21.

    Google Scholar 

  • Zhao, Q., & Guan, J. (2012). Modeling the dynamic relation between science and technology in nanotechnology. Scientometrics, 90(2), 561–579.

    Article  Google Scholar 

  • Zhao, S. X., & Ye, F. Y. (2012). Exploring the directed h-degree in directed weighted networks. Journal of Informetrics, 6(4), 619–630.

    Article  MathSciNet  Google Scholar 

  • Zhao, Z., Feng, S., Wang, Q., Huang, J. Z., Williams, G. J., & Fan, J. (2012). Topic oriented community detection through social objects and link analysis in social networks. Knowledge-Based Systems, 26, 164–173.

    Article  Google Scholar 

  • Zhou, P., & Leydesdorff, L. (2007). A comparison between the China Scientific and Technical Papers and Citations Database and the Science Citation Index in terms of journal hierarchies and inter journal citation relations. Journal of the Association for Information Science and Technology, 58(2), 223–236.

    Google Scholar 

  • Zhou, P., Su, X., & Leydesdorff, L. (2010). A comparative study on communication structures of Chinese journals in the social sciences. Journal of the Association for Information Science and Technology, 61(7), 1360–1376.

    Google Scholar 

  • Zhu, Y., & Yan, E. (2015). Dynamic subfield analysis of disciplines: An examination of the trading impact and knowledge diffusion patterns of computer science. Scientometrics, 104(1), 335–359.

    Article  Google Scholar 

Download references

Acknowledgements

The authors appreciate the editor and the anonymous reviewers for their insightful comments and constructive suggestions. This study was supported by National Natural Science Foundation of China (Nos. 71804091, 71701078 and 91646105). This study was also funded by Humanities and Social Sciences Foundation of the Ministry of Education of China (No. 18YJC630237). This study was also funded by a grant from the University Scientific Research Plan Projects of Shandong Province (Nos. J18KA342 and J18RA049). This study was also funded by Social Science Foundation of the University of Jinan (Nos. 18YY02 and 17YB06).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guijie Zhang or Fangfang Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Liu, L. & Wei, F. Key nodes mining in the inventor–author knowledge diffusion network. Scientometrics 118, 721–735 (2019). https://doi.org/10.1007/s11192-019-03005-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-019-03005-2

Keywords

Navigation