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Abstract 
 
The creative process is essentially Darwinian and only a small proportion of creative ideas are selected for further 
development. However, the threshold that identifies this small fraction of successfully disseminated creative ideas at 
their early stage has not been thoroughly analyzed through the lens of Rogers’s innovation diffusion theory. Here, we 
take highly cited (top 1%) research papers as an example of the most successfully disseminated creative ideas and 
explore the time it takes and citations it receives at their “take-off” stage, which play a crucial role in the dissemination 
of creativity. Results show the majority of highly cited papers will reach 10% and 25% of their total citations within 
two years and four years, respectively. Interestingly, our results also present a minimal number of articles that attract 
their first citation before publication. As for the discipline, number of references, and Price index, we find a significant 
difference exists: Clinical, Pre-Clinical & Health and Life Sciences are the first two disciplines to reach the C10% and 
C25% in a shorter amount of time. Highly cited papers with limited references usually take more time to reach 10% and 
25% of their total citations. In addition, highly cited papers will attract citations rapidly when they cite more recent 
references. These results provide insights into the timespan and citations for a research paper to become highly cited 
at the “take-off” stage in its diffusion process, as well as the factors that may influence it. 
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Introduction 
The creative process is essentially Darwinian (Simonton, 1997). That is, creativity entails some variation-selection 
process that generates numerous conceptual combinations. More specifically, in the idea creation process, one 
constructs ideational combinations in a spontaneous, unpredictable way. Individuals have no a priori way of foreseeing 
which ideational combinations will prove most fruitful. Only a small proportion of these combinations is then selected 
for further development. In academia, creative ideas are contained in written documents constituting academic papers. 
Researchers build their work on the combinations of existing knowledge and submit them to related journals where 
they are subjected to selection along with hundreds of manuscripts of the same genre submitted by researchers with 
similar aspirations. Only a small set then survives the selection process (Boyack and Klavans 2014; Simonton 1997; 
Uzzi et al. 2013). Nor does the selection process end here because not all scientific publications have the same impact 
on the scientific community, as judged by citation indices (Fortunato et al. 2018; Roth et al. 2012; Yu et al. 2014). 
Often only a tiny fraction of the publications managed to be successful among their contemporaries (Simonton 1997). 
 
However, what features distinguish this tiny fraction of publications that are successful? Is there a threshold of minimal 
citation count during the early period, after an article’s publication, that is required for its future success? This is of 
high significance for the evaluation of newly published articles within a short time window, as citation counts are 
attractive raw data for scientific impact evaluation and reward allocation (Bourdieu 1991; R. K. Merton 1968), and a 
good proxy for scientific creativity (Bornmann and Daniel 2008; Lee et al. 2015). Early studies from bibliometrics 
and complex networks have examined article-, author-, journal-, and field-related factors that are connected to citation 
impact (Beaudry and Larivière 2016; Didegah and Thelwall 2013b; Haslam et al. 2008; Onodera and Yoshikane 2015; 
Roth et al. 2012; Tahamtan et al. 2016; D. Wang et al. 2013; Yu et al. 2014). Some studies have also focused on the 
citation distribution based on the life-cycle theory (Bouabid 2011; Min et al. 2018), as well as graph mining (Pobiedina 
and Ichise 2016). However, the diffusion of scientific citations remains relatively less explored (Min et al. 2018). 
 
 
Diffusion is the process by which an innovation is communicated through certain channels over time among the 
members of a social system (Rogers 1995). Most innovations have a S-shaped rate of adoption and there are variations 
in the slope of the “S” from innovation to innovation, which indicates the rate of diffusion. According to Rogers, after 
slow initial development, the S-shaped diffusion curve usually “takes-off” at about a 10-25 percent adoption rate. This 
period acts as an accelerant in the diffusion process of these creative ideas and plays a crucial role in the dissemination 
within its research field and to other areas (Rogers 1995). In fact, the citation diffusion of scientific publications fits 
the Bass diffusion model, which is based on and extended from Rogers diffusion theory (Min et al. 2018). Innovating 
upon prior studies, here, we explore the threshold at the “take-off” stage of the most successfully disseminated ideas 
in science, which is represented by highly cited papers. Getting a high-quality article adopted by the scientific 
community, even when it has obvious advantages, is often difficult (Hu and Wu 2018; Li and Ye 2016; van Raan 
2004). Many of these articles require a lengthy period, often many years from the time they were accepted by a journal 
to the time they are widely adopted by contemporaries. Therefore, the study of “take-off” stage on highly cited papers 
will shed light on the funding agency for timely assessment of funded research, facilitate the early recognition of 
academic performance, and illuminate research fronts detection. 
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This article is outlined as follows. We first discuss work related to our study, giving attention to prior studies on key 
factors and prediction methods of citation impact, as well as Rogers’s innovation diffusion theory. Then we detail the 
data and indicators for our analysis. Next, we present our findings concerning the time period (T) and citations (C) of 
the earliest 10% and 25% of total citations per article. Following, we study factors that may affect the results, such as 
disciplines, number of references, and Price index. Finally, we discuss the results and conclude with a summary of 
our findings, limitations, and thoughts for future research. 
 
Related work 
Determiners of citation impact: a short review of the literature 
The citation distribution in science is highly skewed so the majority of articles are scarcely cited while a tiny fraction 
of others is highly cited (Tahamtan et al. 2016). Many researchers have investigated the features that make some 
papers cited more than others, from author-, article-, journal-, and field-related factors that are connected to citation 
impact. 
 
Studies on author-related factors have shown that gender inequality exists in citing behavior, because publications of 
female researchers are less cited than are those of male researchers, which may be a result of a cumulative advantage 
effect of male researchers tending to have a higher relative publication output, based on a large-scale study of 8,500 
Norwegian researchers and more than 37,000 publications covering all areas of knowledge (Aksnes et al. 2011). 
Additionally, the fame of an author’s name is also a predictive factor of future citations for articles, as shown by a 
study of articles published in 1996 of three primary journals in social-personality psychology (Haslam et al. 2008), 
and later verified by analysis of publications after 5 and 10 years on the real-world dataset extracted from AMiner 
(Yan et al. 2011b). Author collaboration, that is, the number of authors of an article, also has a general influence on 
citation counts (Bornmann and Daniel 2006; Fortunato et al. 2018; Kong et al. 2017; Lee et al. 2015). 
 
In addition, article-related factors contribute to citations, such as number, impact, recency of references, age of the 
paper, and document type. After examining different factors affecting the number of citations across subject field, 
Onodera and Yoshikane (Onodera and Yoshikane, 2015) found that Price index and number of references were the 
first two predictors of citations as derived through negative binomial multiple regression. This conflicts with the 
conclusion drawn from data about the nanotechnology field between 2007 to 2009 (Didegah and Thelwall 2013a), 
which states impact of the cited references and impact factor of the publishing journal are the most effective 
determinants of citation counts. Researchers also tend to show more interest in recent publications because the value 
of knowledge decreases as times passes and, thus, recent published papers are more likely to attract citations 
(Bornmann 2013; Egghe et al. 1995; Gosnell 1943; Kong et al. 2017; R. K. Merton 1961). Several studies have 
investigated the connection between document type and citations and found that review papers achieve more citations 
in general (Tahamtan et al. 2016). 
 
It is traditional wisdom that high impact journals attract more attention, therefore, papers published in these journals 
have a higher potential of being cited than those in other journals. After investigating publications during 2006-2007 
by staff of the School of Environmental Science and Management at Southern Cross University, Vanclay (Vanclay 
2013) revealed that journal impact factor and type will affect the citations of an article and suggested that writing 
substantial review articles, then submitting to high impact journals, will increase the potential citations in the future, 
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although some researchers have held an opposing viewpoint in regards to this finding (Roldan-Valadez and Rios 2015). 
Additionally, articles in relatively small research fields generally receive fewer citations than those in fields with many 
publications (King 1987), and the field and time range of scientific publications can reflect the research fronts of this 
field. Researchers can gain insight into the papers’ impact at the research front by looking at the number of times 
papers are cited in this field (H.F. Moed et al. 1985).  
 
Prediction methods of citation impact 
Trying to track all publications to build our work would not be viable because of the exponential growth of scientific 
literature (Mukherjee et al. 2017). Many researchers have developed different approaches to predict an article’s future 
citations and forecast which kind of literature is more likely to attract scientists’ responses. Some researchers have 
regarded citation count prediction as link prediction from a complex network viewpoint. Zhou et al. (Zhou et al. 2018) 
focused on h-Salton and h-AA link prediction methods, which are variants of the Salton and AA indices, to measure 
the importance of nodes in citation networks. They argued that h-index-based indicators have a positive effect on the 
application of link prediction methods and are suitable for measuring the importance of citation networks. Pobiedina 
and Ichise (Pobiedina and Ichise 2016) suggested a new feature based on frequent graph pattern mining to improve 
the accuracy of citation count prediction from a network point of view. Roth et al. (Roth et al. 2012) studied papers 
published between 1970 and 1999 on their citation network structures. They explored the relationship between 
references and quality of citing paper and found that papers with more references are more likely to get cited within 
the field. Papers with a low reference recency are more likely to be more cited in physics. 
 
Some researchers have proposed different models to predict citations. For instance, Callaham et al. (Callaham et al. 
2002) conducted a non-parametric modeling technique of regression trees to predict the future citations of 204 
publications submitted to a 1991 emergency medicine specialty meeting. Their results showed that journal impact 
factor is the strongest predictor of citations per year, followed by the newsworthiness and subjective quality of the 
article. Similarly, Yan et al. (Yan et al. 2011a) utilized several features of highly cited papers, such as topic rank and 
diversity, article age, H-index, fame of the authors as input, and use of linear regression (LR), k-nearest neighbor 
(kNN), support vector regression (SVR), and classification and regression tree (CART) as the predictive models. They 
found that the prediction after a longer period can achieve the best accuracy with models of CART. They also found 
that authors have bias in citing references, as author’s fame and publication venue are the most predictive features of 
future citations. Wang et al. (Wang et al. 2013) derived a WSB model to predict the long-term citations of individual 
papers that includes, in addition to the cumulative advantage and aging, a fitness parameter that accounts for the 
perceived novelty or importance of scientific publications. Their model has quickly drawn attention after publication 
because the WSB model correctly approximated the citation range for 93.5% of papers 25 years later. Yu et al. (Yu et 
al. 2014) regarded the features of author, journal, citation, article type, and publication date as a paper’s feature space, 
which they constructed through stepwise multiple regression analysis. They argued that the constructed paper’s feature 
space is significant at the 0.01 level to predict the citation impact of a paper in Information Science & Library Science 
field after the first 5 years of publication.  
 
Others have studied this question from their citation distributions of scientific articles. For example, Bouabid H 
(Bouabid, 2011) assumed that the citation distribution of publications is like an inverse U-shaped curve and classified 
two main stages in an article’s life-cycle which is split by the citations peak and proposed a model to represent the 
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naturally observed citations distribution and citations aging in a diachronous approach. They then explored the time 
that an article will continue being cited and the rate of decline, and found that the life-cycle of publications is infinite 
when the residual citations are greater than or equal to zero. Min et al. (Min et al. 2018) regarded the citation process 
as an innovation diffusion process and studied the citation dynamics based on Bass diffusion model. They suggested 
a saturation level to roughly estimate an article’s current stage in its citation life cycle and the potential of future 
citations. However, the features that affect citation counts are still poorly understand from an innovation diffusion 
point of view. 
  
Innovation diffusion theory 
Getting a new idea adopted is often difficult even when it has obvious advantages. Many innovations, ideas, products, 
technologies, or services require a lengthy period to be widely accepted. Innovation related factors (such as relative 
advantage, complexity, trialability, observability, compatibility), diffusion channels (such as mass media channels, 
interpersonal channels), time (such as rate of adoption, innovation-decision process), and social system (such as social 
norms, structure of a social system, opinion leaders) are main elements that affect the diffusion process. The diffusion 
process of these innovations, proposed by Rogers in the 1960s, seeks to understand this process and offer a guidance 
in marketing, management science, and public policies (Rogers 1995).  
 
Innovation, as defined by Rogers (Rogers 1995), is an idea, practice, or object that is perceived as new by an individual 
or other unit of adoption. It does not matter whether or not the idea is objectively new, but whether the individual 
perceives it as such. That is, if the idea seems new to the adopter, it is an innovation, otherwise, it is not. Moreover, 
the innovation can either involve new knowledge or existing knowledge, as someone may have known about the 
innovation for some time but may not have responded (such as favorable or unfavorable, adopt or reject) to it. 
Diffusion is the process by which an innovation is communicated through certain channels over time among the 
members of a social system (Rogers 1995). As time is one of the main elements of the diffusion process and a key 
concern in this article, here we review the time dimension of Rogers theory in a more detailed way. 
 
The function of time is involved in three aspects: (1) The innovation-decision process by which an individual becomes 
aware of the innovation, forms an attitude toward it, and makes a choice to adopt or reject this innovation. Knowledge, 
persuasion, decision, implementation, and confirmation are the five main steps in this process. (2) The period of an 
innovation’s adoption cycle, during which an individual adopts it, is what distinguishes these individuals as 
“innovators”, “earlier adopters”, “earlier majority”, “late majority”, and “laggards.” (3) The rate of adoption, which 
means the relative speed of an innovation that is adopted by a unit of adoption or members within the social system. 
Only a few innovative individuals adopt the innovation at first, later, more and more individuals adopt in each 
succeeding time period and, eventually, the adoption rate slows. When we plot the accumulated number of individuals 
adopting the innovation over time, it results an S-shaped curve (Figure 1). However, the slope of the S-shaped curve 
is different from innovation to innovation, as some innovation diffuse in a relatively rapid approach and some at a 
slower rate. Significantly, for successful innovations, the S-shaped diffusion curve usually takes off at about 10-25% 
of accumulative frequency.  
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Fig. 1 Rogers Innovation diffusion model (Rogers 1995) 

 
Citation-based innovation diffusion 
Innovation diffusion is a theory that seeks to explain how, why, and at what rate a new idea, practice, or object spreads 
over time among the members of a social system. In academia, a new idea is documented in scientific publications. 
Being accepted for publication indicates the new ideas were recognized by reviewers and being cited after publication 
further shows its influence on the scientific community. In this sense, the citation behavior between scientific 
publications can be viewed as a scientific impact diffusion process, where the number of citations represent impact 
depth of diffusion in scientific community. Based on the assumption that researchers cite the works that influence 
them, some studies have used citation as a proxy for innovation diffusion. Zhai et al. (Zhai et al. 2018) used Latent 
Dirichlet Allocation (LDA) citations extracted from Scopus between 2003 and 2015 to measure the diffusion of 
innovation in different stages and subjects. The results showed that as LDA is transferred into different areas, and the 
adoption of each subject was relatively adjacent to those with similar research interests. Min et al. (Min et al. 2018) 
tried to understand the diffusion mechanisms underlying the citation process. Their data set was based on essays of 
629 Nobel Prize winners in Chemistry, Physics, Physiology or Medicine, and Economic Science published from 1900 
to 2000 and citation data until 2011 indexed in Web of Science. Using Bass model, they quantified and illustrated 
specific diffusion mechanisms which have been proven to exert a significant impact on the growth and decay of 
citation counts. 
 
Indeed, citations cannot totally represent the adoption of innovation and researchers have pointed to a number of 
concerns about citations analysis, including misleading or wrong citations and complex citing motives (Bornmann 
and Daniel 2008). However, citation-based data still has much more advantage for innovation diffusion research 
compared to the data collected from questionnaires, interviews, and in-depth case studies because, on one hand, 
citations are easily accessible in electronic form for revealing the content of the diffusion process, so we can map the 
entire diffusion process of the innovation, especially in the big-data era. On the other hand, by using the citation data, 
researchers can easily track the historical roots of scientific ideas as well as forecasting the research trends. 
 
Methodology 
Data 
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The empirical analysis in this article is based on a dataset of highly cited research articles that were published in 2008 
by Web of Science (WoS), which defined highly cited papers as articles that received the top 1% of citations within 
the same research field and publication year based on InCites (http://incites.thomsonreuters.com/) until July/August 
2018. We also obtained their citing articles until the year 2017. As a result, 7927 highly cited articles and 1,742,036 
citing articles (10 years citation window) were obtained in total. Studies have shown that a short citation window 
(usually 1 or 2 years) has bias for at least two reasons (Wang 2013): (1) There is a difference in the recognition time 
period at the field level, such as the mathematics and social sciences fields need much longer time to be recognized 
than the biomedical field. Thus, a short citation window will benefit fields that have a short recognition time. (2) The 
aging pattern of different papers varies. Some papers have shown “delayed rise-slow decline”, and some have shown 
“early rise-rapid decline.” Therefore, a short time window underestimates papers that are more valuable and influential. 
On account of the bias that may be caused by the short citation time window and the earliest highly cited papers we 
can obtain in WoS is 2008, hence, we choose the highly cited papers published in 2008 as our dataset.  
 
Indicators 
According to Rogers innovation diffusion theory, the diffusion process usually takes off at 10-25% of accumulative 
frequency (Rogers 1995). Therefore, we explore the time and related citation counts when they reach the 10% and 25% 
of total citation counts, respectively. There are four indicators employed in this study: 
 
T10% and C10% mean the time and related citation counts of the 10th percent of accumulative frequency, respectively. 
These two indicators are responsible for the lower threshold of takes off stage.  
T25% and C25%, similar to the above two indicators, indicate the time and corresponding citations of the 25th percent 
accumulative frequency, respectively. These two indicators are measurements for the upper threshold of the “take-off” 
period. 
 
Number of references and Price index classification methods 
We classify the references list into three groups: 
(1) Limited knowledge broadness: the number of references in each paper is equal to or less than 21. 
(2) Moderate knowledge broadness: the number of references in each paper is between 22 and 41. 
(3) Large knowledge broadness: the number of references in each paper is equal to or higher than 42.  
In addition, we classify the Price indices into three groups, like we do with the classification of number of references:  
(1) Older knowledge roots: the ratio of references to literature published in the last five years is less than or equal to 

0.43. 
(2) Moderate knowledge roots: the ratio of references to literature published in the last five years is between 0.44 and 

0.71. 
(3) Newer knowledge roots: the ratio of references to literature published in the last five years is equal to or greater 

than 0.72. 
 
Knowledge broadness and recency limits are determined by the percentile values in the distribution of references by 
number (P25% = 21; P75% = 41), and Price index (P25% = 0.43; P75% = 0.71). Note that the “limited-”, “moderate-”, and 
“large-” knowledge broadness, or “older,” “moderate,” and “newer” knowledge roots, should be understood in relative 
terms. In this sense, one could argue that 50 references is not very many; but relative to this study, this amount is high, 
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and belongs to the highest classification in number of references. The purpose of categorizing number of references 
and Price indices in a three-class category is to compare differences along three distinct stages in the broadness and 
recency of scientists’ referencing practice. 
 
Results 
“Take-off” stage of highly cited papers 
Figure 2 presents the S-shaped curves of highly cited papers as well as an average curve of these curves based on 
Rogers’s innovation diffusion theory. The horizontal axis presents the time (year) from the first citation to their total 
citations until the year 2017. The vertical axis gives the accumulated percentage of the total citation counts for each 
paper. Papers with an accumulated percentage between 10% and 25% are regarded as the “take-off” period of 
successfully diffused ideas, which is the main focus of this study. 
 
We observe that 87.18% (6911) articles reach the 10% of accumulated citations two years after their publication and 
the average citation count is 50.46. The percentage of articles that reach 25% of their total citations four years after 
publication is 96.58% (7656) and their mean number of citations is 102.93. This means the large majority of highly 
cited papers will reach 10% of their total citations within two years and 25% within four years. In addition, we find 
that there is still a minimal number of papers showing the “delayed rise” pattern. Over all, the average time is 1.78 
and 3.05 years for these articles to reach 10% (mean value = 51.79) and 25% (mean value = 104.07) of their total 
citations. Interestingly, our results also show that there are 0.66% (52) of articles that accumulate their first citations 
before publication. 

 
Fig. 2 S-shaped curves of highly cited papers. The solid blue line indicates an average S-shaped curve of highly 

cited papers that fitted by moving average method, and the shade indicates the “take-off” stage of curves. 
 
Disciplinary differences 
 
In this section, we compare the time it takes and citations it receives in the “take-off” stage among disciplines. To 
decide the papers’ discipline, we based our classification on the GIPP Mapping Table (http://ipscience-
help.thomsonreuters.com/inCites2Live/indicatorsGroup/aboutHandbook/appendix/mappingTable.html). In addition, 
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the discipline of an article is measured by full counts which means for a paper belonging to two or more disciplines is 
assigned to each discipline. As a result, there are 2062, 2458, 2724, 1770, 622, and 10 papers in Clinical, Pre-Clinical 
& Health, Life Sciences, Physical Sciences, Engineering & Technology, Social Sciences, and Arts & Humanities, 
respectively (see Figure 3). 
 
To find the difference of T10%, T25%, C10%, C25% between these disciplines, we employ the Kruskal-Wallis H-test. Table 
1 shows that Clinical, Pre-Clinical & Health, and Life Sciences are the first two disciplines that reach C10% and C25%. 
Arts & Humanities is the discipline that needs more time to reach C10% and C25%; however, as the number of articles 
in this discipline is very few, this may result in potential bias. As for the statistical differences, we find there is 
significant difference between Clinical, Pre-Clinical & Health, Life Sciences, and Physical Sciences for T10% (p < 
0.001). For T10%, there is not a significant difference between Engineering & Technology and Arts & Humanities (p > 
0.05) nor between Social Sciences and Arts & Humanities (p > 0.05). There is not a significant difference between 
Arts & Humanities and other disciplines for C10% and C25% (p > 0.05), nor for Clinical, Pre-Clinical & Health and Life 
Sciences (p > 0.05). In addition, there is a significant difference between Clinical, Pre-Clinical & Health, Life Sciences, 
Physical Sciences, Engineering & Technology, and Social Sciences for T25% (p < 0.001). 

 

Fig. 3 Average S-shaped curve of highly cited papers in each discipline 
 

Table 1. Time and citations at “take-off” stage between different disciplines 

Disciplines 
Indicators (Mean value) 

T10% C10% T25% C25% 
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Clinical, Pre-Clinical & Health 1.61* 53.25 2.83* 104.56 
Life Sciences 1.69* 59.9 2.96* 120.99 
Physical Sciences 1.82* 49.36 3.10* 99.32 
Engineering & Technology 2.02 40.6 3.35* 84.77 
Social Sciences 2.33 33.01 3.72* 70.30 
Arts & Humanities 2.60 65.8 3.70 116.40 

*There is significant difference after Kruskal-Wallis H-test, p = 0.05. 
 
Knowledge broadness influences 
This section presents the time and citation counts from the knowledge broadness perspective. There are 2182 articles 
with the number of references less than or equal to 21, 3770 articles cite between 22 and 41 references, and the rest of 
1975 papers cite greater than or equal to 42 references. Figure 4 shows that there seems to be no delayed recognition 
for papers that cite greater than or equal to 42 references than for the other two groups. We also find that highly cited 
papers with the number of references less than or equal to 21 need longer time to attract citations than those with more 
than 21 references (p<0.001). There is no statistical significance between papers with references equal to or more than 
42 and those with references between 22 and 41 (p>0.05). In other words, highly cited papers with limited references 
usually take more time to reach 10% and 25% citations than papers that cite a moderate or large number of references 
(see Table 2.)  

 

Fig. 4 Average S-shaped curve of highly cited papers between different knowledge broadness groups 
 

Table 2. Time and citations at “take-off” stage between different knowledge broadness groups 
 
Knowledge broadness 

Indicators (Mean value) 
T10% C10% T25% C25% 

Number of references ≤21  1.92* 48.83* 3.21* 99.01* 
22 ≤ Number of references ≤ 41  1.72 52.34 2.99 105.52 
Number of references ≥ 42  1.72 53.99 2.99 106.89 

*There is significant difference after Kruskal-Wallis H-test, p = 0.05. 
 
Knowledge recency influences 
In this section, we explore the time and citations between different knowledge recency groups. There are 2086 
publications where the Price index is equal to or less than 0.43, 3869 articles with the Price index greater than or equal 
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to 0.44 and less than or equal to 0.71, and 1972 articles tend to cite more recently published articles with the Price 
index greater than or equal to 0.72.  
 
Results show that the three different Price index groups have statistically significant differences between the four 
indicators (p<0.001). More specifically, the citation time of these articles that reach the 10% and 25% of total citations 
from longest to shortest sequence as: Price index less than or equal to 0.43, Price index between 0.44 and 0.71, and 
Price index equal to or greater than 0.72 (p<0.001). This also echoes the sequence of citation counts that reach the 10% 
and 25% of total citations from smallest to largest. This reflects that highly cited articles with more recent references 
easily attract citations in a shorter amount of time (see Figure 5 and Table 3).  

 

Fig. 5 Average S-shaped curve of highly cited papers between different knowledge recency groups 
 

Table 3. Time and citations at “take-off” stage between different knowledge recency groups 
 Indicators (Mean value) 
Knowledge recency T10%* C10%* T25%* C25%* 
Price index ≤ 0.43 1.95 43.98 3.32 90.26 
0.44 ≤ Price index ≤ 0.71 1.74 52.00 3.01 104.73 
Price index ≥ 0.72  1.66 59.62 2.85 117.37 

*There is significant difference after Kruskal-Wallis H-test, p = 0.05. 
 
Multiple linear regression analysis 
The above sections have already analyzed the correlation between "take-off" time and factors like disciplines, 
knowledge broadness, and recency. However, such factors may be correlated with each other as well. In this 
section, multiple linear regression model is implemented to disentangle the contribution from each factor, and 
we set disciplines as a dummy variable and natural logarithm of number of references is used for model 
estimation. We apply ANOVA analysis to test the significance of our model. The results suggest that our 
regression model is significant (p<0.001) in explaining the “take-off” time in both T10 and T25 of highly cited 
papers (See Table 4 and Table 5). In addition, knowledge broadness, knowledge recency, and discipline are 
significant factors that influence the “take-off” time of highly cited papers (p<0.05). Specifically, knowledge 
broadness and recency have a negative effect on the “take-off” time, where unstandardized coefficient of 
knowledge recency is smaller than knowledge broadness. As for the disciplinary effect, our results show that 
Social Science and Art & Humanities have no significant difference (p>0.05) on the “take-off” time of highly 
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cited papers. Engineering & Technology and Art & Humanities, Physical Science and Art & Humanities have 
no significant difference (p>0.05) on the “take-off” time when they reach the 25% of total citations.” 

Table 4 Regression results of “take-off” time at T10% 
Variables β (95% CI) Std. Error t p 
Constant 2.969 (2.517~3.264) 0.301 9.862 0.001 

No. of references 
Price_index 
Life sciences 

Physical sciences 
Clinical, Preclinical & Health 
Engineering & Technology 

Social sciences 
Adjusted R2 

p 
N 

-0.001(-0.002~-3.989E-6) 
-0.407(-0.486~-0.328) 
-1.036(-1.333~-0.588) 
-0.922(-1.207~-0.474) 
-1.127(-1.419~-0.674) 
-0.688(-0.974~-0.228) 
-0.420(-0.715~0.033) 

 
  

0.000 
0.039 
0.301 
0.301 
0.301 
0.301 
0.302 
0.1 

0.001* 
7927 

-2.171 
-10.546 
-3.440 
-3.062 
-3.742 
-2.284 
-1.389 

 
  

0.030 
0.001 
0.001 
0.002 
0.001 
0.022 
0.165 

 
  

 
Table 5 Regression results of “take-off” time at T25% 

Variables β (95% CI) Std. Error t p 
Constant 4.091(3.544~4.454) 0.352 11.617 0.001 

No. of references 
Price_index 
Life sciences 

Physical sciences 
Clinical, Preclinical & Health 
Engineering & Technology 

Social sciences 
Adjusted R2 

p 
N 

-0.001(-0.002~0.000) 
-0.714(-0.809~-0.623) 
-0.706(-1.058~-0.158) 
-0.587(-0.934~-0.039) 
-0.848(-1.197~-0.278) 
-0.279(-0.628~0.280) 
-0.021(-0.380~0.530) 

 
  

0.000 
0.045 
0.352 
0.352 
0.352 
0.353 
0.353 
0.123 
0.001* 
7927 

-2.633 
-15.822 
-2.004 
-1.666 
-2.408 
-0.791 
-0.059 

 
  

0.008 
0.001 
0.045 
0.096 
0.016 
0.429 
0.953 

 
  

 
Discussions and conclusions 
 
Innovation diffusion theory is one of the oldest social science theories and is widely used in marketing. The main 
purpose of this study is to examine the threshold of these successfully disseminated creative ideas at their early stage 
through the lens of Rogers’s innovation diffusion theory. Scientists give credit to colleagues by citing their work when 
used as part of their studies, and a highly cited paper has certainly and successfully disseminated scientific ideas to 
the scientific community. Therefore, we take highly cited papers as an example to explore the time span and citations 
at their “take-off” stage. This may provide insight into the threshold of time and number of citations at which research 
papers may quickly become highly cited. 
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We find that most (greater than 87%) of the highly cited papers attract an average of 50.46 and 102.93 citations within 
two years and four years of publication, respectively. These are the lower and upper threshold of “take-off” stage, 
based on the S-shaped diffusion model for highly cited research articles. In other words, a research article has the 
potential to become highly cited if it received at least 51 citations within two years, or 103 citations within four years. 
Even so, we should notice that this conclusion is not absolute; there are still a minimal number of papers showing the 
“delayed rise” pattern. Some of these papers accumulate only one citation within two years and four years of their 
publication but then suddenly receive a citation burst and become highly cited. In research evaluation, there is an 
essential tension between the needs of funders for timely assessment of funded research and the time it might take for 
research to reveal its impact; therefore, the application of these thresholds depends on this tension. Interestingly, our 
results also show that there are 0.66% (52) of articles that accumulate their first citations before publication, which 
means the “response time” of a minimal number of highly cited papers occurs even before their publication (Bornmann 
et al. 2017; Schubert and Glanzel 1986). We did not analyze the reasons of this situation, but one of the reasons may 
be a result of preprint. As for the increasing trend of preprint in recent years, this situation may be more universal for 
newly published highly cited papers. 
 
This study also explores the influence of discipline, number of references, and Price index on the threshold of “take-
off” period. We find that Clinical, Pre-Clinical & Health, and Life Sciences are the first two disciplines that reach the 
C10% and C25%, and Arts & Humanities is the discipline that needs more time to reach their C10% and C25% than other 
disciplines. As for the number of references, we find that papers with number of references less than or equal to 21 
need longer time to attract citations than those with references numbering more than 21. According to former studies 
(Ahlgren et al. 2018; Costas et al. 2012), number of references is related to the author’s knowledge broadness; this 
study shows that researchers cite references that less than 21 may hamper their research in quickly attracting citations. 
According to Moed (H. F. Moed 1989), citing recently published articles in one’s publication is an indication of 
“popularity” orientation. This study further shows that highly cited articles with more recent references  easily and 
quickly attract citations. In other words, popularity oriented, highly cited papers attract citations easily. We also 
employed regression analysis to disentangle the contribution of each factors, and results show that knowledge 
broadness and recency have a negative effect on the “take-off” time, where knowledge recency has a strong 
negative influence on the “take-off” time than knowledge broadness. There are no disciplinary effects between 
Social Science and Art & Humanities on the “take-off” time of T10, as well as Engineering & Technology and 
Art & Humanities, Physical Science and Art & Humanities on the “take-off” time of T25. 
 
Here, we emphasize our study’s descriptive power and simplicity; it is simple and easy to implement and can be used 
by not highly-skilled scientometric users. This study is the first step to understanding the timespan and citations of the 
“take-off” stage for successfully disseminated creative ideas based on innovation diffusion theory, but there are some 
limitations. We focused on the data covered by WoS and do not analyze data that is not included in WoS. In addition, 
some of the references were deleted due to incomplete references, for example, references without author, title, 
accession number, or journal information. Moreover, this paper takes a 10-year citation window to show that the 
citation curve follows an S-shaped curve. Yet, there may not be such physical cap for citations, given enough time. 
Therefore, sleeping beauty papers, which peak much later than most articles are unlikely to be captured by a 10-year 
window. In our next study, we will try to test longer citation windows for papers, for example, in the 1990s.  
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