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Abstract

Deep learning can be used to forecast emerging technologies based on patent data. How-
ever, it requires a large amount of labeled patent data as a training set, which is difficult to
obtain due to various constraints. This study proposes a novel approach that integrates data
augmentation and deep learning methods, which overcome the problem of lacking training
samples when applying deep learning to forecast emerging technologies. First, a sample
data set was constructed using Gartner’s hype cycle and multiple patent features. Second, a
generative adversarial network was used to generate many synthetic samples (data augmen-
tation) to expand the scale of the sample data set. Finally, a deep neural network classifier
was trained with the augmented data set to forecast emerging technologies, and it could
predict up to 77% of the emerging technologies in a given year with high precision. This
approach was used to forecast emerging technologies in Gartner’s hype cycles for 2017
based on patent data from 2000 to 2016. Four out of six of the emerging technologies were
forecasted correctly, showing the accuracy and precision of the proposed approach. This
approach enables deep learning to forecast emerging technologies with limited training
samples.

Keywords Emerging technologies forecasting - Data augmentation - Deep learning -
Supervised learning

Introduction

Forecasting emerging technologies is important for governments and enterprises to identify
strategic opportunities in the face of technological change. Existing forecasting studies use
either normative or extrapolative methods, while the latter mainly involves the analyses of
bibliometrics and patents. For example, Daim et al. (2006) used patents and curve fitting
techniques to forecast emerging technologies; Chang et al. (2010) proposed an approach
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employing bibliometrics and patent network analysis to forecast emerging technologies;
and Breitzman and Thomas (2015a) assessed the value of patents by considering inven-
tors’ team-size, in order to identify high-value emerging technologies. However, these
approaches were mostly concerned with bibliometric/patent indicators and ignored rich
text information contained by these patents. In addition to these studies, other recent stud-
ies attempted to explore text mining and cluster analysis. For instance, Chang and Breitz-
man (2009) used the clustering of patents to identify emerging and high-impact technology
clusters and trends; Chiavetta and Porter (2013) proposed the basic idea of tech mining to
forecast emerging technologies using text and data mining, Choi and Jun (2014) devel-
oped a Bayesian model for patent clustering to forecast emerging technologies; Breitzman
and Thomas (2015b) proposed the “Emerging Clusters Model” based on patent citations
to identify emerging technologies across multiple patent systems; and Zhou et al. (2019a,
b) developed a framework through citation network and topology clustering to reveal the
convergence process of scientific knowledge to forecast emerging technologies. All these
approaches utilized unsupervised learning to probe valuable text-based data. However,
unsupervised learning methods cannot incorporate external domain knowledge during the
machine learning process, and the results need to be professionally interpreted by domain
experts that are usually rare, costly, and sometimes biased.

As a remedy, supervised learning methods can generate forecasting results by embed-
ding external knowledge into the model using labeled samples. Some recent studies have
explored the use of supervised learning. For example, Kreuchauff and Korzinov (2015)
developed a support vector machine model based on robotics patents to detect the early
development of an emerging technology in patent data. Kyebambe et al. (2017) used
labeled data based on new classes established in the United States Patent Classification
(USPC) system to train supervised learners to forecast emerging technologies. Lee et al.
(2018) employed a feed-forward multilayer neural network to capture the complex nonlin-
ear relationships between the input and output indicators to identify emerging technolo-
gies in early stages. Zhou et al. (2019a, b) developed a semi-supervised topic clustering
model and generated a sentence-level semantic technological topic description to identify
emerging technologies. Supervised learning requires high-quality labeled samples to pre-
vent overfitting and ensure the accuracy of the forecasting model. However, large labeled
samples are difficult to obtain.

As an advanced supervised learning process, deep learning has a relatively complex
model structure and exhibits better performance (Liu et al. 2019). Some recent studies
have explored the applications of deep learning in bibliometrics and patent analysis, such
as patent classification (Li et al. 2018), citation classification (Hassan et al. 2018), and
natural language processing (Zhang et al. 2018). These studies showed that deep learn-
ing exhibits superior performances and great potential for forecasting emerging technolo-
gies compared to the traditional supervised learning methods. However, these studies used
large-scale labeled sample-data to fully optimize the model parameters and lead to superior
performance. Existing studies suggests that the sample-size of a dataset would significantly
affect the deep learning performance (Goodfellow et al. 2016). However, large training
samples (e.g., emerging technologies in history) are difficult to obtain due to data/resource
constraints. To cope with this issue, we utilize a generative adversarial network (GAN)
method, which recently emerged in computer science, as a data augmentation method to
enlarge the data scale for emerging technologies samples.

Superior to basic deep learning, an integrated GAN-based deep learning can help to
develop new approaches to address the problem of lacking emerging technology samples.
A GAN consists of two deep-architecture functions for the generator and the discriminator,
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which can learn simultaneously from the trained data in an adversarial fashion (Radford
et al. 2015). Most recent studies have shown that a GAN can effectively augment training
samples. For example, Fiore et al. (2019) used a GAN to generate synthetic illicit transac-
tion records and merged them into an augmented training set to improve the effectiveness
of credit card fraud detection, and Pascual et al. (2017) proposed a speech-enhancement
framework based on GAN. Prior to these publications, Santana and Hotz (2016) proposed
an approach for generating images with the same distribution as real driving scenarios. In
summary, GANs provide an opportunity to overcome the problem of the lacking training
samples for applying deep learning to forecast emerging technologies.

This paper, therefore, proposes a novel approach that integrates data augmentation and
deep learning to forecast emerging technologies. First, we built training and testing sets by
labeling emerging technology (ET) and non-emerging technology (NET) samples, collect-
ing patent data for each technology, and extracting patent features. Second, a data augmen-
tation method based on a GAN was employed to generate a large amount of synthetic data
to train the forecasting model using a deep learning classifier. Finally, we evaluated the
performance of the forecasting model with a testing set. We adopted Gartner’s emerging
technology hype cycles (GETHC) and the Thomson Innovation patent database to forecast
technologies that emerged in 2017. The results show that our approach could forecast an
ET 1 year before it emerged with high precision. Our proposed approach overcomes the
problem of lacking emerging technology samples by combining a GAN with basic deep
learning, and the integrated new model was proven to be effective given limited training
samples in patents.

This paper is organized as follows. In “Related work”™ section, related work is presented,
and then the research process and methodology are explained in “Methodology” sec-
tion. Guidelines for the implementation and evaluation of our approach are presented in
“Results” section. Finally, our conclusions are provided in “Conclusions” section.

Related work
Forecasting ET based supervised learning

Supervised learning uses a set of known categories of samples to optimize the parameters
of the classifier, enabling the classifier to accurately fit the relationships between the fea-
tures of data samples and the sample categories (Jung and Pedram 2010). Supervised learn-
ing approaches include Support Vector Machines (SVMs), Naive Bayes (NB), and Random
Forests (RFs). Supervised learning has the following advantages over unsupervised learn-
ing: (1) the classifier can effectively introduce external knowledge to increase the reus-
ability and external scalability through the learning of the labeled samples. (2) The trained
classifier can automatically and quickly give a sample’s category, which greatly reduces the
degree of manual participation and prevents subjective biases caused by manual participa-
tion (Love 2002; Kyebambe et al. 2017). However, compared with unsupervised learning,
supervised learning suffers from the major limitation that it relies on many high-quality
labeled samples (Zhu et al. 2006).

According to Kyebambe et al. (2017), using supervised learning to forecast emerging
technologies requires the forecasting problem to be transformed into the construction of
classifiers. This first involves selecting historical emerging technologies as labeling sam-
ples and determining the time when they began to emerge. Second, the historical ET data
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prior to emergence are collected, and the corresponding data features are extracted. Third,
a classifier is built to discover the relationships between the historical data features and the
ET or NET categories. Finally, the classifier is used to forecast whether it will become an
ET in the future based on historical data for a certain technology (shown in Fig. 1). The
general process of constructing the classifier mainly has three steps: labeling samples, con-
structing data sets, and training and testing classifiers (Fu and Aliferis 2010; Kong et al.
2017; Lee et al. 2018).

Deep learning in bibliometrics

Deep learning, developed by Hinton and Salakhutdinov (2006), has become the key tech-
nology of big data intelligence (Zhuang et al. 2017) and has led to major breakthroughs in
many fields. Recent studies have also explored the value of deep learning in bibliometrics.
Li et al. (2018) proposed an effective patent classification algorithm based on deep learn-
ing to solve the large-scale and multiclass patent classification problem and suggested that
deep learning has several advantages in large-scale patent classification, including being
free of handcrafted features, utilizing straightforward models, and being easy to imple-
ment without tedious feature engineering compared with traditional supervised learning
algorithms. Hassan et al. (2018) compared deep learning and the classical statistical super-
vised learning models for classifying the importance of a citation using the same dataset,
and the results showed that deep learning with all 64 features had a higher accuracy than
SVMs and RFs using the 29 best features. This study also proved the modeling power of
deep learning with complex features and large-scale data. Zhang et al. (2018) utilized word
embedding, as one such application of deep learning in natural language processing, to
map words from vocabulary to vectors and created a method to discover the latent seman-
tics in large-scale text. This study showed the superior performance of deep learning in
handling topic extraction tasks in large-scale text data.

The existing studies in bibliometrics have shown that deep learning, as the core of the big
data intelligence method, exhibits high powerful modeling power and better performances
than classical statistical supervised learning methods, and thus, it holds great potential for
forecasting emerging technologies. However, large-scale labeled sample data in existing stud-
ies of bibliometrics are required to fully optimize the model parameters and achieve superior
performance. A previous study suggested that the quality of a dataset can significantly affect
deep learning (Goodfellow et al. 2016). Since there is limited historical emerging technology
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data, existing methods for forecasting emerging technologies using deep learning can be eas-
ily overfit during the training process, lowering the effectiveness of the forecasting. In other
words, under the existing framework, the performance of the deep learning model is decided
by the scale and quality of the labeled data. With a small sample size, the high performance of
deep learning is generally restricted.

Data augmentation in small-scale samples

In previous studies, to address the insufficiency of the data scale, several oversampling meth-
ods were proposed. Their main advantage is that they are self-sufficient. In the early stage, the
training set can be enlarged by duplicating the training examples of the minority class if the
examples of different classes are imbalanced or by creating a new data set by adding artificial
noise (DeRouin et al. 1991). Chawla et al. (2002) proposed a classic oversampling method
known as the synthetic minority oversampling technique (SMOTE), which involves the crea-
tion of a synthetic minority class data set. Barua et al. (2014) proposed a majority-weighted
minority sampling technique with the aim of generating valid synthetic samples. The exist-
ing research has mainly focused on imbalanced learning in which better performances can be
achieved by adding oversampling instances to the minority class data set. However, data sets
in many realms remain insufficient rather than imbalanced in every class. With the develop-
ment of artificial intelligence and deep learning, GANs have provided opportunities to create
new approaches to solve the problem of a lack of samples.

A GAN is a powerful type of generative model (Wang et al. 2017) introduced in 2014 by
Goodfellow (Goodfellow et al. 2014). The GAN consists of two deep-architecture functions
for the generator and the discriminator, which can learn simultaneously from the trained data
in an adversarial fashion compared to oversampling technology (Radford et al. 2015). In the
learning process, the generator captures the potential distribution of the real data and generates
synthetic samples, while the discriminator discriminates between real samples and synthetic
samples as accurately as possible. Recent work has shown that GANs have been successfully
applied. Hwang et al. (2018) used a GAN for disease prediction and compared the predictive
performance of an auxiliary classifier GAN (AC-GAN) with existing models, such as SVMs
and adaptive boosting (AdaBoost), which are widely used in research involving medical data,
such as disease prediction. Their results showed that the combination of stacked autoencod-
ers and AC-GAN performed significantly better than existing algorithms for the problem of
disease prediction. Fiore et al. (2019) trained a GAN to output mimicked minority-class exam-
ples, which were then merged with training data into an augmented training set to improve
the classification effectiveness of credit card fraud detection. Zhu et al. (2018) proposed sev-
eral evaluation methods using three benchmark data sets to validate GAN performance. The
empirical results showed that a 5-10% increase in classification accuracy could be obtained
after employing GAN-based data augmentation. GANs have been successfully applied in
many fields, and they have the potential to solve the problem of limited samples in forecasting
emerging technologies.
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Methodology
Overall process

Figure 2 shows the overall process of the proposed approach. Given the complexities
involved, the proposed approach was designed to be executed in five discrete steps: ET
and NET sample labeling, data set construction, data augmentation, forecasting model
construction, and evaluation. A detailed discussion of how we performed each step is pre-
sented below.

Labeling ET and NET samples

In this study, GETHCs were used to identify ET and NET samples. The GETHC was pro-
posed by Gartner (www.gartner.com), which was established in 1979 as the world’s first
information technology research and analysis company. The GETHC aims to describe a
specific stage of development of an emerging technology (Jun 2012). “Appendix 1~ pre-
sents the GETHCs from 2008 to 2017.

The foundation of deep learning to forecast emerging technologies is to find the rela-
tionships between emerging technologies and their historical data. Thus, when we label
the ET and NET samples, we must specify the time when a technology became an ET or
NET. Knowing the specific time point, we can find the historical data corresponding to
each sample. The GETHC released yearly can effectively solve this problem. According
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Fig.2 Overall process of the proposed approach
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to the characteristics of the GETHC, if a technology entered the GETHC in a certain year,
this indicates that this technology began to gain attention and showed the characteristics of
emerging technology in this year. If a technology dropped out of the GETHC in a certain
year, this technology was in last year’s GETHC and disappeared in this year’'s GETHC,
which indicates that this technology’s influence began to decline and its characteristics as
an emerging technology began to disappear. In our method, a technology that entered the
GETHC for the first time in a certain year is labeled as an ET sample for that year, and a
technology that dropped out of the GETHC in a certain year is labeled as a NET sample for
that year. Technology evolves dynamically over time. A technology may enter the GETHC
and become an ET in a certain year, and as the technology evolves, it may disappear from
the GETHC and become a NET after several years. Thus, the same technology may be
labeled as an ET sample in 1 year and may be labeled as a NET sample in another year.

The following are examples of labeling ET and NET samples. Cloud Computing entered
the GETHC of 2008 for the first time, which indicated that Cloud Computing began to
garner attention and show the characteristics of an emerging technology in 2008. Thus,
we labeled Cloud Computing as an ET sample in 2008. As the technology evolved, Cloud
Computing dropped out of the GETHC of 2015, which means this technology was in the
GETHC of 2014 and disappeared in the GETHC of 2015. This indicates that Cloud Com-
puting’s influence began to decline, and its characteristics as an emerging technology
began to disappear in 2015. Thus, we labeled Cloud Computing as the NET samples in
2015. The same method was used for labeling ET and NET samples in other years.

Data set construction

After labeling ET and NET samples, patents for the corresponding technology were
retrieved from the patent database. We subsequently extracted patent features and used
them to create a patent feature vector of each ET and NET sample. Finally, all the patent
feature vectors of the ET and NET samples were used to construct the training set and test-
ing set for the training and evolution of the forecasting model.

Patent data collection

When collecting historical patent data corresponding to each ET and NET sample from
the patent database, patent data should be collected according to the time point when
each sample become an ET or a NET. The purpose of the proposed method is to forecast
whether a certain technology will become an emerging technology 1 year later. Therefore,
we need the deep learning model to find the relationships between an ET or NET sample
that becomes an ET or a NET in year T and all the corresponding historical patent data
until year T— 1. We collected historical patent data until year 7— 1 for each ET and NET
sample in year T. The patent data were collected from the Thomson Innovation (TI) patent
database, which contains comprehensive and high-quality patent data.

According to the sample labeling method in “Labeling ET and NET samples” section,
technology may be labeled as an ET sample and a NET sample in different years. However,
when collecting the corresponding patents, the historical patent data of this technology as
a sample of ET and NET is different because of the different years when this technology
became an ET and a NET. When the same technology is labeled as an ET sample and a
NET sample in different years, for the ET sample in year 7, we collect historical patent
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data until year 7— 1, and for the NET sample in year 7, we collect historical patent data
from the year it becomes an ET sample to the year 7— 1.

The following are examples of collecting patents. Cloud Computing is used as an example
for the labeling of ET and NET samples. This technology was labeled as an ET sample in
2008. Thus, we collected the corresponding patents until 2007 for Cloud Computing. As the
technology evolved, Cloud Computing was labeled as an NET sample in 2015. Thus, we col-
lected the corresponding patents from 2008 to 2014 for Cloud Computing. The same method
was used to collect corresponding patents of each ET and NET sample in other years.

Patent feature selection

Patent feature selection is crucial to this study, because forecasting accuracy greatly
depends on the relevance of the patent features for emerging technologies. Earlier reports
have presented a variety of patent features to capture the characteristics of emerging tech-
nologies. This study employed a total of seven features from previous studies to capture the
key characteristics of emerging technologies, which are divided into five sub-categories
(shown in Table 1): low-novelty, science-intensity, growth speed, scope and coverage, and
development effort and capabilities (Lee et al. 2018). These features can be extracted from
patent databases immediately after the relevant patents are collected.

(1) Low-novelty Earlier studies have explored the relationship between patent novelty and
backward citations. Some studies suggested that the breadth of patent backward citations
can capture the absorption of previous technological innovations from many different
fields and the novelty of a patent increasing with the breadth of the backward citations
(Hall and Helmers 2013; Hall et al. 2013). Some other studies suggested that patent back-
ward citations can capture the related prior publications and patents in the patent applica-
tions and patents with large numbers of backward citations have a relatively low novelty
and low monetary value (Harhoff et al. 2003; Lee et al. 2018). In this study, we consider
that the number of backward citations tend to directly measure the number of related prior
publications and patents and the breadth of the backward citations requires other metrics.

(2) Growth speed Since the growth speed cannot be fully observed at early stages of tech-
nology development without continuous monitoring and surveillance, the technology
cycle time (TCT) was employed in this study, which captures the degree of newness
of prior knowledge or the pace of technology progress (Bierly and Chakrabarti 1996;
Kayal and Waters 1999) in this sub-category.

(3) Science-intensity Earlier studies have suggested more scientific knowledge contained in
the patented invention may lead to the development of more innovative and influential
technology (Cozzens et al. 2010; Day and Schoemaker 2000). The number of non-
patent citations (Trajtenberg 1990) was employed in this study to capture the closeness
to scientific knowledge.

(4) Scope and coverage This sub-category contains three patent features to represent the
scope and coverage of patents. The first feature is the number of claims, which indicates
the scope of the legal protection conferred by patent claims (Lanjouw and Schankerman
2004). The second feature is the family patent size, which corresponds to the number
of times the same invention has been developed in different countries and represents
the economic and technical importance of the invention (OuYang and Weng 2011).
The third feature is the number of International Patent Classification (IPC), which
represents the scope of the technological fields of a patent (Lee et al. 2009).

@ Springer



Scientometrics (2020) 123:1-29

syuared 1oy10 AQ paIId ST juajed SIY) sowm Jo JoquINu Y,
PIoy oy ur Juayed o[3urs e Jo Arxordwoo [eoruyos) oy syuesardar juojed e 10§ DJT JO Joquinu Y],

UOTUAAUT Y} Jo douejrodwr [eoru
-[[99) PUE JTWOUO0ID A $JUASAIdAT SALNUNOD JURIJIP UT UOTIUIAUT dures ) J0J suoneorjdde jo requnu oy,

uoyed oY) jo soue)
-1odwr oy s30apar yorym ‘uonedridde jo swn oy e Juajed v £q parmbar suonosejoid syySr Jo requinu oy,

PISY SIY) UI [OIBaSaI
pue uonEAOUUI [RIISO[OUYd9) UdaMmI2q drysuonerar oy s1oope1 sjuated ut suonelrd Juded-uou jo equinu Y,

1 Aq pa11o Juded ay) syudsaxdar
[ pue judjed e syuasardar 1 axoym A 'Q - .i v.\:m%oa = 'O SI e[nWIO} 9y, [EAISIUI UOTIEIIO Juajed

ay) Jo anea uerpaw 3y £q pajuasardar st ASojouyds) Jo suoneIoUS JUdE(PE 0M) USIMIAQ [RAISIUT YT,

juased sty Aq pajid sjujed Jo rquinu Ay,

SUOTIRIIO PIBMIO]
DdI Jo IequinN

az1s Juared Afwre
SWIEO JO JoquInN

suoneyIo Judjed-uou Jo JOqUINN

(1D1) awn 994> A3o[ouyoa],

SUOTIEIIO premydeg

saniiqedes juswdoaaeg

3819400 pue adoog

K)ISUIUI-20ULIOS

paads yimoin

K)[oAOU-MOT]

uondrosaq

aIMEes,]

sor10g91e)

suondriosop oInyed) Jusleq | ajqeL

pringer

As



10 Scientometrics (2020) 123:1-29

(5) Development capabilities Many empirical studies have found that there is a significant
positive relationship between forward citations and development capabilities (Lerner
1994; Martin 1995). This study employs forward citations, which captures the develop-
ment capabilities.

At this point, each ET and NET sample comprises many patents. However, for the sub-
sequent data augmentation and deep learning analysis, we must represent each ET and
NET sample as a single feature vector that has the same features as the individual patents.
As such, drawing on previous research (Kyebambe et al. 2017), for a given ET or NET
sample, we compute the feature value by taking the arithmetic mean of values for the con-
stituent patents. For example, if an ET or NET sample comprises 100 patents, we first com-
pute the seven features of each patent, after which we compute the average of each feature
for all 100 patents, and finally we construct a 7-dimensional feature vector representing this
sample with the average value of each feature.

Training set and testing set construction

The feature vector of each ET and NET is calculated according to the patent features
described in “Patent feature selection” section. We obtain a set of patent feature vectors
labeled as ET or NET. To precisely evaluate the performance of the forecasting model, the
set of patent feature vectors is randomly divided into a training set and a test set at a ratio of
7:3. Due to the small scale of the training samples, we utilize a data augmentation method
based on a GAN to generate a large number of synthetic samples to train the forecasting
model and improve the forecasting accuracy. In the next section, we briefly explain the pro-
cess used for data augmentation based on the GAN.

Data augmentation based on GAN

To solve the problem of a lack of emerging technology samples, the approach of data aug-
mentation using a GAN is proposed to enlarge the data scale of emerging technology sam-
ples. After the ET and NET training sets are built, we use the original ET and NET training
sets to build the corresponding GAN and generate synthetic samples. The workflow of gen-
erating ET or NET synthetic samples based on GAN involves two steps (shown in Fig. 3):

(1) The generator of the GAN begins to generate the original synthetic samples when the
loss functions of the generator and discriminator of the GAN converge after being
trained using the ET or NET training sets several thousand times.

(2) The trained generator of the GAN is used to generate the synthetic samples and the dis-
criminator is used to filter these samples. In the synthesized ET or NET samples created by
the GAN generator, samples that fool the discriminator are selected as the final synthesized
samples. According to the adversarial idea in GANs (McDaniel et al. 2016), the generator
attempts to generate synthetic samples that can fool the discriminator while the discrimina-
tor tries to distinguish between real samples and synthetic samples. This means that when
ET or NET synthetic samples were discriminated as real by the discriminator, the synthetic
samples were more akin to the distribution of the real ET or NET training sets.

Training of the GAN involves finding the parameters of a discriminator (D) that maxi-
mize its classification accuracy and finding the parameters of a generator (G) that maximally
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Fig. 3 Workflow of data augmentation using GAN

confuses the discriminator. The cost of training is evaluated using a value function, which is
defined in Eq. 1, that depends on D and G. During training, G and D play a minimax game
with the value function, D and G are updated, and the iteration stops until a Nash equilib-
rium is achieved. In greater detail, D(s) is the probability that s comes from the real data,
G(2) is the synthetic sample that is generated by the generator, D(G(z)) is the probability that
the synthetic sample is discriminated as real by the discriminator. Equation 1 is as follows:

max mgn V(D,G) = Ep, . [log D(s)] + E P.(2) [log(1 — D(G(2)))]- (1)

The hyperparameters of the GAN include the hyperparameters of the generator and dis-
criminator. The generator and discriminator of the GAN both have deep neural network
(DNN) structures. The input of the generator is white noise, the number of input units is
equal to the dimension of the white noise, the output is the synthetic sample, and the num-
ber of output units are equal to the number of selected patent features, which is seven. The
number of hidden layers in the network and the optimal number of units per layer must be
experimentally determined. The input of the discriminator is a real or synthetic sample,
and the output is the category of the real or synthetic samples. The number of input units is
equal to the number of selected patent features, which is seven, and the output unit is one
no-activation-function unit. The optimal number of hidden layers in the neural network and
the number of units per layer must be experimentally determined.

Forecasting model construction based on DNN classifier

After the augmentation of the original ET and NET samples, the GAN will generate a
large number of synthetic samples. To make full use of the advantages of big data, we con-
structed a DNN classifier based on deep learning to forecast emerging technologies. DNN
classifiers based on deep learning are complex and have larger model capacities. After
extensive training on large-scale labeled samples, they can exhibit superior performances
(Goodfellow et al. 2016). Meanwhile, the multilayered neural network structure of a DNN
can learn the multilevel abstract features of sample data in which high-level features are
constructed by low-level-feature combinations, which can more effectively express the dis-
tribution characteristics of the data and produce a better learning result than the classical
statistical supervised learning model (Bengio and Lecun 2007).
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The construction of the DNN classifier includes training and testing. First, the DNN clas-
sifier is trained with many synthetic ET and NET samples generated by the GAN. The DNN
classifier is subsequently tested with partially independent real ET and NET samples. Testing
DNN classifiers with real independent ET and NET samples simulates the real forecasting
environment and can effectively reflect the general performance of a classifier. The input of
the DNN classifier is a synthetic sample, and the output is the ET or NET classification. The
number of input units is equal to the number of selected patent features, which is seven. The
number of output units is equal to the number of categories, which is two. The number of neu-
ral network layers and the number units per layer must be determined experimentally.

When using the trained DNN classifier to forecast emerging technologies, it is necessary
to collect the corresponding patent data for the technology to be forecasted and extract the
patent features to construct the feature vector. By inputting the vector of one technology to be
forecasted into the DNN classifier, the DNN classifier can directly and automatically forecast
whether the technology will become an emerging technology in the next year.

Evaluation

To test the performance of the DNN classifier, we used three classification metrics based on a
confusion matrix (Table 2): accuracy, F1, and G-mean. Accuracy is the proportion of predic-
tions that were correct, F1 is the harmonic mean of the precision and recall, and the G-mean
indicates the geometric mean of the recall (Sun et al. 2007). Accuracy, F1, and G-mean are
defined as follows:

TN + TP
Accuracy = s )
TN + TP + FP + FN
Fl = 2. Pr('ec‘ision . Recall, 3)
Precision + Recall
G-mean=\/ N _ TP . €]
TN +FP TP+ FN

In these equations, TP, TN, FP, and FN are the number of true positive samples, true nega-
tive samples, false positive samples, and false negative samples, respectively. Further, recall
and precision are defined as follows:

TP
Recall = ————, (5)
TP + FN
.. TP
Precision = ——. (6)
TP + FP
Ta’blg 2 Diagram of confusion Predicted positive Predicted
matrix sample negative
sample
True positive sample TP FN
True negative sample Fp TN
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Results
Analysis result of the proposed approach

Based on the GETHCs from 2008 to 2017, 57 ET and 48 NET samples were extracted.
Tables 3 and 4 list the samples of each ET and NET. We retrieved and downloaded the
patents for all the ET and NET samples and calculated the patent feature vector for each
technology to construct the data set. The details of the data set are shown in “Appendix 2”.

In “Appendix 3”, patent feature descriptive statistics are reported. The results of the
descriptive statistics showed that different patent features have different distributions, and
the same patent features between ET and NET samples also had different distributions. In
“Appendix 47, from the results of Pearson correlation analysis, Number of IPC had sig-
nificant positive correlations with Number of claims and Family patent size. These three
features were used to represent the scope and coverage of the patent, and the correlation

Table 3 Results of ET samples

Name of technology Year Name of technology Year
5G 2017 Consumer telematics 2012
Cognitive computing 2017 Hybrid cloud computing 2012
Deep learning 2017 Big data 2011
Digital twin 2017 Group buying 2011
Edge computing 2017 Image_Content recognition 2011
Deep reinforcement learning 2017 NFC payments 2011
4D printing 2016 QR_Color code 2011
802.11ax 2016 10T 2011
Blockchain 2016 Social TV 2011
Neuromorphic hardware 2016 Activity streams 2010
Nanotube electronics 2016 Autonomous vehicles 2010
Digital dexterity 2015 Broadband over power lines 2010
Machine learning 2015 Consumer generated media 2010
Micro data centers 2015 Media tablets 2010
10T platforms 2015 Tangible user interfaces 2010
Data science 2014 Terahertz waves 2010
Digital security 2014 Interactive TV 2010
Connected home 2014 Virtual assistants 2010
Affective computing 2013 Ebook readers 2009
Biochips 2013 Home health monitoring 2009
Electrovibration 2013 Human augmentation 2009
Mobile health monitoring 2013 Video search 2009
Virtual reality 2013 Wireless power 2009
3D scanners 2012 Internet TV 2009
Application stores 2012 Cloud computing 2008
Complex event processing 2012 Solid state drives 2008
Crowdsourcing 2012 Surface computers 2008
HTMLS 2012 Green IT 2008
Volumetric and holographic displays 2012
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Table 4 Results of NET samples

Name of technology Year Name of technology Year
802.11ax 2017 Crowdsourcing 2013
Micro data centers 2017 Home health monitoring 2013
3D bioprinting 2016 HTMLS 2013
Affective computing 2016 Image_Content recognition 2013
Biochips 2016 Internet TV 2013
Cryptocurrencies 2016 Media tablets 2013
Digital security 2016 Private cloud computing 2013
Hybrid cloud computing 2016 Social analytics 2013
10T 2016 Wireless power 2013
3D scanners 2015 Ebook readers 2012
Activity streams 2015 Group buying 2012
Big data 2015 QR_Color code 2012
Cloud computing 2015 Social TV 2012
Complex event processing 2015 3D flat panel displays 2011
Data science 2015 Broadband over power lines 2011
Gamification 2015 Consumer generated media 2011
In memory analytics 2015 Interactive TV 2011
Machine to machine comm. services 2015 Microblogging 2011
Mobile health monitoring 2015 Terahertz waves 2011
NFC payments 2015 Video search 2011
Prescriptive analytics 2015 Green IT 2010
Predictive analytics 2014 IP Video_Internet video 2010
Application stores 2013 Surface computers 2010
BYOD 2013 Solid state drives 2009

analysis results were consistent with previous literature studies. Furthermore, we found that
Number of claims had significant positive correlations with Backward citations, Number
of non-patent citations, and Forward citations have significant positive correlations with
Backward citations, Number of non-patent citations, Number of claims. Although the fea-
tures to capture emerging technologies in previous research were divided into five different
sub-categories. The correlation analysis results showed that the sub-categories were not
completely independent and had certain correlations. However, there were no strong cor-
relations between the different sub-categories, with the correlation coefficients not exceed-
ing 0.6. Since the multi-layer nonlinear structure of deep learning does not require strict
independence of features (Valmadre et al. 2017), we assumed that the correlations between
the selected features would not have a significant impact on the performance of the deep
learning.

According to the data augmentation method, we first use the ET and NET samples in
the training set to train the corresponding GAN and then used the trained GAN to generate
synthetic samples. The GAN consisted of two deep-architecture functions for the genera-
tor and the discriminator, as many hyperparameters could influence the performance of a
GAN. The number of layers in the generator and discriminator was a fundamental hyperpa-
rameter. Too few layers would hinder the ability of the network to build a representation at
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a level of abstraction to adequately capture the data complexity, and too many layers would
complicate the training substantially and likely result in overfitting (Fiore et al. 2019). As
a reasonable tradeoff, networks with two and three hidden layers were tested in the genera-
tor and discriminator. The optimal parameter was determined by the convergence value of
the loss function of the generator and discriminator. Since training and tuning a GAN is an
expensive operation, we conducted a limited number of experiments, in which 4, 8, 12, 16,
and 32 nodes with two and three layers were tested. Through a series of experiments on
the GAN, the best-performing hyperparameters were determined. The generator had two
hidden layers containing four ReLU units, seven softmax units are used as the output layer,
and the dimension of the noise vector z was set to four. The discriminator also had two
hidden layers containing four ReLU units, and one no-activation-function unit was used as
the output layer. The ET and NET GAN had the same hyperparameters. In each iteration of
the GAN training, the discriminator first iterated 100 times, and then the generator iterated
once. The GAN development environment was TensorFlow 1.1 with Python 3.5.2, and it
was trained through a GPU.

After the synthetic samples were generated, they were used to train the DNN classifier.
The DNN classifier was subsequently tested using the test set samples. Hyperparameters
for the DNN classifier were empirically determined using a similar procedure as that used
to determine the hyperparameters of the GAN. We also conducted a limited number of
experiments, in which 4, 8, 12, 16, and 32 nodes with two and three hidden layers were
tested. The optimal parameter was determined by the accuracy, F1, and G-mean. Through
a series of experiments on the DNN classifier, the best-performing hyperparameters of the
DNN classifier were determined. The classifier had two hidden layers, each containing 32
ReLU units. Two softmax units were used as the output layer, the dimension of the clas-
sifier’s input was seven, and cross entropy was used as the loss function. The number of
iterations was set to 3000. The DNN classifier’s development environment was TensorFlow
1.1 with Python 3.5.2, and it was trained through GPU.

Existing studies on data augmentation have shown that the number of synthetic samples
significantly affects the performance of supervised learning models (Natten 2017; Fiore
et al. 2019). To evaluate the effect of the synthetic training ET and NET sample size on
the performance of the DNN classifier, we used a different number of synthetic ET and
NET samples to train the DNN classifier and used test samples to evaluate the performance
through the accuracy, F1, and G-mean. From 100 synthetic training samples of each class,
more than 100 synthetic samples were generated each time to train the DNN classifier, and
the changes in the accuracy, F1, and G-mean are shown in Fig. 4. When the number of
ET and NET synthetic samples exceeded 1000, the accuracy, F1, and G-mean no longer
increased but fluctuated within a certain range. In other words, when the synthetic ET and
NET training sample size was 1000, the performance of the GAN began to converge, and
an effective DNN classifier for forecasting ETs could be obtained.

Table 5 shows the forecasted results for the DNN classifier on the test set data when the
number of synthetic ET and NET samples generated by the GAN was 1000. A total of 14
ETs and four technologies were identified as NETs with a precision of 71%. There was a
total of 17 NETs, and three technologies were identified as ETs with a precision of 82%.
There were seven technologies wrongly forecasted in the test set data, indicating that the
forecast model could forecast ETs with an accuracy of 77% 1 year before their emergence.
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Fig. 4 Effect of synthetic training sample size on DNN classifier performance
Table 5 C(_)nfusion matrix Prediction Total
of forecasting emerging
technologies ET NET
ET 10 4 14
NET 3 14 17
Total 13 18 31
Table~ 6 P.erformanc§: of different /0 Accuracy Fl G-mean
classification strategies
SVM 0.6522 0.4286 0.5477
NB 0.6957 0.3636 0.4830
RF 0.5652 0.3750 0.4804
GAN-DNN 0.7742 0.7407 0.7670

Evaluation of proposed approach

To evaluate the effectiveness of the proposed method, we used statistical supervised learn-
ing classifiers, SVM, NB, and RF, for comparison experiments. As classic supervised
learning classifiers, SVM, NB, and RF exhibit higher classification accuracies and better
general performances than other statistical supervised learning classifiers. The results of
the comparative experiments in the two categories of ET and NET are shown in Table 6.

Table 6 shows that for the same data set, the accuracy, F1, and G-mean of the SVM,
NB, and RF supervised learning classifiers were lower than those of our proposed GAN-
DNN. The comparison of the evaluation indicators shows that the forecasting quality of the
classical supervised learning classifiers was lower than that of the combined GAN-based
data augmentation and DNN-based forecasting model proposed in this study. The results
of the comparative experiments showed that our approach enabled us to obtain an effective
forecasting model based on the GAN and DNN classifier without large-scale ET and NET
samples.
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Validation of forecasting model

To validate the forecasting effect of the proposed method in a real environment, the model
must be trained based on the current data and forecast whether technology will become an
emerging technology in the future. Therefore, we applied the method to the available data
in 2016 to make predictions for 2017 and validated the forecasting effect based on the real
data for 2017. According to the ET and NET sample labeling method in “Labeling ET and
NET samples” section, whether technology will become an ET or NET in the next year is
measured by whether the technology will enter the GETHC for the first time or disappear
from the curve in the next year.

In this paper, we utilize the historical data from 2000 to 2016 to train forecasting model
to forecast whether technology will become an emerging technology in 2017, and utilize
the forecasting results of 2017 to validate the forecasting effect. Firstly, all the ET and
NET samples from 2000 to 2017 were labeled from the GETHC according to the proposed
method. Next, the patent feature vector corresponding to the ET and NET samples from
2000 to 2016 were adopted to train the forecasting model. The ET and NET samples from
2017 were not used in the training. Finally, the forecasting effect of the forecasting model
was validated with the ET and NET samples labeled in 2017 from GETHC. The model
parameters of the GAN and DNN classifier were consistent with those in “Analysis result
of the proposed approach” section and the number of synthetic ET and NET samples was
also 1000.

For 2017, six ET samples and two NET samples were labeled from the GETHC. The
6 ETs were 5G, deep learning, edge computing, cognitive computing, digital twin, and
deep reinforcement learning. The two NETs were 802.11ax and micro data centers. 5G
and cognitive computing were incorrectly forecasted, and the other four ETs were correctly
forecasted by the proposed method. The forecasting results for the ET samples in 2017
showed that our method based on GAN and DNN could forecast emerging technologies
1 year before they emerged with high precision and few samples.

Conclusions

A novel approach for forecasting emerging technologies using data augmentation and deep
learning was proposed in this study. The essence of this proposed approach was to inte-
grate data augmentation (GAN) and deep learning, which enabled deep learning to effec-
tively forecast emerging technology with limited training samples. Specifically, this paper
constructed a sample data set of emerging technologies from the GETHC and TI patent
database, and subsequently used a GAN to augment the sample data set and construct a
forecasting model based on DNN classifiers. The test results showed that the forecasting
accuracy reached 77% when the synthetic sample size was 1000. Finally, this approach was
used to forecast technology in 2017. Four of the six emerging technologies were correctly
forecasted. This verified that the model could, given limited samples, forecast emerging
technologies 1 year before they emerged with high precision.

The contributions of this research are twofold. First, this study contributes to tech-
nology forecasting literature by proposing a novel approach that advances the basic
deep learning method for forecasting emerging technology. In previous research, large-
scale labeled sample data was required to fully optimize the parameters of the deep
learning model and obtain a superior performance compared with the other traditional
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supervised learning methods. Our proposed approach utilized a GAN to overcome the
problem of lacking training samples, and the integrated new model was proven to be
effective, even without large training samples in the patents. Second, from a practical
perspective, the proposed approach is more effective than previous unsupervised meth-
ods when embedding external knowledge into the forecasting model through deep learn-
ing classifier. After a forecasting-model-based deep learning classifier was constructed,
we can obtain the forecasting results effectively on a real-time basis without requiring
extra work for experts’ interpretation, which is usually less-efficient and may lead to
significant biases in technology forecasting.

The main objective of this paper was to use a GAN to overcome the problem of lack-
ing training samples. Thus, we selected patent features that were simple and directly
verified the effectiveness of the proposed method. In this study, the patent features
we explored were all external features that had better consistency in theory, and they
were selected through a review of prior literature. The empirical results showed that
all these patent features had strong correlations with emerging technologies. Compared
to the external features used in this paper, internal semantic patent features based on
text mining and semantic analysis may elicit patent information more deeply and com-
prehensively. However, this requires more complex methods and would increase the
uncertainty of the method in the feature extraction stage, creating difficulties for the ver-
ification of the effectiveness of the proposed method. Thus, in this study, we chose not
to consider internal semantic patent features; however, it would be valuable to explore
this concept in future research.
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Appendix 1

See Table 7.

@ Springer


http://creativecommons.org/licenses/by/4.0/

Scientometrics (2020) 123:1-29 19

Table 7 Gartner’s emerging technology hype cycles from 2008 to 2017
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Appendix 3

See Tables 10 and 11.

Table 10 Patent feature descriptive statistics of ET samples

Features Obs Min Max Mean SD
Backward citations 57 0.000 111.895 15.77604 16.491800
Number of non-patent citations 57 2.226 16.897 5.51818 2.339450
Number of claims 57 0.000 25.333 3.43393 4734364
TCT 57 8.100 36.000 16.42658 5.299484
Forward citations 57 1.333 4.896 2.63484 0.804564
Family patent size 57 1.694 10.000 3.89932 1.343552
Average number of IPC 57 0.600 79.818 12.85679 12.783264
Table 11 Patent feature descriptive statistics of NET samples

Features Obs Min Max Mean SD
Backward citations 48 0.000 88.500 10.00777 15.384141
Number of non-patent citations 48 2.073 9.054 5.34958 1.503196
Number of claims 48 0.167 10.468 2.89525 2.521401
TCT 48 7.364 23.292 15.80260 3.846595
Forward citations 48 1.000 14.000 3.16550 1.942798
Family patent size 48 1.625 17.000 4.22538 2.604960
Average number of IPC 46 2.864 79.556 13.56674 13.625225
Appendix 4

See Table 12.
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