Skip to main content
Log in

Diversity of temporal influence in popularity prediction of scientific publications

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

Predicting the future influential papers is a challenging issue witch has attracted many attentions. In this paper, we focused on the temporal information of citations to study the popularity prediction problem from the perspective of citation dynamics. The experimental study of the APS citation data shows that the temporal decay rate of the influence of citations is decay with paper’s age, and the decay rate is a power-law distribution. We introduced the diversity of temporal decay rate of the influence of citations to predict the future popularity of papers, and proposed a diverse temporal decay method. The result shows that this method can improve the prediction accuracy compared with other popularity-based prediction methods. More importantly, this method can detect some of the newly published papers that haven’t accumulated many citations but will quickly become popular in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. http://journals.aps.org/datasets.

References

  • Bianconi, G., & Barabási, A. L. (2001). Competition and multiscaling in evolving networks. EPL (Europhysics Letters), 54(4), 436.

    Article  Google Scholar 

  • Caldarelli, G., Capocci, A., De Los, R. P., et al. (2002). Scale-free networks from varying vertex intrinsic fitness. Physical Review Letters, 89(25), 258702.

    Article  Google Scholar 

  • Fortunato, S., Bergstrom, C. T., Börner, K., et al. (2018). Science of science. Science, 359(6379), eaao0185.

    Article  Google Scholar 

  • Garfield, E. (2006). The history and meaning of the journal impact factor. JAMA, 295(1), 90–93.

    Article  Google Scholar 

  • Gleeson, J. P., Cellai, D., Onnela, J. P., et al. (2014). A simple generative model of collective online behavior. Proceedings of the National Academy of Sciences, 111(29), 10411–10415.

    Article  Google Scholar 

  • Hirsch, J. E. (2005). An index to quantify an individual’s scientific research output. Proceedings of the National Academy of Sciences, 102(46), 16569–16572.

    Article  Google Scholar 

  • Kendall, M. G. (1938). A new measure of rank correlation. Biometrika, 30(1/2), 81–93.

    Article  Google Scholar 

  • Liao, H., Mariani, M. S., Medo, M., et al. (2017). Ranking in evolving complex networks. Physics Reports, 689, 1–54.

    Article  MathSciNet  Google Scholar 

  • Li, S. N., Guo, Q., Yang, K., et al. (2018). Uncovering the popularity mechanisms for Facebook applications. Physica A: Statistical Mechanics and Its Applications, 494, 422–429.

    Article  Google Scholar 

  • Lü, L., Chen, D., Ren, X. L., et al. (2016). Vital nodes identification in complex networks. Physics Reports, 650, 1–63.

    Article  MathSciNet  Google Scholar 

  • Medo, M., Cimini, G., & Gualdi, S. (2011). Temporal effects in the growth of networks. Physical Review Letters, 107(23), 238701.

    Article  Google Scholar 

  • Mingers, J., & Leydesdorff, L. (2015). A review of theory and practice in scientometrics. European Journal of Operational Research, 246(1), 1–19.

    Article  Google Scholar 

  • Newman, M. E. J. (2009). The first-mover advantage in scientific publication. EPL (Europhysics Letters), 86(6), 68001.

    Article  Google Scholar 

  • Newman, M. E. J. (2014). Prediction of highly cited papers. EPL (Europhysics Letters), 105(2), 28002.

    Article  Google Scholar 

  • Parolo, P. D. B., Pan, R. K., Ghosh, R., et al. (2015). Attention decay in science. Journal of Informetrics, 9(4), 734–745.

    Article  Google Scholar 

  • Price, D. S. (1976). A general theory of bibliometric and other cumulative advantage processes. Journal of the American Society for Information Science, 27(5), 292–306.

    Article  Google Scholar 

  • Waltman, L. (2016). A review of the literature on citation impact indicators. Journal of Informetrics, 10(2), 365–391.

    Article  Google Scholar 

  • Wang, D., Song, C., & Barabási, A. L. (2013). Quantifying long-term scientific impact. Science, 342(6154), 127–132.

    Article  Google Scholar 

  • Zeng, A., Gualdi, S., Medo, M., et al. (2013). Trend prediction in temporal bipartite networks: the case of Movielens, Netflix, and Digg. Advances in Complex Systems, 16(04n05), 1350024.

    Article  MathSciNet  Google Scholar 

  • Zhou, Y., Zeng, A., & Wang, W. H. (2015). Temporal effects in trend prediction: identifying the most popular nodes in the future. PLoS ONE, 10(3), e0120735.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Nature Science Foundation of China under Grants 61603340, 61402413 and Grant 61340058, and in part by the National Nature Science Foundation of Zhejiang Province under Grants LY14F020019 and LZ14F020001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Cheng, H., Li, Q. et al. Diversity of temporal influence in popularity prediction of scientific publications. Scientometrics 123, 383–392 (2020). https://doi.org/10.1007/s11192-020-03354-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-020-03354-3

Keywords

Navigation