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Abstract
In this paper, we present the outer product decomposition of a product of compatible

linked networks. It provides a foundation for the fractional approach in network analysis.
We discuss the standard and Newman’s normalization of networks. We propose some al-
ternatives for fractional bibliographic coupling measures.
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1 Introduction
The fractional approach was proposed by Lindsey (1980). For example in the analysis of coau-
thorship the contributions of all coauthors to a work has to add to 1. Usually the contribution is
then estimated as 1 divided by the number of coauthors. An alternative rule, Newman’s normal-
ization, was given in Newman (2001) and Newman (2004) which excludes the selfcollaboration.
Recently several papers (Batagelj and Cerinšek, 2013; Cerinšek and Batagelj, 2015; Perianes-
Rodriguez et al., 2016; Prathap and Mukherjee, 2016; Leydesdorff and Park, 2017; Gauffriau,
2017) reconsidered the background of the fractional approach. The details are presented and
discussed in Subsection 6.2. In this paper we propose a theoretical framework based on the outer
product decomposition to get the insight into the structure of bibliographic networks obtained
with network multiplication.
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2 Linked networks
Linked or multi-modal networks are collections of networks over at least two sets of nodes
(modes) and consist of some one-mode networks and some two-mode networks linking dif-
ferent modes. For example: modes are Persons and Organizations. Two one-mode networks
describe collaboration among Persons and among Organizations. The linking two-mode net-
work describes membership of Persons to different Organizations.

Linked networks are the basis of the MetaMatrix approach developed by Krackhardt and
Carley (Krackhardt and Carley, 1998; Carley, 2003). For an example see the Table 3 in Diesner
and Carley (2004, p. 89).

Another example of linked networks are bibliographic networks. From special bibliogra-
phies (BibTEX) and bibliographic services (Web of Science, Scopus, SICRIS, CiteSeer, Zen-
tralblatt MATH, Google Scholar, DBLP Bibliography, US patent office, IMDb, and others)
we can construct some two-mode networks on selected topics: authorship on works × authors
(WA), keywordship on works × keywords (WK), journalship on works × journals/publishers
(WJ), and from some data also the classification network on works × classification (WC) and
the one-mode citation network on works × works (Ci); where works include papers, reports,
books, patents, movies, etc. Besides this we get also the partition of works by the publication
year, and the vector of number of pages (WoS, 2018; Batagelj, 2007).

An important tool in analysis of linked networks is the use of derived networks obtained by
network multiplication.

3 Network multiplication
Given a pair of compatible two-mode networksNA = (I,K,AA, wA) andNB = (K,J ,AB, wB)
with corresponding matrices AI×K and BK×J we call a product of networksNA andNB a net-
work NC = (I,J ,AC , wC), where AC = {(i, j) : i ∈ I, j ∈ J , ci,j 6= 0} and wC(i, j) = ci,j
for (i, j) ∈ AC . The product matrix C = [ci,j]I×J = A ·B is defined in the standard way

ci,j =
∑
k∈K

ai,k · bk,j

In the case when I = K = J we are dealing with ordinary one-mode networks (with square
matrices).

In the following we will often identify networks by their matrices.
In the paper Batagelj and Cerinšek (2013) it is shown that ci,j is equal to the value of all two

step paths from i ∈ I to j ∈ J passing through K. In a special case, if all weights in networks
NA and NB are equal to 1 the value of ci,j counts the number of ways we can go from i ∈ I to
j ∈ J passing through K: ci,j = |NA(i) ∩N−B (j)|; where NA(i) is the set of nodes in K linked
by arcs from node i in the network NA, and N−B (j) is the set of nodes in K linked by arcs to
node j in the network NB.

The standard matrix multiplication has the complexity O(|I| · |K| · |J |) – it is too slow to
be used for large networks. For sparse large networks we can multiply much faster considering
only nonzero elements.

2

http://www.math.utah.edu/~beebe/
http://thomsonreuters.com/products_services/science/science_products/a-z/web_of_science/
http://www.scopus.com/home.url
http://sicris.izum.si/default.aspx?lang=eng
http://citeseer.ist.psu.edu/
http://www.zentralblatt-math.org/zmath/
http://www.zentralblatt-math.org/zmath/
http://scholar.google.com/schhp?hl=en
http://www.informatik.uni-trier.de/~ley/db/
http://www.uspto.gov/
http://www.imdb.com/interfaces


a1

a2

a3

a4

w1

w2

w3

w4

w5

k1

k2

k3

k4

Pajek

Figure 1: WAT ·WK

for k in K do
for (i, j) in N−A (k)×NB(k) do

if ∃ci,j then ci,j := ci,j + ai,k · bk,j
else new ci,j := ai,k · bk,j

In general the multiplication of large sparse networks is a ’dangerous’ operation since the
result can ’explode’ – it is not sparse. If for the sparse networksNA andNB there are in K only
few nodes with large degree and no one among them with large degree in both networks then
also the resulting product network NC is sparse.

From the network multiplication algorithm we see that each intermediate node k ∈ K adds
to a product network a complete two-mode subgraph KN−A (k),NB(k) (or, in the case B = AT ,
where AT is the transposition of A, a complete subgraph KN(k)). If both degrees degA(k) =
|N−A (k)| and degB(k) = |NB(k)| are large then already the computation of this complete sub-
graph has a quadratic (time and space) complexity – the result ’explodes’. For details see the
paper Batagelj and Cerinšek (2013).

4 Outer product decomposition
For vectors x = [x1, x2, . . . , xn] and y = [y1, y2, . . . , ym] their outer product x ◦ y is defined as
a matrix

x ◦ y = [xi · yj]n×m
then we can express the previous observation about the structure of product network as the outer
product decomposition

C = A ·B =
∑
k

Hk where Hk = A[k, ·] ◦B[k, ·]

For binary (weights) networks we have Hk = KN−A (k),NB(k).
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Example A: As an example let us take the binary network matrices WA and WK:

WA =



a1 a2 a3 a4

w1 1 0 1 0
w2 1 1 0 0
w3 1 0 1 1
w4 0 1 0 1
w5 1 0 1 1

, WK =



k1 k2 k3 k4

w1 1 1 0 0
w2 1 0 1 0
w3 0 1 1 1
w4 0 0 1 0
w5 0 1 0 1


and compute the product H = WAT ·WK. We get a network matrix H which can be decom-
posed as


H k1 k2 k3 k4

a1 2 3 2 2
a2 1 0 2 0
a3 1 3 1 2
a4 0 2 2 2

 =


H1 k1 k2 k3 k4

a1 1 1 0 0
a2 0 0 0 0
a3 1 1 0 0
a4 0 0 0 0

+


H2 k1 k2 k3 k4

a1 1 0 1 0
a2 1 0 1 0
a3 0 0 0 0
a4 0 0 0 0

+


H3 k1 k2 k3 k4

a1 0 1 1 1
a2 0 0 0 0
a3 0 1 1 1
a4 0 1 1 1

+


H4 k1 k2 k3 k4

a1 0 0 0 0
a2 0 0 1 0
a3 0 0 0 0
a4 0 0 1 0

+


H5 k1 k2 k3 k4

a1 0 1 0 1
a2 0 0 0 0
a3 0 1 0 1
a4 0 1 0 1


5 Derived networks
We can use the multiplication to obtain new networks from existing compatible two-mode net-
works. For example, from basic bibliographic networks WA and WK we get

AK = WAT ·WK

a network relating authors to keywords used in their works, and

Ca = WAT ·Ci ·WA

is a network of citations between authors.
Networks obtained from existing networks using some operations are called derived net-

works. They are very important in analysis of collections of linked networks.
What is the meaning of the product network? In general we could consider weights, addition

and multiplication over a selected semiring (Cerinšek and Batagelj, 2017). In this paper we will
limit our attention to the traditional addition and multiplication of real numbers.

The weight AK[a, k] is equal to the number of times the author a used the keyword k in
his/her works.

The weight Ca[a, b] counts the number of times a work authored by the author a is citing a
work authored by the author b; or shorter, how many times the author a cited the author b.
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Using network multiplication we can also transform a given two-mode network, for example
WA, into corresponding ordinary one-mode networks (projections)

WW = WA ·WAT and AA = WAT ·WA

The obtained projections can be analyzed using standard network analysis methods. This is a
traditional recipe how to analyze two-mode networks. Often the weights are not considered in
the analysis; and when they are considered we have to be very careful about their meaning.

The weight WW[p, q] is equal to the number of common authors of works p and q.
The weight AA[a, b] is equal to the number of works that author a and b coauthored. In a

special case when a = b it is equal to the number of works that the author a wrote. The network
AA is describing the coauthorship (collaboration) between authors and is also denoted as Co
– the “first” coauthorship network.

In the paper Batagelj and Cerinšek (2013) it was shown that there can be problems with the
network Co when we try to use it for identifying the most collaborative authors. By the outer
product decomposition the coauthorship network Co is composed of complete subgraphs on
the set of work’s coauthors. Works with many authors produce large complete subgraphs, thus
bluring the collaboration structure, and are over-represented by its total weight. To see this, let
Sx =

∑
i xi and Sy =

∑
j yj then the contribution of the outer product x ◦ y is equal

T =
∑
i,j

(x ◦ y)ij =
∑
i

∑
j

xi · yj =
∑
i

xi ·
∑
j

yj = Sx · Sy

In general each term Hw in the outer product decomposition of the product C has different
total weight T (Hw) =

∑
a,k(Hw)ak leading to over-representation of works with large values.

In the case of coautorship network Co we have S(WA[w, .]) = outdegWA(w) and therefore
T (Hw) = outdegWA(w)

2. To resolve the problem we apply the fractional approach.

6 Fractional approach
To make the contributions of all works equal we can apply the fractional approach by normal-
izing the weights: setting x′ = x/Sx and y′ = y/Sy we get Sx′ = Sy′ = 1 and therefore
T (H′w) = 1 for all works w.

In the case of two-mode networks WA and WK we denote

SWA
w =

{∑
a WA[w, a] outdegWA(w) > 0

1 outdegWA(w) = 0

(and similarly SWK
w ) and define the normalized matrices

WAn = diag(
1

SWA
w

) ·WA, WKn = diag(
1

SWK
w

) ·WK

In real life networks WA (or WK) it can happen that some work has no author. In such a case
SWA
w =

∑
a WA[w, a] = 0 which makes problems in the definition of the normalized network

WAn. We can bypass the problem by setting SWA
w = 1, as we did in the above definition.
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Then the normalized product matrix is

AKt = WAnT ·WKn

Denoting Fw =
1

SWA
w SWK

w

Hw the outer product decomposition gets form

AKt =
∑
w

Fw

Since

T (Fw) =

{
1 (outdegWA(w) > 0) ∧ (outdegWK(w) > 0)

0 otherwise

we have further ∑
a,k

F[a, k] =
∑
a,k

∑
w

Fw[a, k] =
∑
w

T (Fw) = |W+|

where W+ = {w ∈ W : (outdegWA(w) > 0) ∧ (outdegWK(w) > 0)}.
In the network AKt the contribution of each work to the bibliography is 1. These contribu-

tions are redistributed to arcs from authors to keywords.

Example B: For matrices from Example A we get the corresponding diagonal normalization
matrices

diag(
1

SWA
w

) =



w1 w2 w3 w4 w5

w1 1/2 0 0 0 0
w2 0 1/2 0 0 0
w3 0 0 1/3 0 0
w4 0 0 0 1/2 0
w5 0 0 0 0 1/3



diag(
1

SWK
w

) =



w1 w2 w3 w4 w5

w1 1/2 0 0 0 0
w2 0 1/2 0 0 0
w3 0 0 1/3 0 0
w4 0 0 0 1 0
w5 0 0 0 0 1/2


compute the normalized matrices

WAn =



a1 a2 a3 a4

w1 1/2 0 1/2 0
w2 1/2 1/2 0 0
w3 1/3 0 1/3 1/3
w4 0 1/2 0 1/2
w5 1/3 0 1/3 1/3

, WKn =



k1 k2 k3 k4

w1 1/2 1/2 0 0
w2 1/2 0 1/2 0
w3 0 1/3 1/3 1/3
w4 0 0 1 0
w5 0 1/2 0 1/2

,
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outer products such as

F1 =


k1 k2 k3 k4

a1 1/4 1/4 0 0
a2 0 0 0 0
a3 1/4 1/4 0 0
a4 0 0 0 0

 F5 =


k1 k2 k3 k4

a1 0 1/6 0 1/6
a2 0 0 0 0
a3 0 1/6 0 1/6
a4 0 1/6 0 1/6


and finally the product matrix

AKt = WAnT ·WKn =
5∑

w=1

Fw =


k1 k2 k3 k4

a1 0.50000 0.52778 0.36111 0.27778
a2 0.25000 0.00000 0.75000 0.00000
a3 0.25000 0.52778 0.11111 0.27778
a4 0.00000 0.27778 0.61111 0.27778


6.1 Linking through a network
Let a network S links works to works. The derived network WAT · S ·WA links authors to
authors through S. Again, the normalization question has to be addressed. Among different
options let us consider the derived networks defined as:

C = WAnT · S ·WAn

It is easy to verify that:

• if S is symmetric, ST = S, then also C is symmetric, CT = C;

CT = (WAnT · S ·WAn)T = WAnT · ST · (WAnT )T = C

• if W+ = {w ∈ W : outdegWA(w) > 0} = W , the total of weights of S is redistributed
in C:

T (C) =
∑

e∈L(C)

c(e) =
∑

e∈L(S)

s(e) = T (S)

Since
∑
a∈A

wa[p, a] = outdegWA(p) and wan[p, a] =

{
wa[p,a]

outdegWA(p)
outdegWA(p) > 0

0 otherwise
we get

T (C) =
∑

e∈L(C)

c(e) =
∑
a∈A

∑
b∈A

c[a, b] =
∑
a∈A

∑
b∈A

∑
p∈W

∑
q∈W

wan[p, a] · s[p, q] · wan[q, b] =

=
∑
p∈W+

∑
q∈W+

s[p, q]

outdegWA(p)outdegWA(q)

∑
a∈A

wa[p, a]
∑
b∈A

wa[q, b] =
∑
p∈W+

∑
q∈W+

s[p, q]

and finally, if W+ = W ∑
p∈W+

∑
q∈W+

s[p, q] =
∑

e∈L(S)

s(e) = T (S)

7



As special cases we get for normalized author’s citation networks with W+ = W : for
S = Ci ∑

a∈A

∑
b∈A

c[a, b] =
∑
p∈W

∑
q∈W

ci[p, q] = |Ci|

and for S = Cin∑
a∈A

∑
b∈A

c[a, b] =
∑
p∈W

∑
q∈W : outdegCi(q)>0

ci[p, q]

outdegCi(p)
=

∑
q∈W : outdegCi(q)>0

1 = W+
Ci

6.2 Some notes
A. Instead of computing the normalized network WAn from the network WA we could collect
the data about the real proportion wan[w, a] of the contribution of each author a to a work w
such that WAn is normalized: for every work w it holds∑

a∈A

wan[w, a] ∈ {0, 1}

Unfortunately in most cases such data are not available and we use the computed normalized
weights as their estimates. Most of the results do not depend on the way the normalized network
was obtained.

B. In general a given network matrix WA can be normalized in two ways: by rows, as used in
this section, and by columns

WAn′ = WA · diag(
1

SWA
a

) where SWA
a =

{∑
w WA[w, a] indegWA(a) > 0

1 indegWA(a) = 0

In the context of bibliographic networks its meaning does not make much sense.

C. The network Co is symmetric: coab = coba. We need to compute only half of values coab,
a ≤ b. The resulting network is undirected with weights coab.

D. In the paper Batagelj and Cerinšek (2013) the “second” coauthorship network Cn = WAT ·
WAn is considered. The weight cnab is equal to the contribution of an author a to works that
(s)he wrote together with the author b. Using these weights the selfsufficiency of an author a is
defined as:

Sa =
cnaa

indegWA(a)

and collaborativness of an author a as its complementary measure Ka = 1− Sa.
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E. In the “third” coauthorship network Cn = WAnT ·WAn the weight ctab is equal to the
total fractional contribution of ‘collaboration’ of authors a and b to works. Each work w with
SWA
w > 0 contributes 1 to the total of weights in Cn. This is the network to be used in analysis

of collaboration between authors (Batagelj and Cerinšek, 2013; Leydesdorff and Park, 2017;
Prathap and Mukherjee, 2016). To identify the most collaborative groups we can use methods
such as PS-cores and link islands (Batagelj et al., 2014).

The product Cn is symmetric. Note C applies. We transform it to the corresponding undi-
rected network – pairs of opposite arcs are replaced by an edge with doubled weight. In analyses
we usually analyze separately the vector of weights on loops (selfcontribution) and the network
Cn without loops.

F. An alternative normalization WAn′ of a binary autorship matrix WA was proposed in New-
man (2004)

wan′wa =
wawa

max(1, outdegWA(w)− 1)

in which only collaboration with coauthors is considered – no selfcollaboration. Note that using
the network construction proposed on page 5 of Newman (2001) we get a network in which
works with many coauthors are still over-represented. The same idea is used in the fractional
counting co-authorship matrix U∗ proposed in equation (5) in Perianes-Rodriguez et al. (2016).

To treat all works equally using the Newman’s normalization the “fourth” coauthorship
network was proposed in Cerinšek and Batagelj (2015). To compute it we first compute

Ct′ = WAnT ·WAn′

The weight ct′ab is equal to the total contribution of “strict collaboration” of authors a and
b to works. The obtained product is symmetric. Again note C applies. We transform it to the
corresponding undirected network – pairs of opposite arcs are replaced by an edge with doubled
weight. The loops are removed. The contribution of each work with at least two coauthors is
equal to 1. A kind of the outer product decomposition exists also for the network Ct′ with a
diagonal set to 0.

7 Bibliographic Coupling and Co-citation
Bibliographic coupling occurs when two works each cite a third work in their bibliographies,
see Figure 2, left. The idea was introduced by Kessler (1963) and has been used extensively
since then. See figure where two citing works, p and q, are shown. Work p cites five works
and q cites seven works. The key idea is that there are three works cited by both p and q. This
suggests some content communality for the three works cited by both p and q. Having more
works citing pairs of prior works increases the likelihood of them sharing content.

We assume that the citation relation means p Ci q ≡ work p cites work q. Then the biblio-
graphic coupling network biCo can be determined as

biCo = Ci ∗CiT

9



Figure 2: Bibliographic coupling (left) and Co-citation (right)

The weight bicopq is equal to the number of works cited by both works p and q; bicopq =
|Ci(p) ∩Ci(q)|. Bibliographic coupling weights are symmetric: bicopq = bicoqp:

biCoT = (Ci ·CiT )T = Ci ·CiT = biCo

Co-citation is a concept with strong parallels with bibliographic coupling (Small and Mar-
shakova 1973), see Figure 2, right. The focus is on the extent to which works are co-cited by
later works. The basic intuition is that the more earlier works are cited, the higher the likelihood
that they have common content. The co-citation network coCi can be determined as

coCi = CiT ·Ci.

The weight cocipq is equal to the number of works citing both works p and q. The network coCi
is symmetric cocipq = cociqp:

coCiT = (CiT ·Ci)T = CiT ·Ci = coCi

An important property of co-citation is that coCi(Ci) = biCo(CiT ):

biCo(CiT ) = CiT · (CiT )T = CiT ·Ci = coCi(Ci)

Therefore the constructions proposed for bibliographic coupling can be applied also for co-
citation.

What about normalizations? Searching for the most coupled works we have again problems
with works with many citations, especially with review papers. To neutralize their impact we
can introduce normalized measures. The fractional approach works fine for normalized co-
citation

CoCit = CinT ·Cin

where Cin = D ·Ci and D = diag( 1
max(1,outdeg(p))). D

T = D . In the normalized network every
work has value 1 and it is equally distributed to all cited works.

The fractional approach can not bi directly applied to bibliographic coupling – to get the
outer product decomposition work we would need to normalize Ci by columns – a cited work
has value 1 which is distributed equally to the citing works – the most cited works give the least.
This is against our intuition. To construct a reasonable measure we can proceed as follows. Let
us first look at

biC = Cin ·CiT

10



we have
biC = (D ·Ci) ·CiT = D · biCo

biCT = (D · biCo)T = biCoT ·DT = biCo ·D

For Ci(p) 6= ∅ and Ci(q) 6= ∅ it holds

biCpq =
|Ci(p) ∩Ci(q)|
|Ci(p)|

and biCqp =
|Ci(p) ∩Ci(q)|
|Ci(q)|

= biCT
pq

and biCpq ∈ [0, 1]. biCpq is the proportion of its references that the work p shares with the
work q. The network biC is not symmetric. We have different options to construct normalized
symmetric measures such as

biCoapq =
1

2
(biCpq + biCqp) Average

biCompq = min(biCpq,biCqp) Minimum

biCoMpq = max(biCpq,biCqp) Maximum

or, may be more interesting

biCogpq =
√

biCpq · biCqp =
|Ci(p) ∩Ci(q)|√
|Ci(p)| · |Ci(q)|

Geometric mean
Salton cosinus

biCohpq = 2 · (biC−1pq + biC−1qp )
−1 =

2|Ci(p) ∩Ci(q)|
|Ci(p)|+ |Ci(q)|

Harmonic mean

biCojpq = (biC−1pq + biC−1qp − 1)−1 =
|Ci(p) ∩Ci(q)|
|Ci(p) ∪Ci(q)|

Jaccard index

All these measures are similarities.
It is easy to verify that biCoXpq ∈ [0, 1] and: biCoXpq = 1 iff the works p and q are

referencing the same works, Ci(p) = Ci(q).

From m ≤ H ≤ G ≤ A ≤M and J ≤ m, ( |P∩Q||P∪Q| ≤ min( |P∩Q||P | , |P∩Q||Q| )) we get

biCojpq ≤ biCompq ≤ biCohpq ≤ biCogpq ≤ biCoapq ≤ biCoMpq

The equalities hold iff Ci(p) = Ci(q).
To get a dissimilarity we can use transformations dis = 1 − sim or dis = 1

sim
− 1 or

dis = − log sim. For example

biCodpq = 1− biCojpq =
|Ci(p)⊕Ci(q)|
|Ci(p) ∪Ci(q)|

Jaccard distance

where ⊕ denotes the symmetric difference of sets.
Bibliographic coupling and co-citation networks are linking works to works. To get linking

between authors, journals or keywords considering citation similarity we can apply the con-
struction from Subsection 6.1 to the normalized co-citation or bibliographic coupling network.
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8 Conclusions
In the paper we presented an attempt to provide a foundation of fractional approach to biblimet-
ric networks based on the outer product decomposition of product networks. We also discussed
the fractional approach to bibliographic coupling and co-citation networks. The results of appli-
cation of the proposed methods to real bibliographic data will be presented in separate papers.

All described computations can be done efficiently in program Pajek (De Nooy et al., 2018)
using macros such us: norm1 – normalized 1-mode network, norm2 – normalized 2-mode
network, norm2p – Newman’s normalization of a 2-mode network, biCo – bibliographic cou-
pling network, and biCon – normalized bibliographic coupling network, available at GitHub
(Batagelj, 2018).
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