Scientometrics (2020) 125:3017-3046
https://doi.org/10.1007/511192-020-03502-9

®

Check for
updates

Math-word embedding in math search and semantic
extraction

André Greiner-Petter'® - Abdou Youssef?3 - Terry Ruas’ - Bruce R. Miller® -
Moritz Schubotz'* - Akiko Aizawa” - Bela Gipp'

Published online: 9 June 2020
© The Author(s) 2020

Abstract

Word embedding, which represents individual words with semantically fixed-length vec-
tors, has made it possible to successfully apply deep learning to natural language process-
ing tasks such as semantic role-modeling, question answering, and machine translation.
As math text consists of natural text, as well as math expressions that similarly exhibit
linear correlation and contextual characteristics, word embedding techniques can also be
applied to math documents. However, while mathematics is a precise and accurate science,
it is usually expressed through imprecise and less accurate descriptions, contributing to the
relative dearth of machine learning applications for information retrieval in this domain.
Generally, mathematical documents communicate their knowledge with an ambiguous,
context-dependent, and non-formal language. Given recent advances in word embedding,
it is worthwhile to explore their use and effectiveness in math information retrieval tasks,
such as math language processing and semantic knowledge extraction. In this paper, we
explore math embedding by testing it on several different scenarios, namely, (1) math-term
similarity, (2) analogy, (3) numerical concept-modeling based on the centroid of the key-
words that characterize a concept, (4) math search using query expansions, and (5) seman-
tic extraction, i.e., extracting descriptive phrases for math expressions. Due to the lack of
benchmarks, our investigations were performed using the arXiv collection of STEM docu-
ments and carefully selected illustrations on the Digital Library of Mathematical Functions
(DLMF: NIST digital library of mathematical functions. Release 1.0.20 of 2018-09-1,
2018). Our results show that math embedding holds much promise for similarity, analogy,
and search tasks. However, we also observed the need for more robust math embedding
approaches. Moreover, we explore and discuss fundamental issues that we believe thwart
the progress in mathematical information retrieval in the direction of machine learning.

Keywords Mathematical information retrieval - Math search - Semantic extraction -
Machine learning - Word embedding - Math embedding

D4 André Greiner-Petter
greinerpetter @uni-wuppertal.de

Extended author information available on the last page of the article

@ Springer

http://orcid.org/0000-0002-5828-5497
http://crossmark.crossref.org/dialog/?doi=10.1007/s11192-020-03502-9&domain=pdf

3018 Scientometrics (2020) 125:3017-3046

Introduction

Mathematics is capable of explaining complicated concepts and relations in a compact,
precise, and accurate way. Learning this idiom takes time and is often difficult, even to
humans. The general applicability of mathematics allows a certain level of ambiguity in
its expressions. Short explanations or mathematical expressions are often used to miti-
gate the ambiguity problem, that serve as a context to the reader. Along with context-
dependency, inherent issues of linguistics (e.g., ambiguity, non-formality) make it even
more challenging for computers to understand mathematical expressions. Nevertheless,
a system capable of automatically capturing the semantics of mathematical expressions
would be suitable for improving several applications, from search engines to recommen-
dation systems.

Word embedding (Bengio et al. 2003; Mikolov et al. 2013a; Pennington et al. 2014)
has made it possible to apply deep learning in natural language processing (NLP) with
great effect. That is because embedding represents individual words with numerical vec-
tors that capture contextual and relational semantics of the words. Such representation
enables inputting words and sentences to a neural network (NN) in numerical form. This
allows the training of NNs and using them as predictive models for various NLP tasks
and applications, such as semantic role modeling (He et al. 2017; Zhou and Xu 2015),
word-sense disambiguation (Iacobacci et al. 2016; Raganato et al. 2017), sentence clas-
sification (Kim 2014), sentiment analysis (Socher et al. 2013), coreference resolution
(Lee et al. 2017; Wiseman et al. 2016), named entity recognition (Chiu and Nichols
2016), reading comprehension (Clark and Gardner 2018), question answering (Liu et al.
2018), natural language inference (Chen et al. 2017; Gong et al. 2018), document clas-
sification (Ruas et al. 2020), and machine translation (Devlin et al. 2014). The perfor-
mance of word embedding in NLP tasks has been measured and shown to deliver fairly
high accuracy (Mikolov et al. 2013b; Pennington et al. 2014; Peters et al. 2018).

As math text consists of natural text as well as math expressions that exhibit linear
and contextual correlation characteristics that are very similar to those of natural sen-
tences, word embedding applies to math text much as it does to natural text. Accord-
ingly, it is worthwhile to explore the use and effectiveness of word embedding in math
language processing (MLP), math knowledge management (MKM), and math informa-
tion retrieval (MathIR). Still, math expressions and math writing styles are different
from natural text to the point that NLP techniques have to undergo significant adapta-
tions and modifications to work well in math contexts.

While some efforts have started to apply word embedding to MLP, such as equation
embedding (Gao et al. 2017; Krstovski and Blei 2018; Yasunaga and Lafferty 2019;
Greiner-Petter et al. 2019; Youssef and Miller 2019), there is a healthy skepticism about
the use of machine learning (ML) and deep learning (DL) in MLP and MKM, on the basis
that much work is still required to prove the effectiveness of DL in MLP. To learn how to
adapt and apply DL in the MLP/MKM/MathIR context is not an easy task. Most applica-
tions of DL in MLP/MKM/MathlR rest on the effectiveness of word/math-term embedding
(henceforth math embedding) because the latter is the most basic foundation in language
DL. Therefore, it behooves us to start to look at the effectiveness of math embedding in
basic tasks, such as term similarity, analogy, information retrieval, and basic math search,
to learn more about their extension and limitations. More importantly, we need to learn
how to refine and evolve math embedding to become accurate enough for more severe
applications, such as knowledge extraction. That is the primary objective of this paper.

@ Springer

Scientometrics (2020) 125:3017-3046 3019

Working with MathMLBen (Schubotz et al. 2018), a benchmark for converting math-
ematical LaTeX expressions into MathML, we discovered several fundamental problems
that generally affect MLP/MKM/MathIR towards ML/DL solutions to learn semantics of
mathematical expressions. For instance, the first entry of the benchmark,

W2, k) > 2/ k¢ (1)

is extracted from the English Wikipedia page about Van der Waerden’s theorem.! With-
out further explanation, the symbols W, k, and € might have several possible meanings.
Depending on which one is considered, even the structure of the formula may be differ-
ent. If we consider W as a variable, instead of a function, it changes the interpretation of
W(2, k) to a multiplication operation. Learning connections, such as between W and the
entity ‘Van der Waerden’s number’, requires a large specifically labeled scientific database
that contains these mathematical objects.

To that effect, there is a fundamental need for datasets and benchmarks, preferably
standard ones, to allow researchers to measure the performance of various math embedding
techniques, and applications based on them, in an objective and statistically significant
way, and to measure improvements and comparative progress. Such resources are abundant
in the natural language domain but scarce in the MLP domain. Developing some of such
datasets and benchmarks will hopefully form the nucleus for further development by the
community to facilitate research and speed up progress in this vital area of research.

While the task of creating such resources for DL applications in MLP can be long and
demanding, the examination of math embedding should not wait but should proceed right
away, even if in an exploratory manner. Early evaluations of math embedding should ascer-
tain its value for MLP/MKM/MathIR and inform the process and trajectory of creating
the corpora and benchmarks. Admittedly, until adequate datasets and benchmarks become
available for MLP, we have to resort to less systematic performance evaluation and rely
on performing preliminary tests on the limited resources available. The DLMF (DLMF
2018) and arXiv.org preprint archive” are good resources to start our exploratory embed-
ding efforts. The DLMF offers high quality, and the authors are familiar with its structure
and content (which aids in crafting some of the tests). As for the arXiv collection, its large
volume of mostly math articles makes it an option worth to investigate as well.

In this paper, we provide an exploratory investigation of the effectiveness and use of
word embedding in MLP and MKM through different perspectives. First, we train word-
2vec models on the DLMF and arXiv with slightly different approaches for embedding
math. Since the DLMF is primarily a handbook of mathematical equations, it does not
provide extensive textual content. We will show that the DLMF trained model is appro-
priate to discover mathematical term similarities and term analogies, and to generate
query expansions. We hypothesize that the arXiv trained models are beneficial to extract
definiens, i.e., textual descriptive phrases for math terms. We examine the possible reasons
why the word embedding models, trained on the arXiv dataset, does not present valuable
results for this task. Besides, we discuss some of the reasons that we believe thwart the pro-
gress in MathlIR in the direction of machine learning. In summary, we focus on five tasks
(1) term similarity, (ii) math analogies, (iii) concept modeling, (iv) query expansion, and
(v) knowledge extraction.

! https://en.wikipedia.org/wiki/Van_der_Waerden’s_theorem [Accessed Sep. 2019].
2 https://arxiv.org/ [Accessed Sep. 2019].

@ Springer

https://en.wikipedia.org/wiki/Van_der_Waerden%e2%80%99s_theorem
https://arxiv.org/

3020 Scientometrics (2020) 125:3017-3046

The paper is organized as follows. Next section offers a survey of the foundations and
prior work related to word and math embedding. The "Mathematical Information Retrieval"
section presents our experiments on the DLMF trained model: term similarity, math analo-
gies, concept modeling, and query expansion. In the section "Semantic Knowledge Extrac-
tion" we explore the arXiv trained model for knowledge extraction of mathematical terms.
The "Overcoming Issues of Knowledge Extraction" section discusses potential concepts
we believe are necessary to overcome the limitations of ML and DL algorithms in MLP/
MKM/MathlIR tasks. Finally, the last section presents our conclusions and outlines future
directions.

Foundations and related work

Understanding mathematical expressions essentially mean comprehending the semantic
value of its internal components, which can be accomplished by linking its elements with
their corresponding mathematical definitions. Current MathIR approaches (Kristianto et al.
2014; Schubotz et al. 2016, 2017) try to extract textual descriptors of the parts that com-
pose mathematical equations. Intuitively, there are questions that arise from this scenario,
such as (i) how to determine the parts which have their own descriptors, and (ii) how to
identify correct descriptors over others.

Answers to (i) are more concerned in choosing the correct definitions for which parts
of a mathematical expression are considered as one mathematical object (Kohlhase 2017;
Youssef 2017; Schubotz et al. 2018). Current definition-languages, such as the con-
tent MathML 3.0° specification, are often imprecise.* For example, content MathML 3.0
uses ‘csymbol’ elements for functions and specifies them as expressions that refer to a
specific, mathematically-defined concept with an external definition.’ However, it is not
clear whether W or the sequence W(2, k) (from (1)) should be declared as a ‘csymbol’.
Another example involves content identifiers, which MathML specifies as mathematical
variables that have properties, but no fixed value.® While content identifiers are allowed to
have complex rendered structures (e.g., ﬂiz), it is not permitted to enclose identifiers within
other identifiers. Let us consider @;, where « is a vector and q; its ith element. In this case,
; should be considered as a composition of three content identifiers, each one carrying its
own individualized semantic information, namely the vector a, the element e; of the vector,
and the index i. However, with the current specification, the definition of these identifiers
would not be canonical. One possible workaround to represent such expressions with con-
tent MathML is to use a structure of four nodes, interpreting a; as a function via a ‘csym-
bol’ (one parent ‘apply’ node with the three children vector-selector, a, and i). However,
ML algorithms and MathIR approaches would benefit from more precise definitions and a
unified answer for (i). Most of the related work relies on these relatively vague definitions
and in the analysis of content identifiers, focusing their efforts on (ii).

3 https://www.w3.org/TR/MathML3/ [Accessed Sep. 2019].

4 Note that OpenMath is another specification designed to encode semantics of mathematics. However,
content MathML is an encoding of OpenMath and inherent problems of content MathML also apply to
OpenMath (see https://www.openmath.org/om-mml/) [Accessed Sep. 2019].

5 https://www.w3.org/TR/MathML3/chapter4.html#contm.csymbol [Accessed Sep. 2019].

® https://www.w3.org/TR/MathML3/chapter4.html#contm.ci [Accessed Sep. 2019].

@ Springer

https://www.w3.org/TR/MathML3/
https://www.openmath.org/om-mml/
https://www.w3.org/TR/MathML3/chapter4.html#contm.csymbol
https://www.w3.org/TR/MathML3/chapter4.html#contm.ci

Scientometrics (2020) 125:3017-3046 3021

Questions (i), (ii), and other pragmatic issues are already in discussion in a bigger con-
text, as data production continues to rise and digital repositories seem to be the future
for any archive structure. A prominent example is the National Research Council’s effort
to establish what they call the Digital Mathematics Library (DML),” a project under the
International Mathematical Union. The goal of this project is to take advantage of new
technologies and help to solve the inability to search, relate, and aggregate information
about mathematical expressions in documents over the web.

The advances most relevant to our work are the recent developments in word embedding
(Mikolov et al. 2013b; Cho et al. 2014; Pennington et al. 2014; Bojanowski et al. 2017,
Rudolph et al. 2017; Cer et al. 2018; Peters et al. 2018). Word embedding takes as input a
text collection and generates a numerical feature vector (typically with 100 or 300 dimen-
sions) for each word in the collection. This vector captures latent semantics of a word from
the contexts of its occurrences in the collection; in particular, words that often co-occur
nearby tend to have similar feature vectors (where similarity is measured by the cosine
similarity, the Euclidean distance, etc.).

Recently, more and more projects try to adapt these word embedding techniques to learn
patterns of the correlations between context and mathematics. In the work of Gao et al.
(2017), they embed single symbols and train a model that can discover similarities between
mathematical symbols. Similarly to this approach, Krstovski and Blei (2018) use a vari-
ation of word embedding (briefly discussed in the "Word Embedding" section) to repre-
sent complex mathematical expressions as single unit tokens for IR. In 2019, Yasunaga
and Lafferty (2019) explore an embedding technique based on recurrent neural networks to
improve topic models by considering mathematical expressions. They state their approach
outperforms topic models that do not consider mathematics in text and report a topic
coherence improvement of 0.012 over the LDAS3 baseline. Equation embedding, as in Gao
et al. (2017); Krstovski and Blei (2018); Yasunaga and Lafferty (2019), present promising
results for identifying similar equations and contextual descriptive keywords.

In the following, we will explore in more detail different techniques of word embedding
("Word Embedding" section). Likewise, we will examine different styles of adapting the
process for math embedding ("Math Embedding" section).

Word embedding

In this paper, we apply word2vec (Mikolov et al. 2013b) on the DLMF (DLMF 2018) and
on the collection of arXiv.org pre-print archive’ documents for generating embedding vec-
tors for various math symbols and terms. The word2vec technique computes real-valued
vectors for words in a document using two main approaches: skip-gram and continuous
bag-of-words (CBOW). Both produce a fixed-length n-dimensional vector representation
for each word in a corpus. In the skip-gram training model, one tries to predict the context
of a given the word, while CBOW predicts a target word given its context. In word2vec,
context is defined as the adjacent neighboring words in a defined range, called a sliding
window. The main idea is that the numerical vectors representing similar words should

7 https://www.nap.edu/read/18619 [Accessed Sep. 2019].
8 Latent Dirichlet Allocation.
® https://arxiv.org/ [Accessed Sep. 2019].

@ Springer

https://www.nap.edu/read/18619
https://arxiv.org/

3022 Scientometrics (2020) 125:3017-3046

have close values if the words have similar context, often illustrated by the king—queen
relationship

~V, -V

Vking ~ Viman queen woman 2)

where v, represents the vector for the token z.

Extending word2vec’s approaches, Le and Mikolov (2014) propose Paragraph Vec-
tors (PV), a framework that learns continuous distributed vector representations for any
size of text segments (e.g., sentences, paragraphs, documents). This technique alleviates
the inability of word2vec to embed documents as one single entity. This technique also
comes in two distinct variations: Distributed Memory (DM) and Distributed Bag-of-Words
(DBOW), which are analogous to the skip-gram and CBOW training models, respectively.

Other approaches also produce word embedding given a training corpus as input, such
as fastText (Bojanowski et al. 2017), ELMo (Peters et al. 2018), and GloVe (Pennington
et al. 2014). The choice for word2vec for our experiments is justified because of its imple-
mentation ease, training speed using modest computing resources, general applicability,
and robustness in several NLP tasks (Iacobacci et al. 2015, 2016; Li and Jurafsky 2015;
Mancini et al. 2017; Pilehvar and Collier 2016; Ruas et al. 2019). Additionally, in fast-
Text they propose to learn word representations as a sum of the n-grams of its constituent
characters (sub-words). The sub-word structure would incorporate a certain noise'? to our
experiments. In ELMo, they compute their word vectors as the average of their charac-
ters representations, which are obtained through a two-layer bidirectional language model
(biLM). This would bring even more granularity than fastText, as they consider each char-
acter in a word as having their own n-dimensional vector representation. Another factor
that prevents us from using ELMo, for now, is its expensive training process.!! Closer to
the word2vec technique, GloVe (Pennington et al. 2014) is also considered, but its co-
occurrence matrix would escalate the memory usage, making its training for arXiv not pos-
sible at the moment. We also examine the recently published Universal Sentence Encoder
(USE) (Cer et al. 2018) from Google, but their implementation does not allow one to use a
new training corpus, only to access its pre-calculated vectors based on words. We also con-
sidered BERT (Devlin et al. 2019) with its recent advances of Transformer-based architec-
tures in NLP as an alternative to word2vec. However, incorporating BERT and other Trans-
former-based architectures would require a significant restructuring of the core idea of our
work. BERT is pre-trained in two general tasks that are not directly transferable to math-
ematics embeddings: Masked Language Modelling (MLM) and Next Sentence Prediction
(NSP). Since this work is an exploratory investigation of the potential of word embedding
techniques in MLP and MKM, we gave preference to tools that could be applied directly.
Nonetheless, since some of our results are promising, we plan to include Transformer-
based systems, such as BERT (Devlin et al. 2019), XLNet (Yang et al. 2019), RoBERTa
(Liu et al. 2019), and Transformers-XL (Dai et al. 2019), in future work.

The overall performance of word embedding algorithms has shown superior results in
many different NLP tasks, such as machine translation (Mikolov et al. 2013b), relation sim-
ilarity (Iacobacci et al. 2015), word sense disambiguation (Camacho-Collados et al. 2015),
word similarity (Neelakantan et al. 2014; Ruas et al. 2019), document classification (Ruas
et al. 2020), and topic categorization (Pilehvar et al. 2017). In the same direction, we also

10 Noise means, the data consists of many uninteresting tokens that affect the trained model negatively.
' https://github.com/allenai/bilm-tf [Accessed Feb. 2020].

@ Springer

https://github.com/allenai/bilm-tf

Scientometrics (2020) 125:3017-3046 3023

explore how well mathematical tokens can be embedded according to their semantic infor-
mation. However, mathematical formulae are highly ambiguous and, if not properly pro-
cessed, their representation is jeopardized.

Math embedding

Recently, Krstovski and Blei (2018) proposed a variation of word embedding for math-
ematical expressions. Their main idea relies on the construction of a distributed repre-
sentation of equations, considering the word context vector of an observed word and its
word-equation context window. They treat equations as single-unit words (EqEmb), which
eventually appears in the context of different words. They also try to explore the effects of
considering the elements of mathematical expressions separately (EQEmb-U). In this sce-
nario, mathematical equations are represented using a Syntax Layout Tree (SLT) (Zanibbi
et al. 2016b), which contains the spatial relationship between its symbols. While they
present some interesting findings for retrieving entire equations, there is little discussion
about the vectors representing equation units, i.e., EQEmb-U embedding, and how they are
described in their model. The word embedding techniques seem to have the potential for
semantic distance measures between complex mathematical expressions. However, they
are not appropriate for extracting the semantics of identifiers separately, indicating that
the problems of representing mathematical identifiers are tied to more fundamental issues,
which we address in the "Overcoming Issues of Knowledge Extraction" section.

Considering the equation embedding techniques in Krstovski and Blei (2018), we devise
three main types of mathematical embedding, nameley Mathematical Expressions as Sin-
gle Tokens, Stream of Tokens, and Semantic Groups of Tokens.

Mathematical Expressions as Single Tokens: EQEmb (Krstovski and Blei 2018) uses
entire mathematical expressions as one token. In a one-token representation, the inner
structure of the mathematical expression is not considered. For example, Eq. (1) is rep-
resented as one single token ;. Any other expression, such as W(2, k) in the surround-
ing text of (1), is an entirely independent token #,. Therefore, this approach does not
learn any connections between W(2, k) and (1). However, Krstovski and Blei (2018) has
shown promising results for comparing mathematical expressions with this approach.
Stream of Tokens: As an alternative to embedding mathematical expressions as a single
token, one can also represent an expression through a sequence of its inner elements. For
example, considering only the identifiers in Eq. (1), it would generate W, k, and € as a
sequence/stream of tokens. This approach has the advantage of learning all mathematical
tokens. However, this method also has some drawbacks. Complex mathematical expres-
sions may lead to long chains of elements, which can be especially problematic when
the window size of the training model is too small. Naturally, there are approaches to
reduce the length of chains. Gao et al. (2017) use a CBOW and embed all mathematical
symbols, including identifiers and operands, such as +, — or variations of equalities =.
Yasunaga and Lafferty (2019) do not cut out symbols, but train their model on the entire
sequence of tokens that the LaTeX tokenizer generates. Considering Eq. (1), it would
result in a stream of 13 tokens. They use a long short-term memory (LSTM) architecture
to overcome this issue and further limit chains length to 20-150 tokens. Usually, in word
embedding, such behaviour is not preferred since it increases the noise in the data.

In the "Mathematical Information Retrieval" section, we use this stream of tokens
approach to train our model on the DLMF without any filters. Thus, Eq. (1) generates

@ Springer

3024 Scientometrics (2020) 125:3017-3046

all 13 tokens. In the "Overcoming Issues of Knowledge Extraction" section, we show
another model trained on the arXiv collection, which uses a stream of mathematical
identifiers and cut out all other expressions, i.e., in case of (1), we embed W, k, and .
We presume this approach is more appropriate to learn connections between identifiers
and their definiens. We will see later in the paper that both of our models trained on
math embedding is able to detect similarities between mathematical objects, but does
not perform well detecting connections to word descriptors. In the scenario of identify-
ing definiens, for mathematical objects, we consider close relations between mathemati-
cal symbols as noise. To mitigate this issue, we only work with mathematical identifiers
and not any other symbols or structures for our experiments on the arXiv collections.
Note that, since we focused on similarities for the experiments on the DLMF dataset, we
preferred to not filter out any tokens for the DLMF model.

Semantic Groups of Tokens: The third approach of embedding mathematics is only
theoretical and concerns the problem mentioned above related to the vague definitions
of identifiers and functions in a standardized format (e.g., MathML). As previously dis-
cussed, current MathIR and ML approaches would benefit from a basic structural knowl-
edge of mathematical expressions, such that variations of function calls (e.g., W(r, k) and
W(2, k)) can be recognized as the same function. Instead of defining a unified standard,
current techniques use their ad-hoc interpretations of structural connections, e.g., @; is one
identifier rather than three (Schubotz et al. 2017, 2018). We assume that an embedding
technique would benefit from a system that can detect the parts of interest in mathematical
expressions before any training processes. However, such a system still does not exist.

To investigate the situations described in the sections "Word Embedding" and "Math
Embedding", we applied word2vec on two different scenarios, one focusing on MathIR
(DLMF) and the other on semantic knowledge extraction (arXiv), i.e., identifying definiens
for math objects. To summarize our decisions, for the DLMF and arXiv, we choose the
stream of token embedding technique, i.e., each inner token is represented as a single
n-dimensional vector in the embedding model. For the DLMF (section "Mathematical
Information Retrieval"), we embed all inner tokens, while for the arXiv (section "Semantic
Knowledge Extraction"), we only embed the identifiers.

Mathematical information retrieval

To perform the MathIR experiments on the DLMF using word and math-term embedding,
we trained word2vec on the DLMF. Considerable preprocessing of the corpus had to per-
formed: new algorithms and software for sentence-segmentation (in math documents) had
to be developed, and the Part-of-Math tagger'? (PoM tagger) (Youssef 2017) was adapted
and used for math tokenization. For preprocessing the DLMF, we separated the content
from annotations and metadata, and segmented all the contents into individual sentences
(using our sentence-segmentation algorithm) since in the version of word2vec embedding
that we used, the tokenization worked on a sentence by sentence basis. Afterwords, word-
2vec was applied using the skip-gram model, a window size of 5, dimension of 100, and

12" A tokenizer for LaTeX expressions that tags the tokens with additional information similar to Part-of-
Speech taggers in NLP.

@ Springer

Scientometrics (2020) 125:3017-3046 3025

Table 1 Keywords and their

{op-20 most similar words, by the Transform Fourier Bessel hypergeometric

Euclidean distance transform Fourier Bessel hypergeometric
Mellin power Airy generalized
Transform Hilbert Hankel confluent
Transforms Heun modified multivariate
extend Maclaurin Struve generating
By Stieltjes Modified Olver’s
defining radii Generalized Lauricella’s
Stieltjes joining Spherical Heun
Hilbert summable Coulomb Appell
allows noninteger Many gamma
convolution Transform Inverse bilateral
standard Laurent products basic
rise Every Kelvin elementary
group trapezoidal Mathieu Gauss
us geometric spheroidal Kummer
summable rules Weber Inverse
transformation iterative spherical Many
ellipsoids Lagrange gamma plays
solve vacuum Lamé Coulomb
Since construction Contiguous beta

minimum word count of 3. These hyperparameter values were obtained after considerable
experimentation with different values of the window size, vector dimension, and mini-
mum word count. We selected the values that resulted in best performance (as evaluated
by direct observations of the outcome of the example similarity/analogy queries that are
reported on in this section).

Term similarity

Table 1 presents some initial findings when searching for the 20 most similar words for
each of the following four math terms in the DLMF database: ‘transform’, ‘Fourier’, ‘Bes-
sel’, and ‘hypergeometric’. Identifying similar words (to a given keyword) can:

1. Serve as an indicator of the semantics-capturing capabilities of the underlying word
embedding technique;

2. Enrich search queries (by combining the keyword with its semantic/related neighbors
into an expanded query);

3. Find related concepts that could not be found as efficiently and conveniently as through
embedding-based word similarity.

The context of the DLMF is very specific. Hence, the name Fourier (as well as other
names, such as Bessel) only appears in a narrow context, primarily as descriptive linguis-
tic modifiers of mathematical constructs such as ‘transforms’, ‘series’ and ‘operators’.

@ Springer

3026 Scientometrics (2020) 125:3017-3046

The results in Table 1 show that many of the returned hits are quite what a mathematician
would expect (especially hits for the words ‘Bessel’ and ‘hypergeometric’ in columns 3
and 4), but at the same time, certain similar/related terms failed to be returned. For exam-
ple, considering the hits for ‘transform’ (1st column of the table), we observe:

— The top-20 hits showed some synonyms (e.g., ‘transformation’) and related terms like
‘convolution’, ‘Mellin’, and ‘Hilbert’ (the latter two are due probably to ‘Mellin trans-
form’ and ‘Hilbert transform’), which are all good;

— The top-20 hit list failed to include ‘Fourier’, despite the fact that it is arguably the most
famous transform;

— As expected, certain irrelevant words (e.g., ‘by’, ‘allows’) matched high because many
of them are frequent stopwords. However, not all general stopwords should be dis-
missed, e.g., ‘almost everywhere’ has major significance in math, but what constitutes
stopwords in math should be considered carefully.

Also, looking at the 2nd column, the hits of words similar to ‘Fourier’ include many other
terms that are truly related to the keyword ‘Fourier’, where in several instances (e.g.,
‘Stieltjes’ and ‘Hilbert’), the similarity could perhaps be attributed to the fact there are trans-
forms associated with those terms. Unlike in the previous column, the word ‘Transform’
rightly appears in the top-20 similar words of ‘Fourier’. This lack of symmetry, though
understandable, shows that similarity, or rather dissimilarity, (based on word2vec embed-
ding), is not a measure in the mathematical sense, which can be a serious shortcoming.
To be sure, the lack of symmetry in term similarity is not an issue in information retrieval
carried out by human users, if what is represented allows users to express queries whose
correspondence with language usage statistics in a corpus is strong. Solid textual retrieval
systems themselves often do not represent word/conceptual semantics in any direct sense.
However, in certain situations, such as in end-to-end systems with no humans in the loop,
where the non-symmetry (X is similar to Y but Y may not be similar to X) makes the behav-
ior of such systems unpredictable (under the mercy of the right choice of the query term)
and thus less than desirable. That being said, the cautionary concern over the lack of sym-
metry is mostly speculative and hypothetical at this time, and only future experimentation
and applications will tell whether or not the non-symmetry is a serious problem.

These four similarity exercises are too few to draw any solid conclusions up to this
point, but they illustrate the drawbacks and the promises of embedding for MLP, and press
the need for benchmarks to achieve generalizable, statistically significant results.

Remarks about the distance measures used: In the similarity and analogy search
experiments that we ran and present in this section, we considered different similarity
measures and distance measures, such as cosine similarity and the Euclidean distance.
Since the optimization of the best measure/distance is not of primary concern in this paper,
and to save on space, we present only the results corresponding to the best measure. For
example, in Table 1, we present the results where the Euclidean distance was used because
it gave the best results, whereas in Tables 2, 3, 4, 5 and 6, we use cosine similarity because
it yielded the best outcome.

Term analogy

Finding mathematical analogies is a powerful tool for crafting queries for analogy search,
which cannot be performed by mere keyword search. Here are some examples: ‘X’ is to

@ Springer

Scientometrics (2020) 125:3017-3046

3027

Table2 Analogies of the form: Find Term where Term is to X what Y is to Z. The similarity measure is

cosine similarity

Top-10 best Terms where

Term is to ‘complex’ what

Term is to x what

Term is to z what

xisto ‘real’: ‘complex’ is to ‘real’: ‘real’ is to ‘complex’:
X X b4
Z z X
\left(\left(2
\right) \right) t
1 1 1
= = \right)
- - n
\pi \pi \pi
+

Term is to ‘sin’ what
‘cosh’ is to ‘cos’:

Term is to ‘sin’ what
‘arccos’ is to ‘cos’:

Term is to ‘exp’ what
‘arccos’ is to ‘cos’:

cosh
sinh
sin
tanh
csch
cot
coth
mt
A

sech

arccos
arcsinh
arctan
arctanh
arccosh
arcsin
arccsc
arcsec
arccoth
arccsch

arccos
arccosh
arctan
arctanh
arcsinh
exp
arcsin
erfc
sign

Xyz

Table 3 The words/lemmas most similar to the centroid of ‘Fourier’ and ‘Mellin’, by cosine similarity

Top-20 Most Similar Words for Centroid of { ‘Fourier’, ‘Mellin’ }

Top-10 Most Similar Lemmas for
Centroid of { ‘Fourier’, ‘Mellin’ }

Mellin

Fourier

Hilbert

Laplace

Transform
Kontorovich-Lebedev
transform

products

Transforms

transforms

Stieltjes
Leading
convolution
many-body
summable
ease
collections
FFT

us

Convergence

Mellin

Fourier

Hilbert

Laplace

Transform
Kontorovich-Lebedev
products

Stieltjes

Leading

convolution

@ Springer

3028 Scientometrics (2020) 125:3017-3046

Table 4 Similarities to the

Top-20 M imilar W for th id of
centroids of 4 subsets of words, op-20 Most Similar Words for the Centroid o

by cosine similarity {*se’, ‘ce’} {*Si’, ‘Ci’} {‘Ai’, ‘Bi’} {sin’, ‘cos’, ‘tan’}
ce Ci Bi sin
se Si Ai cos
fe Ei envAi tan
ge nt envBi cot
Se ez Hi cosh
Fe sec Gi sinh
Ce Arctan envelope tanh
Ge xe Airy uv
Io M xe Arctanh
Gey Shi 1535 csch
Ko Gi Chi pm
me Chi ’ si
Ke ie 54703 Ein
Fey Ein Shi ir
Ds zn implicitly Arccsc
Dc 6144 derivative sec
mz Cin Ein Arccosh
Ie xJ 1797 coth
Me arccot ie csc
inh 1797 Ei rh

‘real’ what ‘z’ is to ‘complex’, ‘cos’ is to ‘cosh’ what ‘sin’ is to ‘sinh’, ‘cos’ to ‘arccos’
is what ‘log’ is to ‘exp’, ‘arcsin’ is to ‘sin’ what ‘integral’ is to ‘derivative’, and so on. To
illustrate the use of analogies, consider this simple example of a math student who has
taken courses on real analysis and is just starting to learn complex analysis. That student
is likely curious to know the common notation for a complex variable, as the counterpart
of ‘x’ being the common notation for a real variable. In plain English, the student can for-
mulate that information need as a query/question of the form: What is to ‘complex’ as ‘x’
is to ‘real’? This query is essentially the aforementioned king—queen example (2) from the
"Word Embedding" section with an unknown variable v, .- Thus, with powerful word
embedding, the unknown term being searched for satisfies the following relation

v, -V XV

* Y

unknown complex

real (3)

or equivalently

Vunknown ~ + Vcomplex ~ Vieal (4)

where v, is the embedding vector of term 7. Accordingly, to find the unknown term, one has
to find the closest vectors to the vector v, + Vegnpiex — Vrear» and retrieve the correspond-
ing words. Ideally, with good embedding, the unknown term should be the top match or at
least among the top few matches. Note that in the equation above, the vector on the right
hand side of the approximation is the sum of the vector for the known term (i.e., first box)

@ Springer

Scientometrics (2020) 125:3017-3046

3029

Table 5 Similarities to the
centroids of three subsets of
words, by cosine similarity

Top-20 Most Similar Words for the Centroid of

{ ‘Legendre’, ‘Hyper-

geometric’ }

{‘Bessel’ , ‘Struve’}

{‘Legendre’, ‘Hyper-
geometric’, ‘Bessel’,
‘Struve’}

Legendre Bessel Struve
Hypergeometric Struve Bessel
Generalized Kelvin Generalized
Struve Hankel Hypergeometric
Gamma Modified Weber
Generating Weber Contiguous
dilated Noninteger Modified
Associated Airy Gamma
Arguments Spherical Legendre
Confluent Contiguous Kelvin
Products Anger—Weber Hankel
Ferrers Many Associated
Contiguous Generalized Anger—Weber
Number-Theoretic Inverse Many
Incomplete Half-Integer Noninteger
Parabolic Functions-Real Generating
Kind Functions-Complex Confluent
Mittag—Leffler Gamma Spherical
Function Incomplete Incomplete
Elementary gamma Arguments

and the vector (in the second box) that captures the relation between the known and the
unknown terms. We will call the second-box vector the relation vector.

We tested this analogy capability using several analogy queries, as shown in Table 2
where Term stands for the unknown term being searched for. The query illustrated above
about the complex variable notation was formulated in two different flavors (top half of
the first two columns), and, for extra measure, the question was modified to search for
the real variable given the complex variable (top half of the third column); the purpose
of varying the question is to test for robustness. Examining the results in the table, one
can observe the following:

— In all three queries, the desired answer was the second topmost match, which, though
not ideal, is quite impressive.

— The topmost match for the unknown term is, interestingly, the known term, in all
three queries. That indicates that the relation vector is, at least in these queries, of
very small magnitude. This could result from one of two factors: (1) the vectors of
‘complex’ and ‘real’ are quite similar due to the strong inter-relatedness, making
their difference quite small, or (2) those two vectors are of small magnitude, causing
their difference to be small a