Skip to main content
Log in

Toward a stochastically robust normalized impact factor against fraud and scams

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

In this paper, we model the variation of the bibliometric measure differences across academic fields in order to quantify the sources of these discrepancies. Since the bibliometric measure is based on the amount of published and cited papers, we anticipate that the mean number of references by published paper is the predominant parameter behind the discrepancies of impact factor scores in some academic fields. We introduce here a bias-free model, based on normalized variables with restricted cross-discipline discrepancies, that is robust against fraud and scams. The model is then submitted to an intensive numerical test using a Monte Carlo simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bani-Ahmad, S. (2011). Sorting search results of literature digital libraries: Recent developments and future research directions. In Digital libraries-methods and applications (IntechOpen).

  • Banks, M. A. (2005). The excitement of google scholar, the worry of google print. Biomedical Digital Libraries, 2(1), 2.

    Article  Google Scholar 

  • Bordons, M., Fernández, M., & Gómez, I. (2002). Advantages and limitations in the use of impact factor measures for the assessment of research performance. Scientometrics, 53(2), 195–206.

    Article  Google Scholar 

  • Brun, R., & Rademakers, F. (1997). Root an object oriented data analysis framework. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 389(1–2), 81–86.

    Article  Google Scholar 

  • Dong, P., Loh, M., & Mondry, A. (2005). Relevance similarity: An alternative means to monitor information retrieval systems. Biomedical Digital Libraries, 2(1), 6.

    Article  Google Scholar 

  • Garfield, E. (1986). Which medical journals have the greatest impact? Annals of Internal Medicine, 105(2), 313–320.

    Article  Google Scholar 

  • Garfield, E. (1992). How isi [r] selects journal for coverage: Quantitative and qualitative considerations (institute for scientific information [r]). Journal de Radiologie-Paris, 73, 565–565.

    Google Scholar 

  • Garfield, E. (1998). Long-term versus short-term journal impact: Does it matter. Scientist, 12(3), 11–12.

    Google Scholar 

  • Garfield, E. (1999). Journal impact factor: A brief review. Ottawa: Can Med Assoc.

    Google Scholar 

  • Garfield, E. (2003). The meaning of the impact factor. International Journal of Clinical and Health Psychology, 3(2), 363–369.

    Google Scholar 

  • Garfield, E. (2006a). Citation indexes for science: A new dimension in documentation through association of ideas. International Journal of Epidemiology, 35(5), 1123–1127.

    Article  Google Scholar 

  • Garfield, E. (2006b). The history and meaning of the journal impact factor. JAMA, 295(1), 90–93.

    Article  Google Scholar 

  • Jacsó, P. (2001). A deficiency in the algorithm for calculating the impact factor of scholarly journals: The journal impact factor. Cortex, 37(4), 590–594.

    Article  Google Scholar 

  • Mabe, M. (2003). The growth and number of journals. Serials, 16(2), 191–198.

    Article  Google Scholar 

  • Mabe, M., & Amin, M. (2001). Growth dynamics of scholarly and scientific journals. Scientometrics, 51(1), 147–162.

    Article  Google Scholar 

  • Moed, H., Burger, W., Frankfort, J., & Van Raan, A. (1985). The application of bibliometric indicators: Important field-and time-dependent factors to be considered. Scientometrics, 8(3–4), 177–203.

    Article  Google Scholar 

  • Moed, H. F., Burger, W., Frankfort, J., & Van Raan, A. (1983). On the measurement of research performance: The use of bibliometric indicators. Leiden: State University of Leiden.

    Google Scholar 

  • Møller, A. P. (1990). National citations. Nature, 348, 480.

    Article  Google Scholar 

  • Murali, N. S., Murali, H. R., Auethavekiat, P., Erwin, P. J., Mandrekar, J. N., Manek, N. J., & Ghosh, A. K. (2004). Impact of futon and NAA bias on visibility of research. In Mayo clinic proceedings (Vol. 79, pp. 1001–1006).

  • Narin, F., Pinski, G., & Gee, H. H. (1976). Structure of the biomedical literature. Journal of the American society for Information Science, 27(1), 25–45.

    Article  Google Scholar 

  • Seglen, P. O. (1997). Why the impact factor of journals should not be used for evaluating research. BMJ, 314(7079), 497.

    Article  Google Scholar 

  • van Leeuwen, T., & Moed, H. (2002). Development and application of journal impact measures in the dutch science system. Scientometrics, 53(2), 249–266.

    Article  Google Scholar 

  • Whitehouse, G. (2001). Citation rates and impact factors: Should they matter? The British Journal of Radiology, 74(877), 1–3.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled Belkadhi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belkadhi, K., Trabelsi, A. Toward a stochastically robust normalized impact factor against fraud and scams. Scientometrics 124, 1871–1884 (2020). https://doi.org/10.1007/s11192-020-03577-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-020-03577-4

Keywords

Navigation