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Abstract

Computer science has experienced dramatic growth and diversification over the last twenty years. 

Towards a current understanding of the structure of this discipline, we analyze a large sample of 

the computer science literature from the DBLP database. For insight on the features of this cohort 

and the relationship within its components, we have constructed article level clusters based on 

either direct citations or co-citations, and reconciled them with major and minor subject categories 

in the All Science Journal Classification (ASJC). We describe complementary insights from 

clustering by direct citation and co-citation, and both point to the increase in computer science 

publications and their scope. Our analysis reveals cross-category clusters, some that interact with 

external fields, such as the biological sciences, while others remain inward looking. Overall, we 

document an increase in computer science publications and their scope.

Keywords

Bibliometrics; Clustering; Research Evaluation; Computer Science; DBLP

Mathematics Subject Classification (2010)

01A85; 01A90

sitaramssd@gmail.comPresent address: Randstad USA, Atlanta, GA. 

Publisher's Disclaimer: This Author Accepted Manuscript is a PDF file of an unedited peer-reviewed manuscript that has been 
accepted for publication but has not been copyedited or corrected. The official version of record that is published in the journal is kept 
up to date and so may therefore differ from this version.

Conflict of interest
The authors declare that they have no conflicts of interest. Elsevier personnel played no role in conceptualization, experimental design, 
review of results, or conclusions presented. The content of this publication is solely the responsibility of the authors and does not 
necessarily represent the official views of the National Institutes of Health, NET ESolutions Corporation, or Elsevier Inc.

HHS Public Access
Author manuscript
Scientometrics. Author manuscript; available in PMC 2021 October 01.

Published in final edited form as:
Scientometrics. 2020 October ; 125(1): 271–287. doi:10.1007/s11192-020-03624-0.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1 Introduction

Computer science, and its applications, has experienced rapid growth and diversification 

over the last twenty years. As observed in a 2017 US National Academies Report, “A wide 

range of jobs in virtually all sectors demand computing skills to an unprecedented extent. 

And every academic discipline finds itself incorporating computing into its research and 

educational mission” [19]. More recently, the collective influence of the Internet of Things 

(IoT), ‘big’ data, accessible cloud computing, and advances in artificial intelligence have 

been presented as a driver for digital transformation [26]. Given this rapid growth and 

expansion, an updated understanding of the present state and structure of computer science 

and its relationship to other fields can inform planning and policy making at multiple levels 

from national level funding all the way down to faculty hiring strategy.

In historical precedent, Salton and Bergmark conducted a study in 1979 of the computer 

science literature (419 computer articles published in 1974, and 3,812 references cited in 

these articles) [23]. Noting that that the scientific literature serves a rich source of 

information to study the structure and historical development of a field, these authors 

described the global structure of computer science as comprising three main areas: (i) 

theoretical foundations, such as theory of computation, (ii) hardware and computer systems, 

such as architecture, and (iii) software, such as programming systems. Related areas noted 

were (a) mathematics of computing, such as numerical analysis, (b) special software topics, 

such as operating systems, (c) data management and database systems, (d) methodologies 

valid for multiple applications, such as algebraic manipulation, (e) computer applications, 

such as computer graphics, and (f) non-technical aspects, such as computer education.

Looking beyond this historical triad of theoretical foundations, hardware and computer 

systems, and software, the Computing Classification System (CCS) published by the 

Association for Computing Machinery now consists of 13 top-level areas that reflect a more 

current view of the field [3]. This classification also addresses relationships with other fields 

under the category of Applied Computing. However, an easy way to map scientific 

publications to the CCS, especially interdisciplinary articles or those from proximal fields, 

does not seem to be available.

Other classification systems are available, such as the All Science Journal Classification 

(ASJC) developed and maintained by Scopus, the Web of Science research and categorical 

classifications from Clarivate Analytics, and the National Science Foundation classification 

system respectively [20, 12, 10]. Scopus and the Web of Science are commercially available 

databases with comprehensive, though not identical coverage [2], that can be used to 

conduct large scale analyses. The All Science Journal Classification (ASJC), maintained by 

Scopus, which we use in this study, is organized into 4 subject areas, 27 major subject areas, 

and 334 minor subject areas. All three systems rely on applying one or more journal-derived 

labels to articles.

A logical prediction, given the diversity of articles within journals, is limited specificity at 

the article level. Shu and colleagues recently noted in a comparative study of the Chinese 

Science Citation Database (CSCD) and the Web of Science that 46% of articles did not 
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belong to the discipline of the journal they were published in [24]. Others have also 

discussed and critiqued disciplinary assignments using journal-based classifications [35, 21]. 

Article classification systems have been constructed that escape some of the criticisms of 

journal-based classification [32, 7, 34], but do not seem to presently enjoy widespread use.

The purpose of this study is to develop an improved understanding of the structure of the 

field of computer science relative to the landmark study of Salton and Bergmark forty years 

ago. We extend their work by taking advantage of modern bibliographic resources and 

clustering technologies and using a combination of article and journal approaches to study 

trends in the computer science literature. We also consider connections to other fields, 

especially biology, since approximately 42% of Scopus is classified under the top level 

subject areas of Life Sciences and Health Sciences. As a source of computer literature, we 

use DBLP, a reference bibliography for computer science [31, 22]. The DBLP bibliography 

covers publications from computer science and includes publications from hybrid fields, 

where they are considered pertinent to computer science research. We construct clusters of 

articles using either direct citation or co-citations and match these clusters to ASJC 

categories to place them in context. We also aligned clusters from direct citations to those 

from co-citations and discuss our findings. Overall, we note cross category clusters with 

different degrees of interaction with fields outside computer science.

2 Materials and Methods

Overview.

Our underlying assumption is that, notwithstanding incomplete coverage, records in DBLP 

are greatly enriched for computer science [31, 22]. Therefore, the contents of DBLP are an 

excellent sample of the computer science literature to analyze. The workflow described in 

the following paragraphs of Materials and Methods, consists at a high-level of (i) merging 

the DBLP and Scopus datasets using digital object identifiers(DOIs) (ii) extracting cited 

references for the articles common to DBLP and Scopus (iii) clustering by direct citation 

and by our modification of co-citation based clustering. The outcome was a dataset of 

8,000,411 publications.

Our working definition of the computer science literature, for the purpose of this study, was 

all publications in the DBLP bibliography that (i) had a digital object identifier DOI, and (ii) 

could also be matched to article identifiers in the Scopus bibliography. Cross-matching 

DBLP publications to records in the Scopus abstract and citation database of peer-reviewed 

literature enables us to harvest the richer links in Scopus, as well as extract links to 

publications from other disciplines. Cross-matching to Scopus also allows the use of journal-

based classifications when clustering documents at the article-level. We used DBLP articles 

from journals and conference proceedings to construct article clusters using either direct 

citations or co-citations as links. We reconciled these clusters with the All Science Journal 

Classification (ASJC) developed and maintained by Scopus through a combination of 

automated and manual procedures, producing a dataset of 2,685,356 publications, which 

when combined with cited references extracted from Scopus grew to 8,000,411 publications.
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DBLP data.

A stable release of the DBLP computer science bibliography [31] consisting of 7,079,994 

records was downloaded as dblp-2018–08-01.xml.gz. Slightly over 95% of the publications 

within were published after 1996. Publications were parsed from the XML source file and 

loaded into a PostgreSQL database.

Scopus data.

As part of implementing a larger data platform for research evaluation [17], we have 

previously parsed the Scopus dataset, presently at over 88 million publications, into a 

custom schema in a PostgreSQL database. The total number of publications in Scopus 

labeled with major subject area Computer Science (in turn a subset of the Physical Sciences 

subject area) is 5,835,160.

Merging and graph construction.

Records in the DBLP dataset were matched to Scopus identifiers using digital object 

identifiers (DOIs). This procedure resulted in a dataset of 2,685,356 DBLP publications with 

Scopus identifiers where 1,278,322 (47.6%) were labeled as article and 1,407,034 (52.4%) 

as conference proceedings. References cited by these publications were then extracted from 

Scopus (7,129,006 records), resulting in a total of 8,000,411 publications and references.

We represented these 8,000,411 records, referred to as the comp dataset (Fig. 1, Table 1), as 

a graph where the 8,000,411 nodes represent publications and references and the 44,296,381 

undirected edges represent citations within the dataset.

Clustering.

Clustering of publications is commonly accomplished through direct citation, bibliographic 

coupling, and co-citation, with direct citation being proposed as as the best approach to 

concentrate citation links [15, 16]. Accordingly, we used direct citation links as the basis for 

cluster formation, and also co-citation to obtain an alternative view. In applying both 

clustering by direct citation and by co-citation, we attempted to consider, wherever possible, 

the criteria articulated by Šubelj, van Eck, and Waltman [33] that (i) the largest cluster 

should be no more than 10 times the smallest one, (ii) small clusters should be eliminated, 

(iii) small changes and replicates should yield similar results (“stability”), (iv) computing 

time should be minimized where possible, and (v) the clustering should seem reasonable on 

a qualitative level (“intuitive sensibility”).

Direct Citation.

Graclus [11] is a spectral graph clustering package that optimizes various clustering criteria, 

including normalized cut, ratio cut, and ratio association, and that has previously been 

applied to citation data [33]. We used v1.2 in our experiments. The comp dataset was 

formatted as an undirected graph, stored in a file with a header line indicating the number of 

nodes and edges, and used as input to Graclus, which requires the number of clusters to be 

formed as an input parameter. In preliminary experiments, we varied the number of clusters 

to be formed between 10 and 50 clusters (data not shown). At around 20 clusters, clusters 
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size was relatively stable with the largest cluster containing roughly 10 times the number of 

nodes in the smallest one, so that 20 clusters is a good choice with respect to the criteria 

specified in [33]. Consequently, we used Graclus to generate 20 clusters, labeled 0–19 

(Table 2), analogous to Level 1 of Waltman and van Eck’s mapping of nearly 10 million 

publications but focused on the DBLP bibliography rather than a broader Web of Science 

sample [34].

We also used conductance, as defined in Shun et al. [25], to evaluate clustering by direct 

citation (smaller is better), noting that conductance has been found to be a good metric for 

this purpose [13, 1]. In our analysis, we saw that the last cluster (cluster 19) had a much 

larger conductance value than the other clusters and also had the smallest number of nodes. 

We then examined results obtained using Graclus with two other numbers of clusters (18 and 

22), and in each case, the highest numbered cluster had the greatest conductance value and 

also the smallest number of nodes. These results suggest that Graclus produces a final 

cluster that effectively serves as a container for ‘left over publications’ during the clustering 

procedure. Therefore, we limited our consideration of cluster 19 (the last of the twenty 

clusters) when interpreting our results. The remaining 19 clusters had conductance values 

ranging from 0.09 to 0.25 with a median conductance of 0.15 (Fig. 2, Table 1).

Co-citation.

For an alternate view of these DBLP data, we constructed clusters using co-citation, the 

frequency with which a pair of articles is cited by other articles [28, 18]. Co-citation, first 

described independently by Small and Marshakova in 1973 [18], provides insight into the 

emergence of new ideas derived from the association of previously independent ones. Unlike 

clustering by direct citation, where every input publication is assigned to a cluster and every 

citation is weighted equally, the co-citation relationship between papers is weighted to 

represent the strength of the co-citation history. Because this produces a weighted graph, 

clustering methods that address weights are required. Clustering by co-citation also 

considers weak inter-cluster interactions that involve modifications to standard clustering 

approaches. [4, 8, 29, 30].

We used a modification of variable level clustering combined with agglomerative clustering, 

an approach developed in 1985 by Small and Sweeney [30] for co-citation analysis. Variable 

level clustering involves applying a threshold (below which all edges in a graph are deleted) 

then iteratively selecting edges with the highest normalized co-citation value and extracting 

connected components from the graph as clusters for each edge in turn. Three parameters are 

needed: (i) a threshold or starting level based on a quantile of normalized co-citation 

frequency, (ii) a level increment, and (iii) a maximum cluster size. An issue is the generation 

of very large clusters by chaining via low edge weights. Thus, at each iteration, any cluster 

exceeding the maximum cluster size is returned to the process and a higher threshold is 

applied to break such clusters.

We began by identifying highly cited articles in comp and selected those in the 90th 

percentile (212,311 articles). We then identified 4.3 million publications in Scopus that cite 

these 212,311 articles. For each of the 4.3 million citing publications in turn, all possible 

reference pairs were generated from a publication’s cited references, where n is the number 
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of references in a publication. The cited reference pairs generated were then restricted to 

those where both members of a pair were in the set of 212,311 highly cited papers 

previously identified. A total of 46,463,117 unique co-cited pairs were thus obtained. The 

frequency of these co-cited pairs was then computed across the comp dataset and normalized 

using Salton’s cosine formula [23] to limit dominance by areas with high citation activity. 

These data were represented in a graph where each node was a publication and the weighted 

edge between the pair was the normalized co-citation frequency.

In our implementation of variable level clustering (Fig. 3(a)), we set initial parameter values 

as follows: the threshold t is initially set to the median normalized co-citation frequency 

(quantile=0.5), increment i = 0.1, and maximum cluster size, mcs = 200. Thus, at the start, 

all edges below the median normalized co-citation frequency were deleted. Clusters were 

formed by assembling connected components from each co-cited pair beginning with the 

heaviest edge weight. Clusters below size 100 were retained and any cluster larger than 200 

nodes was carried over to the next round. The threshold, t, was then incremented by 0.1 and 

the process repeated while progressively incrementing t. We used a bi-phasic approach 

where in which t ranged from 0.5–0.9, after which i was reduced to 0.01 for the range 0.9 ≤ t 
≤ 0.99. A final threshold of t=0.999 was applied to break the single remaining large cluster. 

Using this approach, 22,232 clusters containing 84,591 nodes were generated, each 

containing less than 100 nodes. Clusters containing only two nodes were discarded, bringing 

the total number of clusters down to 10,298. The publications in these 10,298 clusters were 

overwhelmingly drawn from the Physical Sciences (one of the four top level categories in 

the Scopus ASJC classification), of which computer science is a sub-category (Fig. 3).

Agglomerative clustering was then performed on these 10,298 clusters to generate higher-

order clusters. To focus on larger clusters, only those with at least 10 nodes were used as 

input. Briefly, each cluster was now treated as a node and the edge weight between two 

clusters was assigned to the maximum edge weight of all edges between the nodes in the two 

clusters. Edges were arranged in descending order. The first pair of clusters was merged and 

its edge weight with other interacting clusters was recalculated, again based on maximum 

edge weight. All edges were then re-ordered as before and the next pair of clusters was 

merged. The process was halted after 600 rounds to prevent large outlier clusters being 

generated (Fig. 3(d)).

3 Results

In our high-level study of the structure of a twenty year sample of the computer science 

literature, we chose to use both traditional journal-based and article-based approaches. 

Considering that traditional disciplinary categories ‘may only partly reflect the actual 

organization of today’s scientific research’ [34], we constructed article clusters at high levels 

of aggregation using citations to examine the computer science literature and also mapped 

these clusters to journal-based categories to take advantage of both article level and journal 

level approaches.

Of 2.68 million publications in comp, approximately 2.07 million were assigned ASJC 

codes in Scopus corresponding to Computer Science (major subject area with 13 minor 
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subject areas (Table 1), with the balance of 610,000 publications non-exclusively shared 

between 26 different major subject areas ranging from Engineering (330,048) to Dentistry 

(Fig. 1). The set of 2.07 million publications classified under the major subject area 

Computer Science in Scopus spanned all 13 minor subject areas with Software at 30.3% 

being the largest component and Computer Science (miscellaneous) at 0.9% the smallest. 

Publications in the comp dataset labeled Theoretical Computer Science (409,082) are 

classified under the the major subject area of Mathematics rather than Computer Science 

(Table 1).

Clustering by Direct Citation.

We constructed article-level clusters of this computer science dataset at a sufficiently high 

level of aggregation to avoid cognitive challenge and cross-matched them to the Scopus 

ASJC classification. To focus on relatively high signal, we only considered Scopus ASJC 

minor subject area categories that accounted for at least 15% of the publications in each 

cluster.

Figure 4 permits examination of these data from two perspectives: (i) rows: the clusters that 

map to a given ASJC minor subject area and (ii) columns: ASJC minor subject areas that 

comprised at least 15% of the publication in a cluster. Under these conditions of clustering 

and this threshold of 15%, 31 of the 334 ASJC minor subject areas are represented. 

Unsurprisingly, the broad categories Computer Science Applications, Software, and 

Electrical and Electronic Engineering register in 16, 12, and 10 clusters respectively, while 

Artificial Intelligence mapped to 7 different clusters. At the other end of the range, 12 of the 

31 ASJC minor subject areas were each detected only in a single cluster.

From the alternate perspective (columns), Cluster 17 was the most diverse and contained 

publications annotated with 8 minor subject area labels: Biochemistry, Chemistry(all), 

Genetics, Molecular Biology, Statistics & Probability, Computational Theory & 

Mathematics, and Computational Mathematics. Cluster 19 mapped to two areas but was 

excluded from qualitative analysis because of its high conductance value. Of the remaining 

clusters, Cluster 2 represents interactions between the four minor subject areas Theoretical 

Computer Science, Discrete Mathematics and Combinatorics, Applied Mathematics, and the 

more generic Computer Science (all). Clusters 3 and 4 include Computer Networks and 

Communications, and Cluster 18 (Artificial Intelligence, Cognitive Neuroscience, and 

Neurology) and clusters 5–9 include Management Science, Operations Research, 

Information Systems, Modeling and Simulation, and Human-Computer Interaction.

These data suggest that fields central to computer science in 2019 (Salton and Bergmark’s 

historical triad of hardware, software, and theory) are more likely to be found in multiple 

clusters than peripheral fields. A second inference is that, in some cases, journal-based 

classification and our article clusters align fairly well (Hardware and Architecture). A third 

inference is that the ASJC minor subject area “Computer Applications” is relatively broad, 

and publications thus labeled are present at the >= 15% level in 16 out of 20 clusters. 

Finally, for this DBLP dataset, as we clustered it, interactions with fields outside computer 

science such as Biology (i.e., Biochemistry, Neurology) are detected in two separate 

clusters. The first appears to be the interaction of Biochemistry, Molecular Biology, and 
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Genetics with Statistics, Mathematics, and Computer Science, and the second is the 

interaction of Neurology, Cognitive Neuroscience, and Artificial Intelligence.

These clusters cannot be easily characterized by using the CCS classification. For example, 

we manually matched the top 25–50 most heavily cited publications in each cluster to 

corresponding categories in the CCS. This was feasible with clusters 0 and 1 mapped 

reasonably well to the top level categories Hardware and Computer Systems Organization, 

but in other cases, the top cited papers often derived from biology, yet biology was clearly 

not representative of the majority of the nodes in these clusters.

Clustering by Co-citation.

For an alternate examination of the data, we used co-citation frequencies to cluster the 

DBLP dataset as described above (Materials and Methods). Figure 5 shows a heatmap in 

which clusters constructed by co-citation are mapped to Scopus ASJC minor subject area 

labels, with the top subfigure showing results for those labels that account for at least 15% of 

the publications in a cluster, and the bottom subfigure showing results for those labels that 

account for at least 10% of the publications.

At the threshold of 15%, only 17 of 20 co-citation clusters mapped to at least one minor 

subject areas. At the 15% threshold, no co-citation cluster maps to more than three minor 

subject areas, in contrast to a maximum of eight minor subject areas for clustering by direct 

citation (Fig. 3, Cluster 17). The threshold had to be reduced to 10% for all 20 co-citation 

clusters to map to at least one minor subject area. We interpret these results as indicative of 

broader clusters created by weaker linkages that accumulate during the agglomerative 

clustering phase [30].

Clustering by co-citation begins, for each cluster, with a pair of nodes that nucleates its 

subsequent formation. Thus, we also designated the pair of nodes in a cluster with the 

strongest edge as its nucleating pair and labeled the cluster by manually labeling the 

nucleating pair of documents. These labels show a high degree of correspondence to the 

ASJC minor subject area that accounts for the largest fraction of the nodes in a co-citation 

cluster (Table 4). While using the nucleating pair as the basis for labeling co-citation clusters 

(as we generated them) may be valid, its usefulness is likely to vary according to the data 

being examined; we also note that manual annotation (although beneficial) is not scalable. 

We provide the DOIs of these nucleating pairs matched to manually assigned labels for 

independent review (Table 3).

To examine the correspondence between clusters generated by direct citation vs co-citation, 

we mapped the contents of these clusters to each other (Fig. 6). At a threshold of 15%, 

similar to other cross-matching, 90% (18/20) of the co-cited clusters mapped to 1 or 2 direct 

citation clusters. This suggests that the majority of co-cited pairs tend to lie within the same 

cluster of publications linked by citations and, by extension, tend towards disciplinarity 

rather than interdisciplinarity.

Devarakonda et al. Page 8

Scientometrics. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4 Discussion

Considering expansion and diversification of the field of computer science, we revisited its 

characterization by Salton and Bergmark in 1979 [23]. In comparison to [23], we analyzed 

considerably more data, 2.68 million publications versus 391 by using two bibliographic 

databases, DBLP and Scopus, consisting of approximately 7 million and 88 million 

publications respectively. By linking the two datasets, we were able to harvest citation data 

as well as other meta-data that enabled theo construct article level clusters in two different 

ways and reconciliation with the Scopus ASJC classification, for a journal level perspective.

Reconciling direct citation clusters to the Scopus ASJC classification yielded partially 

overlapping results that are consistent with the observation of Waltman and van Eck (2012) 

[34] ‘that traditional disciplines such as those just mentioned only partly reflect the actual 

organization of today’s scientific research’. Of interest to us was the single obviously 

multidisciplinary cluster in which at least 15% of its component publications were labeled 

with the ASJC minor subject areas Biochemistry, Chemistry, Computational Mathematics, 

Computational Theory and Mathematics, Computer Science Applications, Genetics, 

Molecular Biology, Statistics & Probability. A second cluster mapped to Artificial 

Intelligence, Cognitive Neuroscience, and Neurology. Both suggest collaboration between 

computer science and biology. At the opposite end of this spectrum is the cluster that maps 

to Hardware and Architecture, Electrical and Electronic Engineering, and Software. These 

data suggest that, at least from the perspective of a high level of aggregation, some subfields 

within computer science may be primarily inward looking (remain concerned with 

fundamental questions in computer science and electrical engineering), while others are 

more actively engaged with fields external to computer science.

A comparison of the clusters generated using direct citation and co-citation shows 

interesting contrasts. The nodes in a co-citation cluster often map largely to one or two direct 

citation clusters: for example, 98% of the nodes in co-citation cluster 19008 map to direct 

citation cluster 8, which in turn aligns with theory, software, applications, and networks. 

Conversely, co-citation cluster 18947 nucleated by a pair of articles in the Journal of Applied 

Mathematics and Computation is distributed between direct citation clusters 11, 16, and 17, 

effectively spanning Artificial Intelligence, Applied Mathematics, Biochemistry, Chemistry, 

Genetics, Theory, Software, Applications, and Statistics.

The focus of this article was on high-level features, and a preference for simplicity and 

intuitiveness in the choice of methods. This preference influences the specific choices we 

made, such as the (i) use of the DBLP dataset matched to Scopus, which may not capture all 

aspects of computer science and its interactions with other fields, (ii) the basis for clustering, 

and (iii) mapping the results of this clustering against a classification designed around 

journals rather than individual articles. We believe that an approach that combines 

journallevel with article-level analyses is useful for studies of this kind. However, we 

acknowledge that our approach would not detect emerging fields with few publications that 

could be important signs of innovation. We also feel strongly that contextualized 

interpretation by domain experts should be performed on results generated by such 

approaches.
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We speculate that biology, often dominant in bibliometric studies, is restricted to two 

clusters on account of (i) the focus of DBLP, (ii) our use of normalized co-citations, and (iii) 

the threshold set for detection. Future research should, of course, include complementary 

investigations at finer levels of granularity and sensitivity using article-level and topic 

approaches that others have developed [14, 6, 5, 7, 27, 32]. We also refer readers to related 

studies of the computer science literature [9] that are focused on (i) evolving 

interdisciplinarity in computer science using data from Microsoft Academic Research and a 

classification of Computer Science into 24 categories (ii) combining the DBLP and 

CiteSeerX libraries to generate a knowledge network [22].

In the 40 years since Salton and Bergmark’s landmark paper, the field of computer science 

has not only expanded in volume, it has expanded in its interactions with other fields, and 

has also resulted in new disciplinary and interdisciplinary subfields. Furthermore, machine 

learning and data science, which build off computer science and statistics, are emerging as 

major fields that are driving innovation in industry and science, and research in these areas is 

increasingly being performed in fields external to computer science.While DBLP provides 

an insight into what is commonly accepted as computer science, additional evaluation of the 

broader literature that uses and develops computer science is needed to better assess the 

impact of computer science.
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Fig. 1. 
Summary of DBLP data cross-matched with Scopus. 2,685,356 publications from DBLP 

were cross-matched with Scopus and then grouped by the 27 major subject areas in the 

ASJC (Scopus) classification. The largest number of publications are contributed by 

Computer Science; Engineering; Mathematics; and then by Social Sciences; Decision 

Sciences; Physics and Astronomy; Medicine; and Biochemistry, Genetics, and Molecular 

Biology. Publications were further annotated with respect to being either articles (ar) or 

conference proceedings (cp). For this dataset, the major subject area of Computer Science 

with 1,194,623(cp) & 879,396 contributed the most publications while Dentistry with 0 (cp) 

& 1 (ar)) contributed the least.
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Fig. 2. 
Conductance measurements of clusters generated by Graclus of the direct citation dataset. 

2,685,356 DBLP publications, 7,129,006 cited references, and 44,296,381 citations were 

clustered using Graclus into 18 (grac_18), 20 (grac_20), or 22 (grac-22) clusters. 

Conductance, ϕ(S), was measured for these clusters considering only the edges between 

publications using the formula: ϕ(S) = |∂(S)|/min(vol(S), 2m – vol(S), where ∂(S) is the 

boundary (number of edges leaving a set), vol(S) is volume of a set of vertices as the sum of 

the degrees of the vertices in a set, and m is the number of undirected edges in a set [25].
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Fig. 3. 
Co-citation analysis. (a) Schematic representation of variable clustering protocol modified 

from Small and Sweeney (1985) [30]. Three parameters are specified: (i) a threshold or 

starting level based on a quantile of normalized co-citation frequency, (ii) a level increment, 

and (iii) a maximum cluster size. Input data is a set of co-cited publications with edge-

weight defined by normalized co-citation frequencies. Green clusters are within the max 

cluster size. At the initial threshold, t1, a single cluster below the maximum cluster size, mcs 
(green), along with one large cluster above it (red) are generated. As the threshold is 

incremented to t2, additional clusters of acceptable size is generated. The cascade continues 

to completion, which is defined by all clusters being of size less than or equal to the mcs. In 

this schematic, five rounds are adequate for the process to run to completion. (b) The 

distribution of publications (using fractional counting) across four top-level ASJC subject 

areas after applying variable level clustering as in a) (c) The Venn diagram of the fractional 

counting given in (b). (d) The distribution of cluster sizes (logarithmic y-axis) as a function 

of the number of iterations of the agglomerative clustering technique; note that the largest 

cluster is extremely large when the number of iterations exceeds 600.
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Fig. 4. 
Heat map for the clustering obtained by direct citation. The y-axis (rows) correspond to 

topics, defined by Scopus characterizations, and the x-axis (columns) represent the 20 

different clusters. Each cluster is characterized by topics that label at least 15% of the 

publications in the cluster.
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Fig. 5. 
Heat map for the clustering obtained by co-citation, using two thresholds for inclusion (top: 

15%, bottom: 10%). The y-axis (rows) correspond to topics, defined by Scopus 

characterizations, and the x-axis (columns) represent the 20 different clusters. Each cluster is 

characterized by topics that label at least the required minimum percentage of publications 

in the cluster (top: 15%, bottom: 10%).
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Fig. 6. 
Intersections between clusters generated using direct citation and co-citation features. x-axis: 

Clusters generated by Graclus number 0–19. y-axis: Cluster generated by variable level 

clustering and agglomerative clustering using a modification of Small and Sweeney (1985) 

[30]. Point size (perc) is the percentage of a co-cited cluster that maps to a corresponding 

Graclus cluster. A minimum threshold of 15% was set. Graclus cluster 19, the 20th cluster, 

did not map to any cluster on the y-axis.
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Table 1

Characterization of the comp dataset relative to Scopus ASJC minor subject areas under computer science.

minor_subject_area Percent of Publications

Software 30.1

Computer Science Applications 25.0

Computer Networks and Communications 21.5

Theoretical Computer Science 19.6

Computer Science(all) 19.4

Artificial Intelligence 14.2

Information Systems 11.8

Hardware and Architecture 11.8

Signal Processing 9.8

Computer Vision and Pattern Recognition 9.4

Computational Theory and Mathematics 7.9

Human-Computer Interaction 7.4

Computer Graphics and Computer-Aided Design 5.2

Computer Science (miscellaneous) 0.9
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Table 2

Descriptive statistics of the 20 clusters produced from the comp dataset using Graclus (direct citation). The 

number of publications in each cluster, the conductance [25] of each cluster, the total number ASJC minor 

subject area labels assigned to publications in each cluster and the number of unique labels in each cluster are 

shown.

Cluster Publications Conductance Total ASJC Labels Unique ASJC Labels

0 111,294 0.12 265,664 142

1 117,057 0.14 246,960 166

2 116,251 0.11 280,602 165

3 353,366 0.15 881,693 200

4 145,081 0.09 349,020 154

5 92,097 0.17 248,168 186

6 71,865 0.15 199,681 163

7 179,927 0.18 465,181 202

8 302,656 0.18 760,117 214

9 69,520 0.19 197,031 174

10 42,462 0.10 102,838 141

11 448,030 0.25 1,229,061 224

12 70,738 0.21 216,546 179

13 105,232 0.17 289,318 187

14 199,176 0.15 551,657 208

15 64,384 0.17 195,679 167

16 89,340 0.11 240,157 158

17 50,817 0.14 181,531 179

18 43,113 0.20 108,518 177

19 12,615 0.80 36,583 229
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Table 3

Nucleating co-citations. For each of the 20 co-citation clusters, the pair with the strongest edge (greatest 

normalized co-citation frequency) is shown below along with a manually assigned label.

Cluster Nucleating Pair NCF Label

18670 10.1016/j.cam.2015.03.057
10.1016/j.sigpro.2015.10.009

0.92 Dynamical Systems

18892 10.1287/msom.1080.0228
10.1287/msom.1060.0190

0.72 Operations Research

18918 10.1007/s11128-010-0177-y
10.1007/s11128-013-0567-z

0.83 Image Processing

18947 10.1109/TASE.2011.2160452
10.1109/TASE.2011.2178023

0.77 Robotics

18956 10.1109/ICCV.2017.32
10.1109/ICCV.2017.31

0.84 Computer Vision

18972 10.1109/ASE.2013.6693094
10.1145/2568225.2568254

0.69 Software

18974 10.1016/j.amc.2009.03.023
10.1016/j.amc.2010.07.064

0.54 Applied Mathematics

18983 10.1137/110848864
10.1137/110848876

0.66 Optimization

18997 10.1504/IJMIC.2014.065339
10.1504/IJMIC.2015.068871

0.91 Chaotic Systems

19008 10.1016/j.chb.2008.12.013
10.1016/j.chb.2008.12.012

0.63 Hum Comp Interaction

19009 10.1109/AVSS.2017.8078491
10.1109/ICCV.2017.206

0.78 Artificial Intelligence

19013 10.1145/2508859.2516668
10.1007/978-3-642-42045-0_15

0.88 Security

19026 10.1145/2541940.2541942
10.1109/HPCA.2014.6835965

0.81 Architecture

19027 10.1016/S0305-0548(03)00250-8
10.1016/j.ejor.2006.03.013

0.82 Graph algorithms

19030 10.1109/ICDE.2008.4497474
10.14778/1687627.1687666

0.69 Databases

19031 10.1109/TMM.2005.843347
10.1109/TCE.2005.1405724

0.55 Networks

19033 10.1109/TIFS.2014.2327757
10.1109/TCYB.2014.2376934

0.78 Facial Recognition

19034 10.1016/j.neuroimage.2013.05.018
10.1016/j.neuroimage.2014.06.016

0.63 Neurology

19035 10.1002/int.21933
10.1002/int.21927

1.09 Intelligent Systems

19036 10.1006/jsco.2000.0402
10.1006/jsco.2000.0403

0.73 Comp Geometry
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Table 4

Nucleating co-citations. Manually assigned labels for nucleating co-cited pairs (Table 3) are matched to the 

ASJC minor subject area that constitutes the largest fraction (shown as percentage in parentheses) of all nodes 

in the cluster. In cases of ties, both minor subject areas are shown. Abbreviations: Electrical and Electronic 

Engineering (EEE); Control and Systems Engineering (CSE).

Cluster Label Minor Subject Area

18670 Dynamical Systems (i) EEE (14) (ii) CSE (14)

18892 Operations Research EEE (24)

18918 Image Processing (i) EEE (17) (ii) Software (17)

18947 Robotics Software (12)

18956 Computer Vision Computer Graphics and Computer-Aided Design (21)

18972 Software Software (55)

18974 Applied Mathematics Applied Mathematics (12)

18983 Optimization EEE (35)

18997 Chaotic Systems CSE (23)

19008 Hum Comp Interaction Education (19)

19009 Artificial Intelligence Computer Vision and Pattern Recognition (32)

19013 Security Computer Science(all) (29)

19026 Architecture EEE (35)

19027 Graph algorithms Computer Networks and Communications (19)

19030 Databases Software (19)

19031 Networks EEE (32)

19033 Facial Recognition Computer Vision and Pattern Recognition (18)

19034 Neurology Neurology (12)

19035 Intelligent Systems Artificial Intelligence (17)

19036 Comp Geometry Software (10)
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