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Abstract: Responsible indicators are crucial for research assessment and monitoring. 

Transparency and accuracy of indicators are required to make research assessment fair 

and ensure reproducibility. However, sometimes it is difficult to conduct or replicate 

studies based on indicators due to the lack of transparency in conceptualization and 

operationalization. In this paper, we review the different variants of the Probabilistic 

Affinity Index (PAI), considering both the conceptual and empirical underpinnings. We 

begin with a review of the historical development of the indicator and the different 

alternatives proposed. To demonstrate the utility of the indicator, we demonstrate the 

application of PAI to identifying preferred partners in scientific collaboration. A 

streamlined procedure is provided, to demonstrate the variations and appropriate 

calculations. We then compare the results of implementation for five specific countries 

involved in international scientific collaboration. Despite the different proposals on its 

calculation, we do not observe large differences between the PAI variants, particularly 

with respect to country size. As with any indicator, the selection of a particular variant 

is dependent on the research question. To facilitate appropriate use, we provide 

recommendations for the use of the indicator given specific contexts.  

Keywords: Probabilistic affinity index (PAI); preferred partners; proximity; scientific 

collaboration; bibliometrics; scientometrics. 

1. INTRODUCTION 

Scientific collaboration is the dominant mode of production across most scientific 

disciplines (Adams, 2013; Sugimoto & Larivière, 2018; Chinchilla et al., 2018). The 

rise in collaboration across the last century (Lariviere et al., 2015) has been 

accompanied by a concomitant interest in the study of collaboration practices (e.g., 

Beaver & Rosen, 1978, 1979; Leahey, 2017; Price, 1986; Sonnewald, 2007). These 

studies have focused on three main factors for and consequences of collaboration, 

namely economic, e.g., the need of sharing infrastructures and costs (Beaver & Rosen, 
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1979; Price, 1986); cognitive (Beaver & Rosen, 1978; Edge, 1979; Stokes & Hartley, 

1989); and social factors, e.g., geopolitical, historical, linguistic, and cultural similarity 

(Luukkonen et al., 1992). 

In this study, we explore the Probabilistic Affinity Index (PAI), an indicator used to 

identify the preferred partners of a given country in country-country co-authorship 

networks (e.g., Chinchilla et al., 2018). According to Zitt et al. (2000), “t(T)his indicator 

was designed to account for several factors that drive co-authorship—such as cultural 

and geographical proximities in which common historical experience plays a central 

role” (p. 629)… “Considering all potential partners of a country, PAI reveals the 

association strength of countries in terms of propensities, intensities, or affinities in 

collaboration linkages, which are largely dependent upon different drivers of scientific 

collaboration. The indicator reveals the limitations of size-dependent indicators and is 

particularly useful for highlighting small relationships that might be obscured by other 

indicators” (p. 633).  

Differences in the volume of single and multi-authored papers create some issues when 

people study scientific collaboration (Luukonen et al., 1993). To go beyond absolute 

differences in country sizes and estimate ‘propensities’ or ‘intensities’ of collaboration, 

it is necessary to develop measures which take size into account. Different solutions 

have been proposed in the form of similarity measures for normalization purposes 

within the field of scientometrics. Despite continued debate, there is some consensus 

on the use of probabilistic similarity measures such as PAI, —in which association 

strengths are measured,—instead of theoretic similarity measures (e.g., cosine, 

inclusion index, or Jaccard index) (van Eck & Waltman 2009). However, there is neither 

a single formula nor a single index for applying this algorithm and it is difficult to 

replicate or discriminate among variants. In extant literature, three major algorithms 

have been proposed to define PAI, namely non-overlapping, overlapping, and self-
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exclusive definitions, respectively. The purpose of this paper is to review each of them, 

to show how they are computed, to examine each variant, and to explain their 

differences based on the analysis of a set of countries. For this, we structure the paper 

in two main parts; a conceptual one in which we review previous literature, and an 

empirical one in which we compute and compare the different variants for a selection 

of countries. We then discuss similarities and differences and conclude with a series of 

recommendations on the selection of a PAI variant based on the purpose of the study.  

2. LITERATURE REVIEW 

In this section we review studies on the use of indicators for assessing international 

collaboration, focusing on the different PAI variants. First, we provide a basic overview 

on the main considerations when analyzing scientific collaboration, such as the use of 

co-authorship and counting methods employed. Then, we revise the historical roots of 

the PAI. We conclude this section by discussing the main differences between PAI 

variants. 

2.1. Main considerations for analyzing scientific collaboration in scientometrics 

Scientometric studies typically use co-authorship as a proxy of international 

collaboration between scientometric entities, e.g., individuals, institutions, and 

countries. However, it should be noted that not all collaborative efforts end up in 

publications, co-publishing is not the sole reason for collaborating (Katz & Martin, 

1995), and scientometric studies cannot fully explain the dynamics of scientific 

collaboration (Heinze & Kuhlmann, 2008). Despite this, co-authorship constitutes one 

of the best-documented and studied evidences of relationships among researchers, 

institutions, and countries funding and/or conducting research (Bordons & Gómez, 

2000; Glänzel & Schubert, 2004; Velden, Haque, & Lagoze, 2010). 

Another important issue when analyzing international collaboration is the counting 
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method used. The problem of how to distribute credit for authorship has been 

extensively studied since the early developments of authorship indicators (e.g., 

Frandsen & Nicolaisen, 2010; Harsanyi, 1993; Lindsey, 1980; Waltman, 2016). 

Recently, Gauffriau (2017) published a review of counting methods and arguments for 

use. Among these, the most popular approaches are full and fractional counting methods. 

In cases in which researchers use small datasets, full and fractional counting do not 

make fundamental differences when a co-authorship network is constructed. 

Nevertheless, using distinct strategies with larger datasets might yield in quite different 

conclusions and implications (e.g., Perianes-Rodriguez et al., 2016).  

The advantages and disadvantages of the two methods have been well-discussed (e.g., 

Braun, Glänzel, & Schubert, 1991; Okubo, Miquel, Frigoletto, & Doré, 1992). For 

instance, compared with full counting, a fractional counting strategy could prevent 

misunderstandings or misinterpretation, particularly when comparing output across 

fields. However, an increase of internationally co-authored publications could lead to 

an overall decline on the number of papers (Leydesdorff, 2001). This makes it hard to 

interpret productivity when using fractional counting, as “non-integer weights” are 

employed (Perianes-Rodriguez et al., 2016), leading to counterintuitive results in some 

cases (Park et al., 2016). Also, as an analysis at the international level would lead to a 

zero-sum game, internationalization would be seen as a negative factor when analyzing 

the performance of collaboration programs (Leydesdorff, 1988).  

A stream of literature argues in favor of the full counting method in international 

collaboration. According to Okubo et al. (1992), full counting helps to observe the 

volume of contacts created by scientists, considering a contact as a link that always has 

the same value between any two (or more) countries, regardless of the number of 

participants. Leclerc and Gagne (1994) prefer full to fractional counting:  

“What we feel must truly be measured is less the overall production of collective 

https://www.frontiersin.org/articles/10.3389/frma.2018.00017/full#B20
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scientific work than the actual contribution or participation of national scientific 

communities in the knowledge construction cycle. But international scientific 

cooperation, the coauthored articles of which reflect the scope as well as the real 

extent of exchange networks, has a decisive function and growing share of 

scientific activity” (p. 264) 

Thus, it can be argued that international collaboration should be considered as an 

achievement on all involved actors, and should thus be honored with a full counting 

strategy (Park et al., 2016).  

Both methods involve biases that should be kept in mind when using one or the other. 

The final decision of selecting which counting strategy will be determined by the 

research question addressed. Most of the previous studies employing PAI utilized a full 

counting strategy except Leclerc and Gagne (1992) and Zitt et al. (2000), who argued 

that the two methods yielded similar results.  

2.2. History of the Probabilistic Affinity Index (PAI) and Related Measurement Studies 

Within the field of scientometrics, PAI has been labeled under different denominations 

and applied with slight differences. The key point in most studies is whether an 

indicator reflecting affinity between countries should be sensitive or not to the size of 

countries in the network, as well as geographical and historical factors. In Table 1 we 

briefly summarize the main studies which we consider to be milestones on the 

development of PAI and its different variants in scientometrics. 

Table 1. Main milestones and proposition of affinity indices 

Reference Purpose of the study Contribution 

Frame & Carpenter (1979) 
Analyze international 

collaboration worldwide 

Note the relation between national 

size and proportion of 

internationally co-authored papers 

https://www.frontiersin.org/articles/10.3389/frma.2018.00017/full#B29
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Schubert & Braun (1990) 
Study the intrinsic cooperativity 

of countries 

Propose a "cooperation index" 

which corrects for country size 

Luukonen et al. (1992) 

Propose a method to measure 

affinity between countries 

regardless of their size 

Introduce the "exclusive strategy" 

for asymmetrical values 

Leclerc & Gagné (1994) 

Describe the components of world 

science by using bibliometric 

indicators of collaboration 

Introduce the Weighted Affinity 

Index 

Zitt et al. (2000) 

Characterize the collaboration 

profiles of France, Germany, 

United Kingdom, United States 

and Japan 

Define the PAI as a ratio of 

observed to expected values of 

collaboration normalized by the size 

of both countries becoming a non-

size dependent indicator. 

Yamashita & Okubo (2006) 

Propose the Probabilistic 

Partnership Index (PPI) and 

compare it with the PAI and other 

indicators 

Introduce PPI as a standardized ratio 

between the observed and expected 

number of links, providing another 

view of deviation of the expected 

value 

 

The first study on collaboration using co-authorship to highlight the influence of 

national scientific systems’ size and the proportion of internationally co-authored 

publications was one by Frame and Carpenter (1979). In their study on international 

collaboration, they proposed an index which was then used by Schubert and Braun 

(1990) to establish a general relationship between the number of total and foreign co-

authored publications. This index was used to characterize individual countries by their 

deviations from the general trend. 

Luukkonen et al. (1992) examined which factors influence co-authorship linkages 

among the 30 most prolific countries in terms of number of scientific articles for the 

1981-1986 period. They used two formulas to calculate the observed/expected ratio of 

co-authorship for each pair of countries, indicating their collaboration preferences (pp. 

107, 114). For symmetrical values: (𝐶𝑥,𝑦 ∗ T)/(𝐶𝑥 ∗ 𝐶𝑦) , where 𝐶𝑥,𝑦  refers to the 

number of collaborations between countries 𝑥  and 𝑦 , 𝐶𝑥  total number of 

collaborations country 𝑥  has with other countries considered, 𝐶𝑦  total number of 
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collaborations country 𝑦 has with other countries considered, and T total number of 

collaborations among all countries considered in the network. For asymmetrical 

value 1 : [𝐶𝑥,𝑦 ∗ (T − 𝐶𝑥)]/(𝐶𝑥 ∗ 𝐶𝑦) . 2  The asymmetrical value is referred to as 

“exclusive strategy”. This strategy was further supplemented by Schubert and Glänzel 

(2006), who referred to it as “co-authorship preference index.” 

Luukkonen et al. (1992) conducted a Correspondence Factorial Analysis and a 

Minimum Spanning Tree analysis to study countries’ involvement in international 

scientific networks. In addition, Luukkonen et al. (1993) provided three more possible 

ways to normalize the relative strength: bilateral similarity measures (e.g., Salton’s and 

Jaccard measurements), multilateral similarity measures (e.g., Goodman’s quasi-

independence model), and multidimensional scaling methods. Most of these strategies 

are found to help researchers better interpret the results obtained from relative strength 

measurements. However, some of these measurements tend to underestimate the 

strength of links between small countries with a low scientific output (Luukkonen et al., 

1992, p. 24). The goal of PAI was to account for this. PAI is interpreted as follows: If 

the value of PAI of two countries is above one, then there are more scientific 

collaborations between those two countries than expected, given their size and tendency 

to collaborate internationally. The formulas overemphasize countries that have a highly 

skewed distribution of collaborations with one or two dominant partners. To illustrate 

this, Luukonen et al (1992, p. 115) provide the following example: 

“Many scientists from country A go to country B for doctoral studies. This 

eventually results in many papers coauthored with supervisors in country B. If 

scientists in country A have very few scientific contacts with countries other than 

B, B features as the most important collaborative partner for A. As far as B is 

 

1 Leclerc and Gagne (1994) named this index as Weighted Affinity Index (WAI) that indicated the relative and 

mutual affinity between countries (p. 267). 
2 The annotations here refer to the same items M7 indicates in the later sections. 
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concerned, A seems important, since A’s collaborations are highly concentrated with 

B and, therefore, the observed values far exceed those expected. In addition, the 

fact that those co-authorship matrices are sensitive to variations that depend on 

which countries are included or excluded from the analysis is also highlighted. If 

an important partner or partners of a country have been excluded from the analysis, 

then this country’s position will change.” 

Leclerc and Gagné (1994) employed the proximity index (PRI) to measure the intensity 

of scientific exchanges between two countries based on the number of co-authored 

publications measured and collaborations theoretically expected. Under this idea, they 

defined the proximity index between countries 𝑖 and 𝑗: 𝑃𝑅𝐼(𝑖, 𝑗) =
𝐶𝑖,𝑗∙𝑇

𝐶𝑖∙𝐶𝑗
 , where 𝐶𝑖,𝑗 

= number of articles co-authored internationally by countries 𝑖  and 𝑗 , 𝑇  = total 

number of articles co-authored internationally by all countries in a given dataset, 𝐶𝑖 

(𝐶𝑗) = total number of articles co-authored internationally by country 𝑖 (𝑗) with all 

other countries in the database. PRI with values larger than one reflects “higher 

collaboration intensity between two countries than their respective weight and 

propensity to collaborate would indicate” and, therefore, “shows the symmetry of 

relations between the countries.” (p. 266). Since all definitions in Leclerc and Gagné 

(1994) are based on paper count, there should not be any overlapping of co-author 

relationships; we therefore name their algorithm as a “non-overlapping” method. 

Zitt et al. (2000), on the other hand, used the probabilistic affinity index (PAI) in a 

similar way, but their 𝐶𝑖 (𝐶𝑗) is defined as the total number of “co-authorship linkages” 

of country 𝑖 (𝑗). The major difference between these two approaches is that while the 

latter used co-authorship-level counting, the former uses publication-level counting. 

The number of co-authorships in internationally collaborative publications is often 

much more than that of international co-authorship links (Okubo et al., 1992). 

Compared with the non-overlapping method, Zitt et al. (2000) showed how to calculate 
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PAI under an “overlapping” circumstance. In addition, this paper introduces a key 

aspect in its calculation. The index may be defined with or without auto-co-authorships 

(here, auto-authorships means collaborations within the country, normally the values in 

the diagonals of the international collaboration matrix). Keeping the diagonal makes 

the index dependent on the propensity of countries to internal co-authoring, which 

varies greatly among countries, and may bias comparisons. They used an iterative 

process of recalculation of margins for neutralizing the auto-co-authorship, so that the 

final value in the diagonal becomes neutral (order-zero reconstitution) (p. 633). This 

strategy has also been mentioned in National Science Foundation3 (2012) though in a 

mathematically different style. 

Yamashita and Okubo (2006) measured inter-sectoral cooperation between France and 

Japan. They combined PAI with Salton’s index as a measurement to indicate the relative 

strength between two countries 𝑖 and 𝑗. That is, 𝑟𝑖𝑗 =
𝑛𝑖𝑗

√𝑛𝑖𝑛𝑗
, where 𝑛𝑖𝑗 refers to the 

number of co-authored papers between countries 𝑖  and 𝑗  and 𝑛𝑖  ( 𝑛𝑗  ) the total 

number of papers published by the country 𝑖  (𝑗 ). Note that this measurement is a 

variant of the so-called Ochiai coefficient (Ochiai, 1957; Zhou & Leydesdorff, 2016). 

Nonetheless, there are still debates on how these normalization strategies should be 

proposed in different circumstances (e.g., Ahlgren, Jarneving, & Rousseau, 2003, 2004; 

van Eck & Waltman, 2009; White, 2003). 

Moreover, Yamashita and Okubo (2006) introduced the probabilistic partnership index 

(PPI), a standardized ratio between the observed and expected numbers of links, 

providing another view of deviation from the expected value. PPI is formulated as 

follows: 𝑃𝑃𝐼 = (𝑛𝑖𝑗) −
𝐸𝑎[𝑛𝑖𝑗]

𝜎
  , where 𝐸𝑎[𝑛𝑖𝑗]  and 𝜎  are the expected value and 

standard deviation in the distribution of the number of links between sectors 𝑖 and 𝑗 

 

3 https://www.nsf.gov/statistics/seind12/c0/c0s7.htm 
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under the constraint of the number of articles and current participants, which is 

estimated by the Monte-Carlo method. PPI is a standard score of 𝑛𝑖𝑗  against the 

probability distribution of current participants without any preference for collaborating 

partners (p. 308). Yamashita and Okubo (2006) also compared PPI with Jaccard, Salton-

Ochiai, and PAI indexes, and pointed out that PAI measures the relative strength of each 

co-operative link in comparison with the total linkage, while PPI measures the rareness 

of occurrence of the observed value, in comparison with an assumed distribution of 

links generated by randomly distributing participants within the current articles.  

2.3. Main differences between PAI variants 

Based on the historical account on the different propositions of indicator, we observe 

that all variants revolve around two specific steps on the calculation of the PAI, that is, 

1) processing of the main diagonal of the co-authorship matrix, and 2) normalization 

strategy.  

With regard to the processing of the co-authorship matrix, all variants consider that all 

PAI values among countries listed in the co-authorship matrix should be contained in a 

new matrix. But they differ on the main diagonal of this new matrix, 𝑃𝐴𝐼(𝑖, 𝑖) . As 

mentioned above, in previous PAI studies, we have found at least two ways to address 

this problem: (1) set the main diagonal values to empty or zero values (e.g., Luukkonen 

et al., 1992; Leclerc & Gagne, 1994; Schubert & Glänzel, 2006; Chinchilla-Rodríguez 

et al., 2017); or (2) use an iterative strategy to automatically fill in the main diagonal 

values (Zitt et al., 2000). Finardi and Buratti (2016, p. 438) detailed how an iterative 

strategy should be used in PAI main diagonal processing. They suggest that the final 

output can be defined as the total number of papers published by each country, in 

international collaboration, or only domestic publications4. 

 

4 Inspired by Eom (2008), six approaches could been used in processing main diagonal values in raw co-citation 
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In the case of normalization strategies followed, Zitt et al. (2000) applied an easy way 

to implement the normalization of PAI. The normalized PAI between countries 𝑖 and 

𝑗 , 𝑁_𝑃𝐴𝐼(𝑖, 𝑗) , is calculated as 𝑁_𝑃𝐴𝐼(𝑖, 𝑗) =
𝑃𝐴𝐼(𝑖,𝑗)2−1

𝑃𝐴𝐼(𝑖,𝑗)2+1
 , although a later study 

applied it without power 𝑁𝑃𝐴𝐼(𝑖,𝑗) =
𝑃𝐴𝐼(𝑖,𝑗)−1

𝑃𝐴𝐼(𝑖,𝑗)+1
 (Yamashita & Okubo, 2006). By doing 

either of these, PAI is normalized between -1 and 1, and a zero value of 𝑁_𝑃𝐴𝐼(𝑖, 𝑗) 

indicates a neutral statement (i.e., a baseline/standard). Some studies have followed this 

normalization strategy (e.g., Chinchilla-Rodríguez et al., 2017; Yamashita & Okubo, 

2006), although there are other cases in which no normalization procedure was applied 

(e.g., Schubert & Glänzel, 2006). 

3. DATA AND METHODS 

In the current study, we aim to show how using different variants of PAI would affect 

the results. We first set up a framework on how to use PAI in international scientific 

collaboration studies with a four-step procedure, namely 1) data acquisition and 

preprocessing, 2) raw PAI matrix construction, 3) normalized PAI matrix 

transformation, and 4) results visualization and interpretations. 

 

 

matrices in author co-citation analysis (ACA) that aims to depict scientific intellectual structures: (1) Missing 

values (McCain, 1990; White & McCain, 1998); (2) The mean co-citation count for each author (McIntire, 2007); 

(3) Zero (e.g., Bu, Liu, & Huang, 2016; Bu, Ni, & Huang, 2017); (4) Highest off-diagonal cocitation counts; (5) 

Three highest off-diagonal values divided by two (White & Griffith, 1981); and (6) Raw cocitation frequency. 

Similar to ACA, PAI studies also needs a diagonal matrix containing co-authorship frequencies. Therefore, we 

believe that these strategies should be considered to use and fit in process PAI main diagonal issues in the future 

studies; but determining to use a specific strategy, once again, should depend on what research questions are going 

to be addressed. 
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Figure 1. A four-step framework of using PAI in international scientific collaboration 

studies. 

3.1. Data acquisition and preprocessing 

The first step needed is to collect the data and preprocess it prior to analyzing it. The 

expected output of this step is to construct a matrix containing the number of 

international scientific collaborations among all country/region pairs, that is, the co-

authorship matrix. We annotate the number of countries/regions in the dataset as 𝑁, 5 

and the number of internationally collaborative publications between countries 𝑖 and 

𝑗  as 𝑛𝑖𝑗 . Before constructing the co-authorship matrix, one should determine the 

counting strategy to follow. If full counting is used, this matrix will simply contain all 

values of 𝑛𝑖𝑗. Another thing worth noticing is the main diagonal values of this matrix, 

as discussed in Section 2. 

The dataset used in the current study was derived from the CWTS (Leiden University) 

in-house version of the Web of Science (WoS) database. 13,699,176 distinct records 

between 2008 and 2015 were selected. Authors’ names were disambiguated based on 

Caron and van Eck (2014), after which 15,931,847 unique authors were identified, 

where ~3.7% are affiliated to more than one country. Country names were cleaned and 

 

5 Although most “countries” contained are really countries, some are regions/areas, e.g., Taiwan. 

In this paper, however, for the sake of simplicity, we just name them as “countries” in the following sections. But 

note that they actually mean “countries/regions.” 

1
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preprocessing
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counting

Main diagonal 
processing

2

Raw PAI matrix 
construction

Different definitions 
(overlapping, non-

overlapping, and self-
exclusive)

3

Normalized PAI 
matrix transformation

Discussions on 
whether 

transformation is 
needed

Different strategies on 
normalization

4

Results visualization 
and interpretations
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disambiguated, resulting in a total of 213 countries. We then constructed a 213*213 

international scientific collaboration matrix; each of the elements in this matrix equals 

the number of papers co-authored between each pair of countries. 

In this paper, we applied a full counting strategy for simplicity and better interpretation. 

In terms of the main diagonal strategy, this paper provides two approaches. The first is 

just setting all main diagonal values to zero (e.g., Leclerc & Gagné, 1994; Chinchilla-

Rodríguez et al., 2017). The second approach employs an iterative strategy, as 

mentioned in Finardi and Buratti (2016): specifically, we set all main diagonal values 

to zero at the beginning; then each value of the main diagonal, 𝑛(𝑖, 𝑖), is calculated as 

𝑛(𝑖, 𝑖) =
∑ 𝑛(𝑖,𝑗)𝑗

∑ ∑ 𝑛(𝑗,𝑘)𝑗𝑘
 ; once values of 𝑛(𝑖, 𝑖)  no longer change in a new round of 

calculation, we stop the iteration. The collaboration matrix was iterated 29 times. 

3.2. Raw PAI matrix construction 

Next, we constructed a raw PAI matrix construction following each of the methods. At 

this stage, two main issues should be discussed. First, we should consider which PAI is 

defined. We here apply three different branches of PAI definitions in the current study, 

namely non-overlapping, overlapping, and self-exclusive strategies, respectively. For 

each type of PAIs, there may be more than one similar definition but with slight 

differences. 

Given a dataset containing 𝑁  countries, suppose that the total number of 

internationally collaborative publications is 𝑛𝑎𝑙𝑙, the total number of values in the co-

authorship matrix is 𝑛(… ), the number of internationally collaborative papers between 

countries 𝑖 and 𝑗 is 𝑛𝑖𝑗, and 𝑛𝑖 (𝑛𝑗) represents the total number of internationally 

collaborative papers of country 𝑖 (𝑗). We here define all PAIs based on their categories, 

as shown in Table 2. 

Table 2. Annotations and types for different PAI definitions. 
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Method Annotation Type Reference 

M1 Non_overlapping_0 
Non-

overlapping 
Leclerc & Gagné (1994) 

M2 Overlapping_0 Overlapping Zitt et al. (2000) 

M3 Overlapping_iterative Overlapping 
Proposed by Zitt et al. (2000) and detailed in 

Finardi & Buratti (2016) 

M4 Overlapping_all Overlapping Zitt et al. (2000) 

M5 Overlapping_inter Overlapping Zitt et al. (2000) 

M6 Overlapping_intra Overlapping Zitt et al. (2000) 

M7 1992_variant_P114 Self-exclusive 
First proposed by Luukkonen et al (1992) and 

applied by Schubert & Glänzel (2006) 

 

The non-overlapping PAI refers to Leclerc and Gagné (1994) (annotated as M1). 

Specifically, it is calculated as: 

𝑀1(𝑖, 𝑗)  =
𝑛𝑎𝑙𝑙 ∗ 𝑛𝑖𝑗

𝑛𝑖 ∗ 𝑛𝑗
 

Note that M1 defines the main diagonal of its PAI matrix as zero. Therefore, their 

annotation in Table 2 ends with a “_0” (the same below). 

The second branch, namely overlapping PAIs, is defined by Zitt et al. (2000) but there 

are five different variants due to distinct main diagonal definitions (annotated as M2-

M6): 

𝑀𝑟(𝑖, 𝑗)  =
𝑛(… ) ∗ 𝑛𝑖𝑗

∑ 𝑛(𝑖, 𝑘)𝑘 ∗ ∑ 𝑛(𝑗, 𝑘)𝑘
 

where 𝑟 = 2,3,4,5,6. In M2, all main diagonal values are set as zero in advance. In M3, 

we employ the iterative strategy proposed by Finardi and Buratti (2016) to determine 

the values. In M4-M6, the main diagonal values are set as the country’s total publication 

count, total international collaboration count, and total intra-country collaboration 

count, respectively. All these strategies (M2-M6) have been mentioned and discussed 

in Zitt et al. (2000). NSF (2012) proposed a seemingly different strategy but 

mathematically it is the same as M2-M6. 
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Here we refer to the self-exclusive PAI as M7. This method was first proposed in the 

Page 114 in Luukkonen et al. (1992) but applied by Schubert and Glänzel (2006)6: 

𝑀7(𝑖, 𝑗)  =
𝑛𝑖𝑗 ∗ (𝑛(… ) − ∑ 𝑛𝑖𝑘𝑘 )

∑ 𝑛𝑖𝑘𝑘 ∗ ∑ 𝑛𝑗𝑘𝑘  
 

Essentially M7 is also a variant of the overlapping strategy but possesses a self-

exclusive feature because we can find that in the nominator of M7, ∑ 𝑛𝑖𝑘𝑘   is 

subtracted. 

3.3. Normalized PAI matrix transformation 

For the non-overlapping and overlapping approaches, we use Zitt et al. (2000)’s method 

to normalize the raw PAI result. The normalized PAI for all of the three approaches is 

calculated as follows: 

𝑁𝑃𝐴𝐼 (𝑖, 𝑗) =
𝑃𝐴𝐼 (𝑖, 𝑗)2 − 1

𝑃𝐴𝐼 (𝑖, 𝑗)2 + 1
 

In the case of the M7 approach (self-exclusive), we did not apply any normalization 

strategy but followed the instructions detailed in Schubert and Glanzel (2006). 

3.4. Results visualization and interpretation 

The final step after calculating and normalizing PAIs is to visualize and interpret results. 

While it is possible to rank the PAI of any country, it is not advisable due to the bias 

small countries might introduce. Alternatively, we followed the strategy provided in 

previous studies (Chinchilla-Rodríguez et al., 2018), in which we select a target country 

and then calculate the Affinity index (AFI) for each country pair, rank all countries in a 

descending order, select the top n countries, and rank these n countries by their PAI 

values. This strategy helps to identify countries where it makes sense to analyze their 

 

6 Schubert and Glänzel (2006) used a seemingly-different definition of Luukkonen et al. (1992, p.114), but 

mathematically they are the same. 
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international scientific collaborations using the PAI values. 

In this paper, we show as proof-of-concept the results of five countries: The United 

States, Spain, Singapore, Slovenia, and Kenya. These countries are located in different 

continents and have relatively different scientific sizes, historical roots, levels of 

development, expenditure in research and development (R&D) and income level (see 

in Table 3). We compare the PAI variants of each country by using Pearson and 

Spearman correlations and an R-square regression analysis.
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Table 3. Basic indicators per country. 

Country # of papers 

# of internationally 

collaborative 

papers 

% of internationally 

collaborative papers 

# of collaborative 

countries 

% of R&D investment 

among GDP 
Population 

# of papers per 1000 

hab 

USA 4201368 1,150,830 27.39 211 2.72 318,907,401 13.17 

SPAIN 503427 211,623 42.04 196 1.25 46,480,882 10.83 

SINGAPORE 97045 53,726 55.36 170 2.14 5,469,724 17.74 

SLOVENIA 33356 15,109 45.30 139 2.03 2,061,980 16.18 

KENYA 12436 10,300 82.82 179 0.57 44,863,583 0.28 
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4. RESULTS 

4.1. Statistical comparison of PAI variants 

Table 4 shows two correlation matrices (Pearson and Spearman) for each pair of PAI 

variants. Overall, we observe a strong relationship among all variants of the indicator. 

In some cases, differences are negligible, e.g., Pearson correlations for M2-M3 and M2-

M7 or Spearman for M2-M3 and M2-M5. The biggest variations in Spearman 

correlations are for the US, especially when M1 is compared to the rest of variants. For 

Pearson correlations, however, the biggest differences are found for M1-M7 in Slovenia 

and Kenya; and in Spain and Kenya for M3-M7, M4-M7, M5-M7 and M6-M7.  

 

 Pearson  Spearman 

 USA ESP SGP SLV KEN  USA ESP SGP SLV KEN 

m1-m2 0.85 0.93 0.96 0.97 0.98  0.84 0.95 0.96 0.99 0.99 

m1-m3 0.85 0.93 0.96 0.97 0.98  0.84 0.95 0.96 1.00 0.99 

m1-m4 0.86 0.91 0.97 0.94 0.99  0.87 0.97 0.97 1.00 0.99 

m1-m5 0.90 0.93 0.97 0.95 0.98  0.89 0.97 0.98 1.00 0.99 

m1-m6 0.85 0.92 0.96 0.96 0.98  0.82 0.95 0.95 0.99 0.99 

m1-m7 0.74 0.72 0.84 0.69 0.59  0.84 0.95 0.96 0.99 0.99 

m2-m3 1.00 1.00 1.00 1.00 1.00  1.00 1.00 1.00 1.00 1.00 

m2-m4 0.87 0.95 0.94 0.98 0.99  0.94 0.97 0.99 0.99 1.00 

m2-m5 0.97 0.98 0.98 0.99 0.99  0.99 1.00 1.00 1.00 1.00 

m2-m6 0.89 0.97 0.96 0.98 0.99  0.93 0.97 0.98 0.99 1.00 

m2-m7 0.83 0.65 0.84 0.79 0.60  1.00 1.00 1.00 1.00 1.00 

m3-m4 0.89 0.96 0.94 0.98 0.99  0.94 0.97 0.99 0.99 1.00 

m3-m5 0.98 0.99 0.97 0.99 0.99  0.99 1.00 1.00 1.00 1.00 

m3-m6 0.90 0.97 0.97 0.99 0.99  0.93 0.97 0.98 0.99 1.00 

m3-m7 0.85 0.65 0.84 0.79 0.59  1.00 1.00 1.00 1.00 1.00 

m4-m5 0.94 0.98 0.97 0.99 0.99  0.96 0.98 0.99 1.00 1.00 

m4-m6 0.99 0.99 0.98 0.99 0.99  0.99 1.00 1.00 1.00 1.00 

m4-m7 0.86 0.71 0.87 0.82 0.62  0.94 0.97 0.99 0.99 1.00 

m5-m6 0.93 0.97 0.95 0.99 0.97  0.93 0.97 0.98 0.99 1.00 

m5-m7 0.89 0.70 0.90 0.82 0.65  0.99 1.00 1.00 1.00 1.00 

m6-m7 0.84 0.66 0.82 0.79 0.56  0.93 0.97 0.98 0.99 1.00 
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Table 4. Pearson and Spearman correlations among methods. Legend: M1: non-

overlapping_0; M2: overlapping_0; M3: overlapping_iterative; M4: overlapping_all; M5: 

overlapping_international; M6: overlapping_intra; and M7: self-exclusive. 

Figure 2 shows values (red line) and rank (blue line) for each of the five countries and 

combinations of methods. Overall, M2 and M7 variants are slightly higher than M1 in 

the U.S. However, the largest differences are observed between M3 and M4, and 

between M4 and M7. This means that there is a difference between choosing all 

publications in the matrix (M4), running the iterative process which considers the co-

authorships between countries (M3), or applying the self-exclusive strategy (M7). 

This difference shows how the index is affected by the share of domestic publications 

and the size of the country in the collaboration network. This affects especially 

countries/regions like the United States, but also countries/regions where the 

percentage of domestic collaborations is higher than the international one, such as 

mainland China, Brazil, or Japan (Chinchilla et al., 2019). On the opposite side, we 

observe that when international collaboration is higher than domestic collaboration, 

the effect is mitigated, e.g., Slovenia or Kenya. 

 



 

21 

 

 

Figure 2. Pairwise comparison of PAI variants. Overlapping of value vs. rank distributions. 

Only comparison of pairs with the highest differences are shown, the rest of the comparisons 

are available in the Supplementary Material. 

In Figure 3 we plot each pair of indicators to understand how each country is affected 

and by which approach. The strongest relationships (R2) appear in the less prolific 

countries in our sample, while the lowest are for the U.S. For example, in the 

comparison of the non-overlapping method which considers the number of co-authored 

papers (M1) and the overlapping with diagonal equal to 0 (M2) considering the number 

of co-authorship links, there is a set of countries with higher values in the first (M1) 

than in the second method (M2). In the case of the United States, these countries are, 

for example, Republic of Georgia, Aruba, or St. Lucia (among others) with few numbers 

of publications and more than half of them are with international partners. In Spain, 

there are three countries (Equatorial Guinea, Azerbaijan and Armenia) with a high value 

in regard to the number of co-authored publications in contrast with the number of co-
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authorships. In Singapore, countries like Belize or St. Lucia prove to be preferred 

partners in M1 but not in M2. Overall, all these collaborators countries have a higher 

percentage of international collaborative papers which ranges between 65% and more 

than 90%).  

In the comparison of overlapping with diagonal equal to zero (M2) and iterative process 

(M3), the results show that there is no difference between applying one or another 

indicator. The comparison with M3 and M4 (overlapping iterative vs. overlapping with 

all papers published by the country in the diagonal) demonstrates that mainland China 

and South Korea are preferred partners for the USA taking into account M3 but not M4. 

The same scenario occurs in Singapore where mainland China, Taiwan (China), South 

Korea, and India are the strongest partners in M3 than in M4, as well as in Slovenia 

with Turkey and Israel or in Kenya with the USA. That confirms that iterative process 

mitigates in some extent the effect of a high proportion of domestic collaboration in 

favor of international co-authorship links, which is corroborated with the comparison 

between M5 and M6.  

Indeed, the use of different types of production may affect the results. For example, by 

using all papers to construct the matrix (M4) instead of just international papers (M5) 

or domestic papers (M6), we can observe how some collaborator countries/regions for 

the United States are considered strongest partners in M5 than in M4 (e.g., South Korea, 

Canada, and Israel). In the case of Spain, M5 gives more value to Brazil, Argentina, or 

Mexico. The same case is observed in Singapore for mainland China, Taiwan (China), 

or India with higher values in M5 than M4 and M6, especially for the latter two and 

U.S. In Slovenia, Turkey, Russia, and Italy are better positioned in M5 and, in Kenya, 

the U.S. and India seem more influencer partners applying M5 instead of M4. Taking 

into account domestic production in the diagonal (M6) instead of international 

collaboration (M5), the results are different especially for the smaller countries such as 

Slovenia and Kenya.  
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Finally, the comparison between M1 (non-overlapping) and M7 (self-exclusive) shows 

that Georgia, Armenia, and St. Lucia are stronger collaborative partners for the U.S. in 

M7 than in M1, contrarily to Sweden, which shows Sweden is a strong partner for the 

United States in M1 instead of M7. In the case of Spain, Armenia and Azerbaijan are 

preferred partners in M1 but not in M7. That also occurs with St. Lucia in collaborative 

papers with Singapore; Cyprus and Ukraine with Slovenia; Honduras and Colombia 

with Kenya. 
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 Figure 3. Scatterplot of pairwise comparison of PAI variants. 

Comparison between methods shows that smaller countries/regions are especially more 

affected by non-overlapping method (M1) and that different types of production (all 

papers, domestic or international papers) in the diagonal might affect the results. But 

we do not find any particular pattern among methods to clearly differentiate what is the 

best one for highlighting preferred countries depending on the unit of analysis (co-

authored papers vs co-authorship links). Instead, it would depend on the purposes of 

the study, in which one of them will be applied in order to mitigate the effect of a high 

proportion of domestic or international co-authorship links. 

4.2. Size of countries 

In order to explore the degree to which the indicators are size dependent, we carried out 

a similar comparative exercise to the one in the previous section (data and figures are 

available at the Supporting Information file). Table 5 shows Pearson and Spearman 

correlations for PAI in each method considering total number of papers or the number 

of international collaborative papers by countries. Note that when calculating 

correlation coefficients, we remove all countries whose PAI value is equal to -1 (as 
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these indicate that there are no scientific collaborations between the two countries). As 

observed, most Pearson’s correlations are quite low, regardless of large or small 

countries for both total publications’ counts and international collaborative paper counts 

(below 0.2). There is hardly a linear correlation between PAI and the scientific size of 

countries. Spearman’s correlations are higher, indicating that although they do not 

correlate, there is a relation between PAI and scientific size. Differences between 

Pearson and Spearman are observed for Spain, Slovenia, and Kenya. But there are no 

clear patterns in the set of countries under study and we are not able to generalize these 

results for all countries.  

 

USA ESP SGP SLV KEN USA ESP SGP SLV KEN

m1 0.08 0.02 0.23 0.01 -0.14 -0.03 0.29 0.05 0.32 -0.59

m2 0.23 0.12 0.20 0.00 -0.15 0.03 0.36 0.04 0.31 -0.59

m3 0.21 0.09 0.04 -0.09 -0.23 0.02 0.35 -0.10 0.21 -0.63

m4 -0.07 -0.03 0.18 -0.03 -0.18 -0.17 0.22 0.04 0.31 -0.59

m5 0.17 0.06 0.05 -0.08 -0.21 0.01 0.34 -0.13 0.19 -0.63

m6 -0.07 -0.03 0.23 0.01 -0.14 -0.22 0.18 0.05 0.32 -0.59

m7 0.22 0.12 -0.16 -0.04 0.19 0.02 0.36 -0.04 -0.27 0.61

USA ESP SGP SLV KEN USA ESP SGP SLV KEN

m1 0.05 0.06 0.20 0.03 -0.17 -0.02 0.28 0.05 0.28 -0.56

m2 0.20 0.17 0.18 0.02 -0.18 0.04 0.35 0.04 0.27 -0.56

m3 0.17 0.14 0.02 -0.07 -0.26 0.03 0.34 -0.08 0.17 -0.60

m4 -0.07 0.01 0.15 -0.02 -0.22 -0.14 0.22 0.04 0.26 -0.56

m5 0.14 0.10 0.03 -0.05 -0.23 0.02 0.34 -0.12 0.16 -0.60

m6 -0.07 0.02 0.20 0.03 -0.17 -0.19 0.19 0.05 0.28 -0.56

m7 0.19 0.17 -0.15 -0.07 0.22 0.04 0.35 -0.04 -0.23 0.59

Pearson Spearman

Internationally collaborative papers

All papers

 

Table 5. Pearson (left) and Spearman (right) correlation between size of countries (total and 

in international collaboration) vs PAI results. 

5. DISCUSSION AND CONCLUSIONS 

This study presents a review of the methods used in the scientometric literature for 

examining preferred partners in international collaboration. We provide a review of the 
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related literature, set up a framework on how to use PAI in international scientific 

collaboration studies with a four-step procedure, and compare the results of its 

implementation within specific countries. In this way, we can identify which countries 

appear as preferred/strongest partners in each of the countries analyzed and what are 

the effects of applying different methods (overlapping, non-overlapping and self-

exclusive strategies). We also present a quick exploration on the potential relationship 

between PAI and countries’ scientific size, using their total number of papers and total 

number of internationally collaborative papers as measurements. However, we need to 

further investigate size-independent characteristic of the indicator in future research.  

All previously defined PAI definition strategies are shown in Table 2, in which we can 

find that the non-overlapping method is only paired with zero main diagonal values, 

but for the overlapping methods discussed by Zitt et al. (2000), five strategies are 

provided, i.e., zero, an iterative way, total number of publications, total number of 

international collaborations, and total number of domestic collaborations. This does not 

mean that we cannot calculate a non-overlapping PAI with a non-zero main diagonal 

value; instead, future researchers can attempt to combine different definitions with 

distinct main diagonal values, and even normalization strategies. For instance, one will 

be able to define the non-overlapping PAI with an iterative strategy, but such action 

depends on the question under investigation. 

For scientifically small countries, there should be small differences of applying 

overlapping and self-exclusive strategies, because the “exclusive” value is rather small 

compared with the other part in their formulas. However, for large countries, such 

differences cannot be ignored as should be considered carefully when one applies any 

of these strategies. This is the case for example with other indicators such as the activity 

index. For a more comprehensive review, we refer to (Rousseau, 2018). Therefore, we 

argue that researchers should determine the most appropriate indicator based upon their 

current situations. 
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In other hand, previous studies (e.g., Zitt et al., 2000) use two indices to measure 

network asymmetries in terms of the relative strength of scientific linkages in science 

—Affinity Index (AFI) and Probabilistic Affinity Index (PAI). AFI allows for the 

calibration of relative importance and asymmetries between countries, measuring the 

amount of collaborative papers published jointly and the total number of international 

collaborations of each country. These studies argued that AFI is size-dependent while 

PAI is not. However, such arguments do not clearly define what size-dependency is 

before being established. To be best of our knowledge, none of the previous literature 

has clearly defined mathematically what a size-dependent indicator is, and how to prove 

it step by step. In any case, this is not the focus of our paper which does not offer any 

additional contribution on the mathematic definition. Instead, we present a mini 

empirical study by quantifying the correlation between PAIs the scientific size of 

countries (measured by the total number of publications and total number of 

internationally collaborative publications of a country). We argue that PAIs have no 

linear relationship with scientific size, but do have some other types of relationships, 

per the differences between Pearson’s and Spearman’s correlations. Yet, again, further 

research is required on both theoretical and empirical sides to investigate size-

dependency of PAI more accurately. 

 

This study still requires further analysis in order to overcome other limitations and 

respond to other important questions related to the scientific capacities and socio-

economic conditions of countries. At the methodological level, approaches with 

different counting methods (Park et al., 2016; Perianes-Rodriguez et al., 2016) will be 

analyzed to explore the effect of attributing coauthored publications as a full 

publication to each country or rather proportionally. Furthermore, the current paper 

purely applies PAI into country-country coauthorship networks. Future work can 

consider apply PAI into author- or institution-level coauthorship networks and even 

citation (and co-citation) networks. For instance, when utilizing PAI in an author co-

https://www.frontiersin.org/articles/10.3389/frma.2018.00017/full#B29
https://www.frontiersin.org/articles/10.3389/frma.2018.00017/full#B30
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citation network, one can know more details and have a deeper understanding on the 

dependency/independency of two certain authors in scientific intellectual structures. 

Finally, the analysis is conducted using bibliometric techniques and as always, the 

limitations and assumptions embedded in such analyses apply. Caution is therefore 

recommended in interpreting the findings.  
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