Skip to main content
Log in

An approach for detecting the commonality and specialty between scientific publications and patents

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

Scientific publications and patents are usually viewed as respective proxies of scientific research and technical development. There is considerable effort spent towards establishing topic linkages between science and technology with the lexical- or topic-based approaches. However, due to the heterogeneity between scholarly articles and patents in terms of purpose, statement, and quality, the performance is not satisfactory. To understand the difficulties of topic linkages and improve the performance, a framework is proposed to detect the commonality and specialty between scientific publications and patents from the two perspectives: linguistic characteristics and thematic structures. Extensive experimental results on the DrugBank dataset discover five commonness and five significant differences in terms of linguistic characteristics. For example, nouns are used most frequently among them, and scientific publications contain more word tokens than patent documents, but patents have usually longer sentences and use more clauses. In the meanwhile, common and special thematic structures are also uncovered between scientific publications and patents. The themes about general description in the pharmaceutical field are shared by two heterogeneous resources. The scientific publications tend to explain the disease mechanism and the medication content, while patents bias towards the preparation and practical application of drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. https://www.drugbank.ca/.

  2. https://www.ncbi.nlm.nih.gov/books/NBK25499/#chapter4.EFetch.

  3. http://ops.epo.org/.

  4. https://stanfordnlp.github.io/CoreNLP/index.html.

  5. https://nlp.stanford.edu/software/tregex.shtml.

References

  • Albert, T. (2016). Measuring technology maturity: Operationalizing information from patents, scientific publications and the web. Springer.

    Book  Google Scholar 

  • An, X., Li, J., Xu, S., Chen, L., & Sun, W. (2021). An improved patent similarity measurement based on entities and semantic relations. Journal of Informetrics, 15(2), 101135.

    Article  Google Scholar 

  • An, X., Xu, S., Wen, Y., & Hu, M. (2014). A shared interest discovery model for coauthor relationship in SNS. International Journal of Distributed Sensor Networks, 2014, 1–9.

    Google Scholar 

  • Andy, S. (2007). A general framework for analysing diversity in science, technology and society. Journal of the Royal Society Interface, 15, 707–719.

    Google Scholar 

  • Balasuriya, D., Ringland, N., Nothman, J., Murphy, T., & Curran, J. (2009). Named entity recognition in Wikipedia. In Proceedings of the 2009 workshop on the people’s web meets NLP: Collaboratively constructed semantic resources (People’s Web) (pp. 10–18). Suntec, Singapore.

  • Bassecouolard, E., & Zitt, M. (2004). Patents and publications: The lexical connection. In H. F. Moed, W. Glänzel, & U. Schoch (Eds.), Handbook of quantitative science and technology research: The use of publication and patent statistics in studies of S&T systems (pp. 665–694). Springer.

    Chapter  Google Scholar 

  • Blei, D. M. (2012). Probabilistic topic models. Communications of the ACM, 55, 77–84.

    Article  Google Scholar 

  • Blei, D. M., Ng, A. Y., Jordan, M. I., & Lafferty, J. (2003). Latent Dirichlet allocation. Journal of Machine Learning Research, 3, 993–1022.

    MATH  Google Scholar 

  • Brants, T. (2000). TnT: A statistical part-of-speech tagger. In Proceedings of the sixth conference on applied natural language processing (pp. 224–231). Somerset: ACL.

  • Brooks, H. (1994). The relationship between science and technology. Research Policy, 23(5), 477–486.

    Article  Google Scholar 

  • Brown, P. F., Pietra, V. J. D., Pietra, S. A. D., & Mercer, R. L. (1993). The mathematics of statistical machine translation: Parameter estimation. Computational Linguistics, 19, 263–311.

    Google Scholar 

  • Calero-Medina, C., & Noyons, E. C. M. (2008). Combining mapping and citation network analysis for a better understanding of the scientific development: The case of the absorptive capacity field. Journal of Informetrics, 2(4), 272–279.

    Article  Google Scholar 

  • Chen, C., Buntine, W., Ding, N., Xie, L., & Du, L. (2015). Differential topic models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37, 230–242.

    Article  Google Scholar 

  • Chen, L., Xu, S., Zhu, L., Zhang, J., Lei, X., & Yang, G. (2020). A deep learning based method for extracting semantic information from patent documents. Scientometrics, 125(1), 289–312.

    Article  Google Scholar 

  • Christopher, F. (1989). A stop list for general text. ACM SIGIR Forum, 24, 19–21.

    Article  Google Scholar 

  • Dubaric, E., Giannoccaro, D., Bengtsson, R., & Ackermann, T. (2011). Patent data as indicators of wind power technology development. World Patent Information, 33(2), 144–149.

    Article  Google Scholar 

  • Ellis, R., & Yuan, F. (2004). The effects of planning on fluency, complexity, and accuracy in second language narrative writing. Studies in Second Language Acquisition, 26, 59–84.

    Article  Google Scholar 

  • Ferris, D. R. (1994). Lexical and syntactic features of ESL writing by students at different levels of L2 proficiency. TESOL Quarterly, 28, 414–420.

    Article  Google Scholar 

  • Forti, E., Sobrero, M., & Franzoni, C. (2007). The effect of patenting on the networks and connections of academic scientists (pp. 272–284). Social Science Electronic Publishing.

    Google Scholar 

  • Gao, H., Tang, S., Zhang, Y., Jiang, D., Wu, F., & Zhuang, Y. (2012b). Supervised cross-collection topic modeling. In Proceedings of the 20th ACM international conference on multimedia (pp. 957–960). New York: ACM.

  • Gao, J. P., Ding, K., Teng, L., & Pang, J. (2012a). Hybrid documents co-citation analysis: Making sense of the interaction between science and technology in technology diffusion. Scientometrics, 93, 459–471.

    Article  Google Scholar 

  • Gazni, A. (2011). Are the abstracts of high impact articles more readable? Investigating the evidence from top research institutions in the world. Journal of Information Science, 37, 273–281.

    Article  Google Scholar 

  • Gerard, S. (1963). Associative document retrieval techniques using bibliographic information. ACM, 10, 440–457.

    MATH  Google Scholar 

  • Gerlach, M., Shi, H., & Amaral, L. A. N. (2019). A universal information theoretic approach to the identification of stopwords. Nature Machine Intelligence, 1, 606–612.

    Article  Google Scholar 

  • Glänzel, W., & Meyer, M. (2003). Patents cited in the scientific literature: An exploratory study of ‘reverse’ citation relations. Scientometrics, 58, 415–428.

    Article  Google Scholar 

  • Griffiths, T. L., Steyvers, M., Blei, D. M., & Tenenbaum, J. B. (2004). Integrating topics and syntax. In Advances in neural information processing systems 17 (pp. 537–544). Vancouver, Canada.

  • Hartley, J., Pennebaker, J. W., & Fox, C. L. (2003). Abstracts, introductions and discussions: How far do they differ in style? Scientometrics, 57, 389–398.

    Article  Google Scholar 

  • Hofmann, T. (1999). Probabilistic latent semantic indexing. In Proceedings of the international ACM conference on research and development in information retrieval (SIGIR’99) (pp.50–57). New York: ACM.

  • Hua, T., Lu, C.-T., Choo, J., & Reddy, C. K. (2020). Probabilistic topic modeling for comparative analysis of document collections. ACM Transactions on Knowledge Discovery from Data, 14, 24:1-24:27.

    Article  Google Scholar 

  • Huang, M. H., Yang, H. W., & Chen, D. Z. (2015). Increasing science and technology linkage in fuel cells: A cross citation analysis of papers and patents. Journal of Informetrics, 9, 237–249.

    Article  Google Scholar 

  • Kim, H., Choo, J., Kim, J., Reddy, C. K., & Park, H. (2015). Simultaneous discovery of common and discriminative topics via joint nonnegative matrix factorization. In Proceedings of the ACM international conference on knowledge discovery and data mining (pp. 567–576). New York: ACM.

  • Kormos, J. (2011). Task complexity and linguistic and discourse features of narrative writing performance. Journal of Second Language Writing, 20, 148–161.

    Article  Google Scholar 

  • Lee, K., Mi, Y., Kim, M., Ji, Y., & Son, J. (2014). Abstract LB-100: Discovery of HM61713 as an orally available and mutant EGFR selective inhibitor. Cancer Research, 74(19 Supplement), LB-100.

    Google Scholar 

  • Lee, M., Lee, S., Kim, J., Seo, D., Kim, P., Jung, H., Lee, J., Kim, T., Koo, H. K., & Sung, W. K., et al. (2011). Decision-making support service based on technology opportunity discovery model. In T.-H. Kim (Ed.), FGIT-UNESST 2011 (Vol. 264, pp. 263–268). Springer.

    Google Scholar 

  • Lu, C., Bu, Y., Wang, J., Ding, Y., Torvik, V., Schnaars, M., et al. (2019). Examining scientific writing styles from the perspective of linguistic complexity. Journal of the Association for Information Science and Technology, 70, 462–475.

    Article  Google Scholar 

  • Lu, X. (2010). Automatic analysis of syntactic complexity in second language writing. International Journal of Corpus Linguistics, 15(4), 474–496.

    Article  Google Scholar 

  • Makrehchi, M., & Kamel, M. S. (2008). Automatic extraction of domain-specific stopwords from labeled documents. In Proceedings of the 30th European conference on IR research (pp. 222–233). Berlin: Springer.

  • Makrehchi, M., & Kamel, M. S. (2017). Extracting domain-specific stop words for text classifiers. Intelligent Data Analysis, 21, 39–62.

    Article  Google Scholar 

  • Montemurro, M. A., & Zanette, D. H. (2010). Towards the quantification of the semantic information encoded in written language. Advances in Complex Systems, 13, 135–153.

    Article  MATH  Google Scholar 

  • Narin, F., Hamilton, K. S., & Olivastro, D. (1997). The increasing linkage between U.S. technology and public science. Research Policy, 26, 317–330.

    Article  Google Scholar 

  • Ortega, L. (2003). Syntactic complexity measures and their relationship to L2 proficiency: A research synthesis of college-level L2 writing. Applied Linguistics, 24, 492–518.

    Article  Google Scholar 

  • Paul, M. (2009). Cross-collection topic models: Automatically comparing and contrasting text. Urbana, 51, 61801.

    Google Scholar 

  • Paul, M., & Girju, R. (2010). A two-dimensional topic-aspect model for discovering multi-faceted topics. In Proceedings of the 20th national conference on artificial intelligence (pp. 545–550). CA: AAAI.

  • Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE, 77, 257–286.

    Article  Google Scholar 

  • Sætre, R., Yoshida, K., Yakushiji, A., Miyao, Y., Matsubayashi, Y., & Ohta, T. (2007). AKANE system: protein-protein interaction pairs in the BioCreAtlvE2 challenge, PPI-IPS subtask. In Proceedings of the 2nd BioCreative challenge evaluation workshop (pp. 209–212). Madrid, Spain.

  • Salton, G., & Yang, C. S. (1973). On the specification of term values in automatic indexing. Journal of Documentation, 29, 351–372.

    Article  Google Scholar 

  • Schmiedel, T., Müller, O., & vom Brocke, J. (2019). Topic modeling as a strategy of inquiry in organizational research: A tutorial with an application example on organizational culture. Organizational Research Methods, 22(4), 941–968.

    Article  Google Scholar 

  • Seki, K., & Mostafa, J. (2005). An application of text categorization methods to gene ontology annotation. In Proceedings of the 28th annual international ACM SIGIR conference on research and development in information retrieval (pp. 138–145). New York: ACM.

  • Shibata, N., Kajikawa, Y., & Sakata, I. (2010). Extracting the commercialization gap between science and technology—Case study of a solar cell. Technological Forecasting and Social Change, 77, 1147–1155.

    Article  Google Scholar 

  • Shibata, N., Kajikawa, Y., & Sakata, I. (2011). Detecting potential technological fronts by comparing scientific papers and patents. Foresight, 13, 51–60.

    Article  Google Scholar 

  • Takano, Y., Mejia, C., & Kajikawa, Y. (2016). Unconnected component inclusion technique for patent network analysis: Case study of internet of things-related technologies. Journal of Informetrics, 10(4), 967–980.

    Article  Google Scholar 

  • Tsuruoka, Y., Tateishi, Y., Kim, J.-D., Ohta, T., McNaught, J., Ananiadou, S., & Tsujii, J. (2005). Developing a robust part-of-speech tagger for biomedical text. In Proceedings of the 10th Panhellenic conference on informatics (pp. 382–382). Berlin: Springer.

  • Tytgat, G. (2001). Shortcomings of the first-generation proton pump inhibitors. European Journal of Gastroenterology & Hepatology, 13(Suppl 1), S29-33.

    Google Scholar 

  • van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84, 523–538.

    Article  Google Scholar 

  • Verbeek, A., Debackere, K., & Luwel, M. (2002). Linking science to technology: Using bibliographic references in patents to build linkage schemes. Scientometrics, 54, 399–420.

    Article  Google Scholar 

  • Wang, C., Thiesson, B., Meek, C., & Blei, D. (2009). Markov topic models. In Proceedings of the 12th international conference on artificial intelligence and statistics (pp. 583–590).

  • Wang, G., & Guan, J. (2011). Measuring science–technology interactions using patent citations and author-inventor links: An exploration analysis from Chinese nanotechnology. Journal of Nanoparticle Research, 13, 6245–6262.

    Article  Google Scholar 

  • Wang, Z., Xu, S., & Zhu, L. (2018). Semantic relation extraction aware of N-gram features from unstructured biomedical text. Journal of Biomedical Informatics, 86, 59–70.

    Article  Google Scholar 

  • Xu, H., Winnink, J., Yue, Z., Liu, Z., & Yuan, G. (2020). Topic-linked innovation paths in science and technology. Journal of Informetrics, 14(2), 101014.

    Article  Google Scholar 

  • Xu, S., An, X., Zhu, L., Zhang, Y., & Zhang, H. (2015). A CRF-based system for recognizing chemical entity mentions (CEMs) in biomedical literature. Journal of Cheminformatics, 7(Suppl 1), S11.

    Article  Google Scholar 

  • Xu, S., Hao, L., An, X., Yang, G., & Wang, F. (2019b). Emerging research topics detection with multiple machine learning models. Journal of Informetrics, 13(4), 100983.

    Article  Google Scholar 

  • Xu, S., Hao, L., An, X., Zhai, D., & Pang, H. (2019c). Types of DOI errors of cited references in Web of Science with a cleaning method. Scientometrics, 120(3), 1427–1437.

    Article  Google Scholar 

  • Xu, S., Hao, L., Yang, G., Lu, K., & An, X. (2021). A topic models based framework for detecting and forecasting emerging technologies. Technology Forecasting and Social Change, 162, 120366.

    Article  Google Scholar 

  • Xu, S., Liu, J., Zhai, D., An, X., Wang, Z., & Pang, H. (2018). Overlapping thematic structures extraction with mixed-membership stochastic blockmodel. Scientometrics, 117(1), 61–84.

    Article  Google Scholar 

  • Xu, S., Qiao, X., Zhu, L., Zhang, Y., Xue, C., & Li, L. (2016). Reviews on determining the number of clusters. Applied Mathematics & Information Sciences, 10(4), 1493–1520.

    Article  Google Scholar 

  • Xu, S., Zhai, D., Wang, F., An, X., Pang, H., & Sun, Y. (2019a). A novel method for topic linkages between scientific publications and patents. Journal of the Association for Information Science and Technology, 70(9), 1026–1042.

    Article  Google Scholar 

  • Xu, S., Zhu, L., Qiao, X., Shi, Q., & Gui, J. (2012). Topic linkages between papers and patents. In Proceedings of the 4th international conference on advanced science and technology (pp. 176–183).

  • Zhai, C., Velivelli, A., & Yu, B. (2004). A cross-collection mixture model for comparative text mining. In Proceedings of the 10th ACM SIGKDD international conference on knowledge discovery and data mining (pp. 743–748). New York: ACM.

  • Zhang, H., Xu, S., & Qiao, X. (2014). Review on topic models integrating intra- and extra-features of scientific and technical literature. Journal of the China Society for Scientific and Technical Information, 33, 1108–1120.

    Google Scholar 

Download references

Acknowledgements

This work was supported partially by the National Natural Science Foundation of China (Grant Numbers 72074014 and 72004012). Our gratitude also goes to the anonymous reviewers and the editor for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin An.

Appendix

Appendix

See Tables 11 and 12.

Table 11 Journals and abstract restrictions corresponding to the top 20% papers that appear most frequently
Table 12 Two-tailed independent sample t-test results of 11 language complexity indicators

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, S., Li, L., An, X. et al. An approach for detecting the commonality and specialty between scientific publications and patents. Scientometrics 126, 7445–7475 (2021). https://doi.org/10.1007/s11192-021-04085-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-021-04085-9

Keywords

Navigation