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Abstract
In 1751, Jean le Rond d’Alembert had a dream: “to make a genealogical or encyclopedic 
tree which will gather the various branches of knowledge together under a single point 
of view and will serve to indicate their origin and their relationships to one another”. In 
this paper, we address the question identifying the branches of science by taking advan-
tage of the massive digitization of scientific production. In the framework of complex sys-
tems studies, we first formalize the notion of level and scale of knowledge dynamics. Then, 
we demonstrate how we can reconstruct a reasonably precise and concise multi-scale and 
multi-level approximation of the dynamical structures of Science: phylomemies. We intro-
duce the notion of phylomemetic networks—projections of phylomemies in low dimen-
sional spaces that can be grasped by the human mind—and propose a new algorithm to 
reconstruct both phylomemies and the associated phylomemetic networks. This algorithm 
offers, passing, a new temporal clustering on evolving semantic networks. Last, we show 
how phylomemy reconstruction can take into account users’ preferences within the frame-
work of embodied cognition, thus defining a third way between the quest for objective 
“ground truth” and the ad-hoc adaptation to a particular user’s preferences. The robustness 
of this approach is illustrated by several case studies.
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Introduction

The shapes of science

In 1751, Jean le Rond d’Alembert, in his introduction of the first French Encyclopédie, 
stated his ambitions “to make a genealogical or encyclopedic tree which will gather the 
various branches of knowledge together under a single point of view and will serve to indi-
cate their origin and their relationships to one another”.1 Since then, many disciplines have 
sought to produce a comprehensive representation and understanding of the knowledge 
mankind has produced to date, from the history and philosophy of science (Chavalarias 
et al. 2021) to the emerging field of science mapping (Chen 2017).

Science can be defined quite generically as “(1) body of knowledge, (2) method, and 
(3) way of knowing” (Abell and Lederman 2007). This body of knowledge, resulting from 
the distributed interactions of thousands of scientists over the years, is nowadays almost 
entirely digitized, making large-scale quantitative analysis possible.

In this article, we will give a formal definition to the notion of “branch of knowledge” in 
the framework of co-word analysis. We demonstrate how we can reconstruct, from its mas-
sive body of knowledge, a reasonably precise and concise approximation of the structure 
of Science that can be grasped by the human mind and explored interactively (an operation 
called phenomenological reconstruction2 (Bourgine et al. 2009; Chavalarias et al. 2021). 
We will then apply this approach to several case studies.

Levels and scales in knowledge dynamics

Scientific research domains are sustained by entangled socio-economic processes that 
guide the progress of science. Such complex systems display structures at all scales embed-
ded in a hierarchical organization (Chavalarias 2020). Their description mobilizes the 
notions of ‘levels’ and ‘scales’, “level being generally defined as a domain higher than 
‘scale”’ and ‘scale’ referring to the structural organization within a level (Li et al. 2005).3

The method presented in this paper makes a clear distinction between these notions 
of level and scale in the phenomenological reconstruction of knowledge dynamics.4 
The choice of a level of observation determines the range of intrinsic complexity of the 
dynamic entities we want to observe, the choice of a scale defines the extrinsic complexity 
of their description.5 One of the main difference between level and scale is that the con-
cept of level is ontologically linked to the notion of time—since the components of a level 

1  “Former un Arbre généalogique ou encyclopédique qui les rassemble sous un même point de vûe, & qui 
serveà marquer leur origine & les liaisons qu’elles ont entre elles”.
2  Phenomenological reconstruction is the process of choosing the appropriate data to be collected about 
phenomena and pre-structuring them to allow for a more comprehensive understanding in subsequent 
analyses. Ideally, phenomenological reconstruction may provide us with candidate concepts and relations, 
which, when integrated into modeling, can then serve as a basis for the human experimental work.
3  In biology for example, the choice of level of observation determines what the main entities under study 
(organs, cells, genes, etc.) are, while the choice of a scale determines the smallest resolution adopted to 
describe these entities.
4  Note that some scholars use the term ‘resolution’, ‘zoom’ or ‘granularity’ instead of ‘scale’.
5  Are we only interested in the main concepts of the fields or in a finer granularity of a myriad of terms? 
Do the details of the interactions between terms matter? Does the scientific field under study evolve linearly 
or with ramifications? etc.
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derive their unity from some underlying dynamic proces–; while the notion of scale does 
not necessarily imply time. We propose thereafter a quantitative definition of these notions 
of level and scale of observation.

Related work

Mapping science and knowledge

In order to identify the main areas concerned by the domains of science mapping and 
knowledge mapping, we have performed a co-word analysis on a corpora Dmaps of 14k 
related documents (see SI B for details). Figure 1 reveals the three major scientific orienta-
tions that structure this literature:

–	 The bibliometrics approach (on the left) aims at the analysis of large corpora of publi-
cations for qualifying the underlying socio-semantic structures,

–	 The information retrieval and documents classification approaches (on the right) aim at 
finding optimal methods for interacting with large corpora of publications,

–	 The education science and cognition approaches (at the top) focus on methods that 
enhance the capacities of learners.

Fig. 1   Map of the domain of science and knowledge mapping ( Dmaps : 13,844 related publication meta-data 
extracted from the Web of Science (see SI B for details). This map reveals the three main research areas 
concerned with knowledge mapping: bibliometrics (on the left), information retrieval & documents classifi-
cation (on the right) and education science (at the top). Generated with Gargantext and spatialized in Gephi 
(Bastian et al. 2009) with the Force Atlas algorithm (Jacomy et al. 2014). An interactive version of this map 
is available at http://​maps.​garga​ntext.​org/​maps/​scien​cemaps and a stand alone version can be downloaded 
from David Chavalarias and Delanoe (2021)

http://maps.gargantext.org/maps/sciencemaps
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The question of mapping the dynamics of knowledge has been mainly addressed by 
the first two research areas that include sub-areas described by Fig. SI 2, each of them 
having known recent developments regarding evolution, dynamics and temporality 
concerns. 

1.	 Bibliometrics is divided into two major components:

–	 Citation and co-citation analysis (CA) Primarily focused on the assessment of 
scientific output (Garfield 1972), it quickly diversified with the analysis of large 
citation landscapes through methods such as co-citation and bibliographic 
coupling (Kessler 1963; Small 1973). Later on, following the creation of the 
Web, these methods were generalized as part of the study of hyperlinked data 
(Kleinberg 1999). Methods to describe conceptual structures of science such as 
research fronts, hot topics and trends, etc. White and McCain (1998) and Börner 
et al. (2003) came at the forefront of this research domain. Over the last decade, a 
growing number of contributions have proposed temporal reconstructions of the 
citation landscape (Chen 2006; Claveau and Gingras 2016; Cambe et al. 2020).

–	 Co-word analysis (CWA) is a bottom-up approach first developed by sociologists 
in the 1980s (Callon et al. 1986) to reconstruct the dynamics of research themes 
out of words co-occurrence. It has developed in the last decade into a generic 
approach to map knowledge dynamics in unstructured corpora (Chavalarias and 
Cointet 2013; Wang et  al. 2014; Rule et  al. 2015). This methodology has the 
advantage of being suitable to any kind of textual corpora regardless of structure.

	    Citation and co-word analysis research areas share common objectives, namely to 
understand the structures of a body of knowledge. They form a toolkit that is at the core 
of the science of science. Their parallel development has quickly paved the way to hybrid 
research between co-word and citation analysis (Braam et al. 1991; Boyack and Klavans 
2010) or social and semantic networks (Roth and Cointet 2010). Finally, the growth of 
scientific databases has stimulated the visualization of wide citation landscapes (Small 
1997) or complex atlases of sciences (Börner 2010, 2015).

2.	 Information retrieval (IR) has mobilized latent semantic analysis and topic modeling in 
the early 2000s at the instigation of a community of statisticians (Blei et al. 2003). One 
of the aim was to adopt a “bottom-up” approach to structure collections of documents 
retrieved by queries. The use of topic modeling mostly focuses on document classifica-
tion (Wei and Croft 2006), recommendation (Wang and Blei 2011) or sentiment analysis 
(Lin and He 2009). Some scholars also proposed methods to organize a set of retrieved 
documents according to their topics and temporal relationships (Liao and Qian 2019; 
Shahaf et al. 2012). More recent works started to tackle the mapping of scientific issues 
and their dynamics at the scale of a research domain (Millar et al. 2009; Gohr et al. 2009; 
Cui et al. 2011; Shahaf et al. 2013; Yang et al. 2017; Jähnichen et al. 2018).

More recently, the idea of working on latent semantic spaces has been taken up by the 
research field of machine learning with approaches such as words embedding (Tshitoyan 
et al. 2019; Tacchella et al. 2020). It has been mostly used for the purpose of informa-
tion retrieval and documents classification (which is the reason why it appears in the 
same group as LDA in Fig. 1), but can also be a useful tool to analyze science’s evo-
lution, mostly at the micro-level of terms-to-terms similarities (Palmucci et  al. 2019; 
Tshitoyan et al. 2019; Tacchella et al. 2020).
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For this paper, we have chosen not to make any assumptions about the structure of the 
data and to place ourselves in the framework of co-word analysis (Callon et al. 1983) where 
the only requirement is the existence of timestamped text strings. When other meta-data 
are available, this method will definitely benefit from being complemented or hybridized 
with other approaches such as citation analysis and co-author analysis.

Phenomenological reconstruction of science with phylomemies

To observe and further understand through modeling a complex object O ∈ O , we first 
select the properties to be observed and measured, then reconstruct from the data collected 
those properties and their relations as a formal object R ∈ R described in a high-dimen-
sional space. Finally, some dimension reduction is applied to R to get a human-readable 
representation in a space V.

The chain O ⟼ R ⟼ V defines what is called phenomenological reconstruction 
(Bourgine et al. 2009; Chavalarias et al. 2021). The quality of a phenomenological recon-
struction is measured by its ability to propose, from the raw data, representations in V that 
make sense to us and provide affordances for modeling and conceptual understanding.6

In this paper, we will work with a methodology called phylomemy reconstruction 
(Chavalarias and Cointet 2013).

We will define formally a category of meanings conveyed by phylomemies (Chava-
larias and Cointet 2013) as phenomenological reconstructions. We will then show how this 
definition can allow users to naturally grasp the multi-level and multi-scale structure of 
knowledge dynamics through the definition of (1) O ⟼ R , the operator that reconstructs 
a multi-level and multi-scale structure, and (2) R ⟼ V , the projector that selects a level 
of observation for multi-scale exploration. At the same time, we make tangible the differ-
ent shapes generated by science, which can be visualized with an appropriate free software 
(cf. Lobbé et al. 2021). More discussions on the relations between the phenomenological 
reconstruction of science with phylomemies, formal modeling and history and philosophy 
of science can be found in Chavalarias et al. (2021).

Materials and methods

Generic workflow of phylomemy reconstruction

The workflow of phylomemy reconstruction (cf. Fig. 2 and Chavalarias and Cointet 2013) 
takes as input a large set of documents D produced over a period of time T  (the raw data in 
O ), and provides as output a structure that characterizes, at a given spatio-temporal resolu-
tion, the transformations of the knowledge domains covered by D . An example of such out-
put can be seen in the phylomemy of glyphosate-related academic literature (Fig. 3) and is 
detailed as a case study in “Reconstruction of the history of a research domain: the exam-
ple of glyphosate research” section.

6  Even though assumptions about the underlying processes that have generated the data could help to find 
the relevant phenomenological reconstruction method, a phenomenological reconstruction does not make 
such assumptions.
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This workflow uses advanced text-mining and complex networks analysis. It can be 
roughly decomposed into four operators � = 4�◦

3�◦
2�◦

1� that correspond to four main 
steps (see Fig. 2): 

1.	 Indexation. The core vocabulary of D is extracted as a list L = {ri |i ∈ I} , where ri are 
groups of terms (thereafter called roots) conveying the same meaning according to the 
analyst.7 An ordered series T∗ = {Ti}1≤i≤K , Ti ⊂ T  , of sub-periods of T  is defined to 
determine the temporal resolution of the reconstruction. Co-occurrences of roots within 
the documents are then processed per period of time.

2.	 Similarity measures. Each period-dependent, root-to-root co-occurrence matrix is 
transformed into a root-to-root similarity matrix after the appropriate similarity meas-
ure has been chosen. This choice should be oriented by the research question at stake, 
as described for example in Dias et al. (2008) or Weeds and Weir (2005). Depending 
on the question, two reconstructions using two distinct classes of similarity measures 
may prove complementary (see also SI. B).

3.	 Fields detection and clustering. Within each period, the completion of 2�◦
1� results in 

time series of networks of roots similarities. A community detection algorithm8 is then 
applied to identify, within these networks and for each period of time Ti ⊂ T  , impor-
tant sub-units constituting “fields of knowledge”, i.e. dense networks of multi-terms 
characterizing key research questions. Research on community detection algorithms 
has been very prolific (Fortunato 2010) and several algorithms with different intrinsic 
spatial resolution could potentially be suitable at this step. The result of fields detection 
is a time series of clustering C∗ on roots Cj computed over T∗ : C∗ = {CT |T ∈ T

∗} where 
C
T = {Cj|j ∈ JT , } and Cj = {ri |ri ∈ L, i ∈ Ij ⊂ I} . We will note C =

⋃
CT∈C∗ C

T the set 
of all clusters over all periods.

4.	 Inter-temporal matching. Once the fields of knowledge have been identified as a tem-
poral series of clusters, inter-temporal matching reconstructs the lineage between these 
clusters. This inter-temporal matching operation brings time into play. Consequently, 
this is where the notion of level arises. The result of 4� is an evolving structure describ-
ing the evolution of large knowledge domains and it has been called a phylomemetic 
network (Chavalarias and Cointet 2013).

Fig. 2   Workflow of phylomemy reconstruction from raw data (digitized textual corpora) to global patterns. 
The output is a set of phylomemetic branches where each node is constituted by a network of terms describ-
ing a research field. These nodes are a proxy of scientific fields and can have different statuses: emergent, 
branching, merging, declining. Source: Chavalarias and Cointet (2013)

7  These groups could be obvious e.g. {decision-making processes, decision making process, decision mak-
ing processes} or more customized to the analyst’s point of view, e.g. {climate change, global warming}.
8  Also called graph clustering algorithm.
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Steps 1 to 3 are very common steps in science and knowledge mapping literature in which, 
at each stage, several options are available to the modeler according to his/her initial 
research questions.9 In the following sections, we will focus on 4� and how it can convey 
the notions of level and scale, setting arbitrary parameters for 1� to 3� . The reader inter-
ested in these particular steps can find more examples and technical details in Chavalarias 
and Cointet (2013), Cointet and Chavalarias (2008) and Chavalarias and Cointet (2008).

Fig. 3   The visualization of the phylomemy Dglyphosate (16,655 documents) at the level � = 0.8 between 
1995 and 2020 with branches smaller than 3 filtered out. Each connected dot represents a specific field of 
research described by several key-words (as displayed for example in the magnified area. Inter-temporal 
matching between fields is represented by vertical links and a group of connected fields defines a branch of 
science. The branch highlighted by a dotted box starts in 2006 and deals with majors negative side-effects 
of glyphosate-based products. Details about this case study are given in “Reconstruction of the history of 
a research domain: the example of glyphosate research” section. An interactive version of this visualiza-
tion, available online at http://​maps.​garga​ntext.​org/​phylo/​glyph​osate, can be downloaded from the archives 
(David Chavalarias and Delanoe 2021) (data), (Quentin Lobbe and Chavalarias 2021) (explorer). See Lobbé 
et al. (2021) for details

9  For example, step 1.2 can proceed from advanced text-mining on the corpora, or be made via external 
ontologies or thesaurus (e.g. PubMed Mesh).

http://maps.gargantext.org/phylo/glyphosate
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Method of reconstruction of the dynamics

The most general assumption on the evolution of fields of knowledge, subsequently defined has 
roots clusters, is that some are likely to emerge, split, merge or die (Palla et al. 2007; Rossetti 
and Cazabet 2018). The problem can be formulated as follows: find, for any cluster CT at period 
T, the combination of clusters from previous periods, if any, that could best account for the pres-
ence of CT at T (the ‘parents’ of CT ), as well as the set of clusters from subsequent periods that 
could be the continuation of cluster CT (the children of CT ). This is achieved through the defini-
tion of some parentage metrics and the selection of the most relevant ‘parents’ and ‘children’ for 
each cluster, when they exist. From a conceptual point of view, we would like these inter-tem-
poral matching to allow us to define lineages of scientific fields that would coherently describe 
the evolution of scientific knowledge. These lineages would constitute the branches of science.

There is however a subtlety here. Once the parentage metrics is chosen, computing the 
weighted inter-temporal associations between clusters is the easy part. The hard part is to 
choose which ones to keep.

First, since filtering out some inter-temporal associations has a direct impact on the 
overall connectivity of the dynamic structure, and consequently on the number of branches, 
the interpretation of the final result depends strongly on the pruning procedure.

Second, since the goal is to highlight the continuities in the evolution of clusters, par-
ents and children of a particular cluster will be looked for as close in time as possible. 
The trade-off between pruning weak inter-temporal associations and highlighting continui-
ties in evolution is not straightforward. When allowing matching between non-consecutive 
periods, this trade-off directly influences the average time difference between related fields 
and the global understanding of the final output.

As we will see, this entanglement between the granularity of the macro-structures 
revealed by a temporal reconstruction and the timescale of inter-temporal matching is 
where the multi-level aspect of phylomemy comes into play. We will now introduce the 
main concepts that will be used to formalize the notions of levels and branch of science.

Upstream and downstream inter‑temporal matching

Let � ∶ C × P(C) → [0, 1] be a similarity measure that defines the ‘strength of association’ 
between any clusters CT ∈ C and any set of clusters {Cj}j ⊂ P(C) belonging to strict ante-
rior periods T ′ (noted T ′ ≺≺ T).10 Chavalarias and Cointet (Chavalarias and Cointet 2013) 
proposed to find for every period T ∈ T

∗ , for every cluster CT computed over the period T 
and for every threshold � ≥ 0 the closest satisfactory set of ‘parents’ 4𝛷≺

𝛿
(CT ) according to 

�:

where:

–	 𝜅≺

CT
= argmax𝛥(CT ,𝜅)[ argmin{𝜏(CT ,𝜅)|𝜅⊂CT�≺≺T ,𝛥

(
CT ,𝜅

)
≥𝛿}

𝜅],

–	 C
T �≺≺T = {CT �

∈ C|T � ≺≺ T} is the set of all clusters of C whose period is strictly ante-
rior to T,

4𝛷
≺

𝛿
(CT ) = ({Cj ∈ 𝜅≺

CT},w)

10  P(X) is the set of all parts of X.
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–	 �(CT , �) is the minimum amount of time elapsed between the period T and the periods 
of the clusters constituting �.11

–	 w = 𝛥
(
CT , 𝜅≺

CT

)
∈ [0, 1] is the association strength between CT and its ‘parents’.

As the definitions of parents and children of a cluster are symmetrical with respect to time, 
we will also consider in this paper the symmetric down-stream inter-temporal matching 
function 4𝛷≻

𝛿
(CT ) , where the association strength between any clusters CT ∈ C and any 

set of clusters {Cj}j ⊂ P(C) belonging to strict posterior period T ′′ (noted T ′′ ≻≻ T  ) is also 
processed (see SI C.4 for full description).

We thus define 4� ∶ C × [0, 1] ⟼ (P(C),w)2 as:12 4𝛷𝛿(C) = ((4𝛷
≺

𝛿
(C), 4𝛷

≻

𝛿
(C))

Phylomemies as foliation on time series of clustering

Thereafter, we will work with the following definitions:

Fig. 4   Foliation on a temporal series of clustering and its local structure. On the left a foliation on a tem-
poral series of clustering (based on Dmaps see also Fig. 9) parameterized by � ( � values have been discre-
tised for the plot). Each dot is a cluster. On the right Local structure. Above the cluster A ∈ C

T ⊂ C
∗ from 

period T, � parameterized the different sets of parents and children of A for different satisfaction threshold 
in inter-temporal matching. As we raise � , the parents and children of A might change. At �

0
 , clusters B and 

C ∈ C
T−1 are the parents of A; but when we raise � to �

1
 , the pair {B,C} of parents is no longer valid for A 

and the cluster F from a former period T − 2 has to be mobilized to describe the lineage of A as the child 
of {F}. Eventually, some branches might split or merge due to these reconfigurations (e.g. here the segment 
starting from E becomes the starting of a new branch at �

2
 ). A phylomemy is a foliation over a temporal 

series of clustering C∗

11  Their approach makes it possible to have several sets of parents for a given cluster although this situation 
is quite rare. Also, since a given cluster could be in the set of parents of several subsequent clusters, a clus-
ter might have many children.
12  It is worth mentioning that this function looks for the first correspondence that, from a temporal point 
of view, satisfies a given threshold � , instead of looking for all potential correspondences for all time and 
taking the optimum—an approach adopted among all the works referenced in “Comparison with previous 
works” section that are going beyond the simple correspondence between consecutive periods.
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Definition  Time series of clustering C∗ . Let T∗ be an ordered set and L = {ri |i ∈ I} be a 
set of elements. A time series of clustering over L is defined as C∗ = {CT |T ∈ T

∗} where 
C
T = {CT

j
|CT

j
⊂ P(L)}j∈JT is a set of clusters of elements of L

Definition  Foliation on a temporal series of clustering. Let C∗ = {CT |T ∈ T
∗} be a tem-

poral series of clustering and C =
⋃

CT∈C∗ C
T , a foliation on C∗ is defined as a function 

�∶∶C × [0, 1] ⟼ (P(C) × [0, 1])2 such as: 

1.	 ∀C ∈ C
T ,∀𝛿 ∈ [0, 1],𝛷(C, 𝛿)(1, 1) ⊂ P(CT

�≺≺T ) (parents of CT  at � , associated with 
strength �(C, �)(1, 2)),

2.	 ∀C ∈ C
T ,∀𝛿 ∈ [0, 1],𝛷(C, 𝛿)(2, 1) ⊂ P(CT

�≻≻T ) (children of CT at � , associated with 
strength �(C, �)(2, 2)),

Definition  Phylomemy. A phylomemy � is a foliation on a temporal series of clustering 
C
∗ (cf. Fig. 4). It describes, for any cluster CT

j
 in temporal components of C∗ and any thresh-

old � , the relevant inheritance linkages of CT
j
 . Thereafter, we will consider the space of all 

foliations on temporal series of roots clustering as the space R for the study of knowledge 
dynamics.

Definition  Weighted inheritance networks. Let C∗ = {CT |T ∈ T
∗} be a temporal series 

of clustering. A weighted inheritance network � ∶ C ⟼ (P(C) × [0, 1])2 is a function 
defined over the set of nodes C =

⋃
CT∈C∗ C

T such as ∀CT
j
∈ C;𝜑(CT

j
)(1, 1) ⊂ P(CT

�≺≺T ) and 
𝜑(CT

j
)(2, 1) ⊂ P(CT

�≻≻T ).13

Definition  Phylomemetic network. Let � be a phylomemy over C∗ and � ∶ C ⟼ [0, 1] , a 
phylomemetic network is defined by 𝜑𝛱 = {(CT

j
, 4𝛷

≺

𝛱(CT
j
)
(CT

j
))|CT

j
∈ C} . It is a plaque of 

the phylomemy � that defines a weighted inheritance networks over a temporal series of 
root clusters.

Definition  Branches of a phylomemetic network. Let � be a phylomemetic network. It can 
be written � =

⋃
k Bk where each Bk is a connected component of the temporal network 

formed by the inter-temporal links. {Bk}k will be called the branches of � . It is thereafter 
possible to visualize theses branches in V in order to understand the structure of � (cf. 
Fig. 3 and Lobbé et al. 2021).

In this paper, V will be the space of all weighted inheritance networks of root clusters, 
and phylomemetic networks are elements of V that can be defined as a plaque of a particu-
lar phylomemy. But as there is a huge number of plaques, a central question comes out for 
further analysis: How to find the most meaningful ones for us.

These definitions generalize the work of Chavalarias and Cointet (2013) who appear 
to have studied the specific case where the operators R ⟼ V are all uniform projectors 
� = � , i.e. 𝜑𝛿 = {(CT

j
, 4𝛷

≺

𝛿
(CT

j
))|CT

j
∈ C}.

13  Let �(CT ) = ((X,w
1
), (Y,w

2
)) , we will note �(CT )(1, 1) the first component of the first tuple, i.e. X  , and 

�(CT )(2, 1) the first component of the second tuple, i.e. Y.
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Branches of knowledge and levels of observation

Let’s come back to D’Alembert’s dream to “distinguish the general branches of human 
knowledge” and let’s imagine D’Alembert asking someone the question Q(x) ∶ “Can you 
show me a branch of knowledge that deals with x?”

From the perspective of a phylomemy of science � ∈ R , the question can be rephrased 
as follows: (1) which phylomemetic network � of � should we choose? (2) which branch of 
� should we propose to d’Alembert?

We cannot answer these questions with the approach of Chavalarias and Cointet (2013) 
because there is no indication on how to choose the appropriate uniform projector � = � . 
The same can be said from other contributions dealing with re-emerging topics, such as 
Jo et  al. (2011) who are at a loss when it comes to setting an inter-temporal matching 
threshold.

Moreover, there is no reason to think that a uniform projector �� will provide the same 
level of observation for all branches of knowledge. More likely, the branches of knowledge 
at a given level of observation could differ with respect to their minimal inter-temporal 
matching threshold.

To overcome these issues, we can draw inspiration from information retrieval. We can 
propose two metrics to assess the relevance of a branch Bk to Q(x):

–	 The precision �k
x
=

|Cx∩CBk |Tx |
|CBk |

 of Bk against x. It is related to the probability to observe x 
by choosing at random a cluster in Bk within Tx,

–	 The recall �k
x
=

|Cx∩CBk |
|Cx|

 of Bk against x. It is related to the probability to be in Bk when 
choosing a cluster about x at random in �.

where:

–	 Cx is the set of all fields of � containing x,
–	 Tx are the periods covered by Cx,
–	 CBk

 is the set of all the fields of the branch Bk

An answer Bk to Q(x) will be all the more precise regarding x that its precision �k
x
 is high. 

But it will provide all the more information about the different historical contexts of x 
that its recall is high. Precision and recall are generally antagonistic and consequently, 
it appears that D’Alembert must also to indicate the desired ‘trade-off’ in order for us to 
answer his question.

Let’s define this trade-off by a variable � ∈ [0 1] , we can evaluate the quality of an 
answer Q(x) with the following F-score function:

where f (�) = tan(
�.�

2
) . For � = 0 , only the precision counts, whereas for � = 1 , only the 

recall counts.14

F�(x, k) =
(1 + f (�)2).(�k

x
.�k

x
)

�k
x
+ f (�)2.�k

x

14  We consider for F�(1) the limit value of F� when f (�) → ∞ which is �k
x
.
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Several branches could mention x, which means that we also have to know which Bk to 
propose first as an answer. For this reason, we introduce a generic choice function � (a ran-
dom variable to be determined later) that tells which branch among the branches contain-
ing x will be proposed first to D’Alembert.

We thus obtain an objective function that evaluates the relevance of � in answering Q(x):

We could search, for each question Q(x) , the phylomemetic network with the best Fx
�
 score. 

However, this would prevent D’Alembert from having a global vision of science and of the 
articulation between its different branches: answers based on different queries will indeed 
not necessarily be comparable.

In order to provide a global representation � of a domain of science, we thus have to 
assess the relevance of a particular phylomemetic network for its ability to answer any 
question Q(x) D’Alembert might ask about elements of L . Since some x may interest 
D’Alembert more than others, the optimal � should take into account the interest profile 
of D’Alembert for elements of L . We will call � the choice function over L that deter-
mines the probability of D’Alembert asking for a particular x.

The global F-score of a representation � of a phylomemy is then defined as:

Note that � is a property of the questioner whereas � can be a property of either the 
respondent or the questioner. � and � are both random variables on which the meaning 
of a given phylomemy projection � will depend. We will see in “Discussion” section how 
these functions can be determined empirically.

Branches with high recall for a given x will tend to be more complex to interpret 
because the contexts in which x is set are very varied and provide a huge amount of 
information, whereas branches with high precision for a given x will tend to be simpler 
because they target very homogeneous contexts.

Consequently, F� is a score of quality whose parameter � can be related to a desired 
level of observation. For high � values, the phylomemetic networks with the highest F� 
score will be the ones that include large complex branches whereas for low � values, 
those with small homogeneous branches will score the highest.

The objective function F� gives meaning to the problem of choosing a projector 
R ⟼ V : given a level of observation of a phylomemy � , what is the best projector to 
optimize the information conveyed by the corresponding phylomemetic network? The 
next section proposes an approach to solve this problem.

Adaptive inter‑temporal matching and step phylomemetic networks

For any desired scale of observation � of � ∈ R , we can now evaluate any projection � 
in V with F�(�).

Previous works on phylomemy reconstruction have so far only taken into account 
uniform projectors. Here, we propose to consider a new class of adaptive projectors 
defined over R and parameterized by the level of observation � . They are designed to 
map the internal dynamics of each branch of science and thus outperform uniform pro-
jectors. To that end, we will need the following definitions:

(1)Fx
�
(�) = �Bk∈�|Bk∩Cx≠∅

�x(k).F�(x, k)

(2)F�(�) = �x∈L�(x).Fx
�
(�)
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Definition  Uniform step projector. Let � ∶ R ⟼ V be a projector, � ∈ R a phy-
lomemy and � = 4�� (�) =

⋃
k Bk a phylomemetic network. Let CBk

 be the set of clusters 
of C∗ such as 4�� (CBk

) = Bk . � is a uniform step projector for � if and only if:

Definition  Step phylomemetic network. � is a step phylomemetic network if and only if 
there is a phylomemy � and a uniform step projector � ∶ R ⟼ V such as � = 4�� (�) . 
The family of step phylomemetic networks extends the family of phylomemetic networks 
obtained by mean of uniform projectors.

Step phylomemetic networks are phylomemies’ projections of particular interest regard-
ing the homogeneous conception of what inheritance means within each of their branches 
(all inter-temporal links have been processed with threshold ��

Bk
 while this threshold can 

differ from one branch to another). This property makes it possible to take into account the 
internal dynamics of each branch and makes it easier to interpret their morphologies. What 
remains now is to design an algorithm capable of finding an optimal step phylomemetic 
networks for a given level of observation �.

Sea‑level rise algorithm

In order to find a step phylomemetic networks optimized for a given level of observation, 
let’s start by noticing that if � = 1 , then only the recall counts in F� , so that the larger the 
branches of � the better. Except in rare cases,15 this is achieved by setting � = 0 for inter-
temporal matching such that in V the highest number of temporal links is retained. Thus, 
for � = 1 , the best projector is the uniform projector � = 0 associated to a phylomemetic 
network noted �0 ∈ V.

To estimate locally, for every cluster CT and for any � ∈]0 1] , the most appropriate value 
of ��

CT
 , we proceed by recurrence. We perform an adaptive “sea-level rise” with uniform 

projectors �� within each subset of CBk ⊂ C
∗ of �0.

After each local level rise, F� is used to evaluate the validity of this level’s increase 
and, in case of a branch split, the subsequent level increases are handled independently 
within each of the resulting branches (Fig. 5). Details of this algorithm are given in SI C.5. 
together with an open source implementation.

By design, the phylomemetic networks generated by the sea level algorithm are step 
phylomemetic networks. Since inter-temporal matching links are recursively reprocessed 
in the course of this algorithm, it is worth noticing that it may not be possible to transform 
two observations �� and ��′ of � at different levels ( � ≠ �′ ) simply by pruning the links 
(see SI G. for an example of a phylomemy described at different levels of observation).

Two levels of observation � and �′ might therefore convey very different information on 
the temporal structure of � . In order to fully understand knowledge dynamics, it might be 
necessary to reconstruct different phylomemetic networks for different values of � . We pre-
sent in 4.1.1 a method for determining the preferred level of observation and thus initiate 
the exploration of a given phylomemy.

∀Bk,∃� ∈ [0, 1],∀C ∈ CBk
, 4�� (C) = 4��(C)

15  In practice this is almost always true. We could build synthetic phylomemies in which not only recall 
would count for � = 1 , but these would not be very consistent with human activities.
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Phylomemetic networks, hierarchical clustering and endogenous scales of description

Branches of phylomemetic networks � have complex structures that can be rendered at 
different scales of description in V thanks to a synchronic merging of their most related 
clusters.

The similarity between two clusters is usually evaluated by comparing their compo-
nents, and clustering methods are numerous. However, since we are dealing with a dynamic 
structure, we can obtain a hierarchical clustering for free on each CT by exploiting the tem-
poral structure of � . Raising the threshold � within a given branch without recomputing the 
parents and children of clusters leads to the progressive pruning of inter-temporal links and 
to the appearance of new connected components at particular � values until all this branch’s 
clusters end up isolated. The information about the order of appearance of these connected 
components can then be used as a basis for a hierarchical synchronic clustering.

This approach makes it possible to both introduce a notion of scales of description of a 
phylomemetic network that fits to the endogenous structure of its branches; and define an 
endogeneous hierarchical clustering indexed by these scales of description:

Definition  Scales of description of a phylomemetic branch in V.
Let B be a phylomemetic branch from a step phylomemetic network with inter-

nal ‘sea-level’ �B (the weakest inter-temporal link has a strength of �B ). Let 
�∶∶V × [�B 1] ⟼ V ∶ (B, �) → B� be the function that removes all the inter-temporal links 
of B that are strictly inferior to �.16 For 𝛿 > 𝛿B , �(B, �) = {B�

l
}1≤l≤s� is composed of s� con-

nected components that form sub-branches of B. Moreover, s� is an increasing step function 
of � with discontinuities at the values S(B) = {�i}1≤i≤sB such as s�1 = 1 is the number of 
sub-branches of B = �(B, �B) and s�sB ≤ card(CB) is the number of sub-branches of �(B, 1) . 
Finally, for j > i , the sub-branches {B�j

h
}
1≤h≤s�

j of �(B, �j) are by construction nested inside 
the sub-branches {B�i

l
}1≤l≤s�i of �(B, �i).

16  In this operation, contrary to what is made in “Adaptive inter-temporal matching and step phylomemetic 
networks” section, inter-temporal matching is not reprocessed.

Fig. 5   The elevation of the inter-temporal matching threshold submerges the initial branch �
0
= B

0
 that first 

splits into two branches B
01
∪ B

02
 at �′

B
0

 ; and then each of them splits at different thresholds �′
B
0
1
 and �′

B
0
2
 to 

create the final branches of � = B
011

∪ B
012

∪ B
021

∪ B
022
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By construction, ∀1 ≤ i ≤ sB,∀C ∈ C
T ∩ CB,∃!l ∈ {1..s�

i

}|C ∈ B�i

l
 . Therefore, 

�(B, �i) ∩ C
T defines a non overlapping clustering over the fields of B at period T. Since 

{�(B, �i)}1≤i≤sB are nested sets, the family of clusterings {�(B, �i) ∩ C
T}1≤i≤sB defines an 

endogenous synchronic hierarchical clustering over CT ∩ B indexed endogenously by the 
scales of description {1,… , sB}.

For a level � of observation �� = {B�
k
}k ∈ V of a phylomemy � , for each phylomemetic 

branch B�
k
 , we can consequently define its endogenous scales of description {1,… , sB�

k
} 

through the endogenous synchronic clustering of fields in B�
k
 and a choice for the merging 

procedure of the associated inter-temporal matching links.
An example of a branch described at several scales is given by Fig. 6. The advantage 

of this definition of scales for phylomemetic branches is that it endogenously adapts to the 
internal complexity of each branch but nevertheless makes it possible to define a scale of 
description for a full phylomemetic network: at scale 1, each branch has at most one cluster 
per period corresponding to the synchronic merge of all its clusters of that period. For scale 
s > 1 , branches start branching according to their internal structure but remain in constant 
number. More details on the use of endogenous scales and how it can lead to new visuali-
zation systems for exploring knowledge dynamics can be found in Lobbé et al. (2021).

Computing the ancestors beyond the time horizon

The inter-temporal matching procedure described in “Adaptive inter-temporal matching 
and step phylomemetic networks” section may introduce artificial splits of phylomemetic 
branches due to the incompleteness of the corpus analyzed, such as the non-availability of 
digitized documents beyond a certain date. To mitigate this artifact and ease the interpreta-
tion, we have added an additional step in the reconstruction workflow that takes place in 
V and consists in searching for common ‘ghost’ ancestors to emerging fields that have no 
parents. This algorithm is detailed in SI C.6. and only impacts the visualization of phy-
lomemetic networks. The reconstruction operator that takes this steps into account will be 
subsequently noted 4�.

Fig. 6   Endogenous scales of a branch. The branch Social media/sentiment analysis of the Dmaps phylomemy 
of Fig. 9 has 12 scales of description. Here we display its internal structure at scales 2, 6, 9 and 12
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Results

We have implemented the inter-temporal reconstruction workflow 4� as a module of the 
free software Gargantext17 that already implements 3�◦

2�◦
1� (see the details of the 

implementation in SI C.).
We present here a quantitative evaluation of the new workflow � = 4�◦

3�◦
2�◦

1� 
compared to results obtained by Chavalarias and Cointet (2013), as well as a qualitative 
assessment of its ability to accurately describe the evolution of scientific fields. The per-
spectives offered by this new methodology for the interaction with large set of documents 
through visualization are further detailed in Lobbé et al. (2021) and its contribution to the 
analysis of history and philosophy of science is detailed in Chavalarias et al. (2021).

Thereafter, we will consider for � and � the choices functions that seem the most con-
sensual to us without any prior knowledge:

–	 �(x, _) is a random variable which chooses terms in L with a uniform probability,
–	 � (x, _) is a random variable which chooses a branch Bk ∈ Bx with a probability propor-

tional to its number of fields.

We will see, in “Discussion” section, how � and � can be empirically determined from 
specific uses and research questions.

Quality function. Given the choices of � and � , the objective function F�(�) on 
� = {Bk}k can be written with Eq. 3:

where Bx
k
= {Bk|Bk ∩ Cx ≠ ∅}

Quantitative and qualitative validation

We have chosen several distinct case studies to illustrate the wide range of applications of 
our methodology and the robustness of our results. These case studies have been delineated 
thanks to the following corpora (see SI D. for full details):

–	 Domain specific academic literature.

–	 Dglyphosate : Glyphostate literature. A corpus of 16,7 k documents retrieved in the 
Web of Science (WoS) and PubMed.

–	 Dquantum : Quantum computing literature. A corpus of 29 k documents retrieved from 
the WoS.

–	 Interdisciplinary academic literature. DCNRS : a corpus of 6000 top-cited CNRS papers 
from the WoS. CNRS being an interdisciplinary research organism, this corpus is by 
construction highly interdisciplinary. Although it contains a limited number of docu-

(3)F�(�) = �x∈L

1

|L|
.�Bk∈B

x
k

|Bk|
�Bj∈B

x
k
|Bj|

.F�(x, k)

17  Gargantext is a text-mining software under GNU aGPL Licence written in haskell and purescript. See 
http://​garga​ntext.​org.

http://gargantext.org
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ments in each discipline, the phylomemy reconstruction succeed in providing an over-
view of the main research streams and highlights the way they combine (Lobbé et al. 
2021).

–	 Generic time-stamped corpora. Our method can reconstruct knowledge dynamics from 
any kind of time-stamped corpora and can process very short documents as well. As an 
illustration, we have applied our method to a corpus DCT consisting in 6000 records of 
clinical trials arms related to Covid-19 treatments. Associated phylomemetic networks 
highlight the different research paths and discoveries made around the Codiv-19 out-
break, a useful knowledge for the biomed community (cf. SI G.3. for details and Lobbé 
et al. 2021 for the same analysis on Covid-19 vaccines).

For this comparison, we have adopted the confidence similarity measure18 in 2� and we 
use either the maximal cliques or the frequent item sets (FIS) clustering methods in 3� . 
Full details regarding the implementation and settings of the phylomemy reconstruction 
workflow are provided in SI C. and SI E. respectively.

Quantitative evaluation

Since by definition, uniform projectors are step phylomemetic projectors, the best 
step phylomemetic network is necessarily of higher quality than the best uniform phy-
lomemetic network. The question is whether the quality of the phylomemies obtained 
with the sea-level rise algorithm could be significantly higher than the quality reached by 

Fig. 7   Comparison between the sea-level rise and uniform projectors for four distinct corpora. Clustering 
method: frequent item sets (cf. Table SI 2 in SI E.)

18  The confidence between two terms i and j is the max of the estimation of the two probabilities of having 
one term given the presence of the other in the same contextual unit.
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uniform projectors. For this comparison, we will consider the family of uniform projectors 
{��|� ∈ {0, 0.1,… , 0.9, 1}}.

As can be seen on Fig. 7, for the various case studies and for most levels of observa-
tion � , step phylomemetic networks obtained with sea level algorithm outperform or are 
at least as good as the best uniform projectors. We moreover demonstrates in SI F.1. that 
for an alternative objective function, the sea-level rise algorithm outperforms uniform step 
projectors all the time.

These results proves that the sea-level rise algorithm succeeds in adapting locally to 
the internal dynamics of the branches and in producing better precision and recall couples. 
Step phylomemetic networks obtained by this new algorithm should therefore be preferred 
over networks obtained by uniform projectors.

We insist on the fact that the quantitative analysis of a set of {��}� for different F� 
scores can’t be considered as a comparison between these �� since the objective functions 
{F�}� are different. Consequently, this type of analysis does not point to a preferred � value 
for the observation of a phylomemy. The appropriate value depends on what the analyst is 
looking for.

We can however determine a preferred entry point for the exploration of a phylomemy. 
Let’s consider a phylomemy where small branches have been filtered out. As the level 
of observation decreases, �� consists of more branches of lower complexity, while more 
and more C∗ clusters have no inheritance links which leads to a higher number of small 
branches not appearing in the network. Therefore, levels of observation close to 1 feature 
few branches with almost all terms being contextualized by a branch ; whereas levels of 
observation close to 0 describe a variety of subdomains but fail to contextualize a signifi-
cant proportion of L . We can assume that an analyst would want to start her exploration 
with a phylomemetic network that have both a good coverage of L and a good description 
of the sub-domains concerned by the corpora under study. We can thus define a coverage 

Fig. 8   Sensitivity analysis of the coverage scores for different case studies. For all case studies, the coverage 
score reaches its maximum at a � value that constitutes an interesting entry point for the exploration of a 
phylomemy. For example, the preferred entry point for Dglyphosate is 0.8, the value chosen for plotting Fig. 3
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score for a given phylomemetic network as the geometric mean of its relative roots cover-
age and its normalized number of branches.19 The maximum of this score points to a pre-
ferred � value for the exploration of a phylomemy as illustrated by Fig. 8.

External and qualitative validation

In order to assess the ability of phylomemies to fit and extend scholars expertise about 
knowledge dynamics of their fields, we compared in details the results of its application to 
two case studies: glyphosate research and research on science mapping and visualization.

Reconstruction of the history of a research domain: the example of glyphosate 
research

The field of glyphosate-related research (delimited by the corpus Dglyphosate ) is particu-
larly interesting to illustrate the relevance of our method. Literature on glyphosate is quite 
recent, most of it being digitized. The knowledge it contains is of great importance from a 
health and economic point of view. Moreover, there is yet no consensual synthesis of the 
knowledge this research as produced to far. Glyphosate is a controversial herbicide about 
which literature reviews and historical analyses are regularly published, some emphasizing 
the advantages of glyphosate or the absence of associated risks, others reviewing the risks 

Fig. 9   Phylomemetic network of the literature related to science and knowledge mapping ( Dmaps ) at level 
0.3 with branches smaller than 3 filtered out. Dashed boxes have been manually annotated. An interactive 
version of this phylomemetic network available at http://​maps.​garga​ntext.​org/​phylo/​knowl​edge_​visua​lizat​
ion/​memie​scape and can be downloaded from the archive (Quentin Lobbe and Chavalarias 2021)

19  Relative root coverage (in [0 1] ) is computed relatively to the maximum and minimum proportion of 
roots covered by a phylomemetic network; normalized number of branches is relative to the maximum num-
ber of branches of phylomemetic networks when � varies.

http://maps.gargantext.org/phylo/knowledge_visualization/memiescape
http://maps.gargantext.org/phylo/knowledge_visualization/memiescape
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for health and environment and issues related to the the emergence of herbicide-resistant 
weeds.

In such scientific context, there is a high risk of selection bias when selecting publi-
cations for literature reviews and monographs, i.e. to ‘cherry-pick’ the publications that 
would confirm certain theoretical claims over others. In such situation, phylomemy recon-
struction could be useful to give an overall picture of the field, as objective as possible 
inasmuch as it would include as many publications on the topic as possible and process 
them equally, solely on the basis of a definition of what constitutes a valid publication. 
Such phylomemy could highlight, before any further considerations of what is important 
and what is not, the main issues addressed by the scientific community and their global 
trends.

To compare the picture depicted by the method of phylomemy reconstruction with that 
depicted by experts in the field, we have synthesized the most cited literature reviews writ-
ten by glyphosate supporters and skeptics (Duke 2018; Benbrook 2016; Székács and Dar-
vas 2012; Gillezeau et al. 2019; Martinez et al. 2018; Singh et al. 2020).

The analysis of the phylomemy of glyphosate research at different scales of observa-
tion (cf. Fig. 3 and SI G.2.) makes it possible to successfully identify the different research 
questions present in this synthesis, the details of their ramifications and their development. 
Full details of this analysis are provided in SI G.

Dynamical state‑of‑the‑art of literature related to science and knowledge mapping

The phylomemetic networks for � = 0.3 of the knowledge dynamics corpus Dmaps analyzed 
in “Mapping science and knowledge” section is presented on Fig. 9.

We can observe that this phylomemetic networks correctly describes our state-of-the-art 
in its temporal dimension:

–	 The pioneer field of citation analysis was predominant during the 1970’s (branches no. 
1) before passing the baton to what will become the core of bibliometry and scientom-
etry in the early 1990’s (branches no. 3).

–	 In parallel, co-word and co-occurrence analysis (Terzopoulos 1985; Callon et al. 1983) 
emerged in the mid 1980’s (branch 2) and enjoyed a revival of interest in the middle of 
the 2000’s (branch 4) as a result of the ICT revolution. Our paper belongs to this more 
recent branch.

–	 In the mid 2000’s, the field of information retrieval developed topic modeling meth-
ods (branch 6) that were subsequently applied to digital libraries and text-classification 
(branch 7) as well as social media analysis (branch 8).

–	 At the same time, the long established field of concept mapping found concrete applica-
tions in the domains of education and learning process (branches 5).

Discussion

Future improvements of the sea‑level rise algorithm

Red dots on Fig. 7 highlight the values of � for which the current implementation of the 
sea-level rise algorithm does not overtake the uniform projectors. For these data point at 
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least, there are optimization margins in the way we locally increment and elect � in this 
algorithm (see SI C.5). At least two factors explain this sub-optimality. First, finding the 
step phylomemetic network that optimizes F� is done in a rugged quality landscape, espe-
cially for the choice of the elevation step. It is therefore a difficult task that deserves a paper 
in itself. The algorithm proposed in this paper is a only a starting point an can undoubtedly 
be improved. Second, for computing time reasons and computational resources, we have 
filtered the clusters to some extent (cf. Table SI 2). This operation might have eliminated 
some optimal step phylomemetic networks.

As for the scalability of this algorithm, the computational complexity is more or 
less linear regarding the number of documents but depends heavily on the size of the 
list of terms upon which the phylomemy is reconstructed and on the clustering algo-
rithm chosen to define the fields. In the example chosen in this paper, fields are defined 
as maximal cliques, which worst-case time complexity is O(3

n

3 ) for an n-vertex graph 
(Tomita et  al. 2006). Hopefully, semantic networks are generally sparse so that the 
maximal cliques algorithm has always been tractable in reasonable time.

The computational complexity also depends on the number of clusters generated 
by the clustering algorithm. The computation of inheritance links scales as O(N3

c
) , 

where Nc is the number of clusters. However, we only need to compute the similarities 
between clusters with non empty overlap and local optimizations can be done to drasti-
cally reduce the number of interesting clusters such as keeping only the most cohesive 
ones.

Limits and continuous improvement

Phenomenological reconstruction ( O ⟼ R ⟼ V ) can lead to a misunderstanding 
or a biased representation of an object O ∈ O for several reasons. First, some impor-
tant observables for the understanding of O could have been neglected or inadequately 
measured in the process O ⟼ R . Regarding the reconstruction of knowledge dynam-
ics, this bias can be expected to diminish over time as text-mining techniques improve 
and as an increasing proportion of knowledge production contexts produces ever more 
structured and accessible digitized traces.

Second, since by definition, dimension reduction reduces the number of variables 
under consideration, some important information for the understanding of R could be 
lost in R ⟼ V (typically, two elements that are distant or unrelated in R could appear 
arbitrarily close after being projected in V , see Chuang et al. 2012 for a good example).

These potential limitations are important to keep in mind. In the same way as differ-
ent 2D projections of a world map provide complementary information about Earth’s 
geography (some projections conserve angles, other areas, etc.), different methods 
for phenomenological reconstruction are undoubtedly needed to fully grasp a body of 
knowledge. This point was already highlighted by d’Alembert (1751):

Knowledge is impossible to draw as a whole in a truthful manner, but only 
through the choice of a point of view that is both arbitrary and inevitable [...] 
One can create as many different systems of human knowledge as there are world 
maps having different projections, and each one of these systems might even have 
some particular advantage possessed by none of the others.
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The objective function described by Eq. 2 can also be applied to assess alternative phy-
lomemy reconstruction workflows, a process that will lead to a continuous improve-
ment of the phenomenological reconstructions and can also lead to local adaptations 
to the different contexts of knowledge production. A preliminary study of alternative 
workflows is presented in SI F., where alternative objective functions, inter-temporal 
matching function and alternative clustering algorithms have been compared on the 
different case studies.

Our main conclusion is that comparing different reconstruction workflows is not 
only about improving quality with respect to F� . It also involves comparing the respec-
tive contributions of each option to the characterization, at different levels and scales, 
of the case studied. Going back to D’Alembert’s analogy mentioned in “Introduction” 
section, the phylomemy reconstruction can be seen as an exploration tool or as a tel-
escope where each operator of the whole workflow is a slot designed to embed specific 
lenses; and choosing a suitable lens remains the prerogative of the analyst.

Comparison with previous works

In order to compare the proposed method with previous works mentioned in the state-of-
the-art, we have identified a set of key properties fulfilled by our own contribution—listed 
in SI B.2.—and have reviewed the way they appear (or not) in a sub-collection of repre-
sentative past papers (cf. Tables 1, 2 and 3). We limit here the discussion to papers that can 
handle unstructured text.

Most of the papers reviewed do not allow for re-emerging topics: they only perform 
inter-temporal matching between two consecutive periods of time. This is a severe limi-
tation since there is no reason to assume that the parents of a field of knowledge belong 
to the immediate previous period. Moreover, this assumption makes these methods very 
sensitive to the initial slicing of the time periods. Among the research papers that consider 
re-emerging topics, Chen et al. (2017) does not consider split or merge events nor evolving 
topics. Consequently, it can’t analyze the structure of knowledge dynamics or the evolu-
tion of knowledge fields. Liao and Qian (2019) adopts an information retrieval perspective 
where the entry point is a paper or a set of papers and the building block of the maps are 
single articles. Consequently, this approach does not aim at producing global science maps 
but rather chains of specific papers that contextualize the initial query. This approach is 
also not scalable with respect to the number of papers.

The works that are most related to our approach are thus Shahaf et al. (2013), Chava-
larias and Cointet (2013) and Jo et  al. (2011). Jo et  al. (2011) produces objects that are 
similar to our phylomemetic networks from a topic modeling perspective. However, the 
authors do not give a meaning to the global inter-temporal matching procedure. Since there 
is no objective function to determine the choice of inter-temporal threshold, they struggle 
to interpret threshold values and leave the reader with only the observation that a thresh-
old that is “effective in revealing the evolution structure of dense areas [...] does not dis-
cover the structures for sparse area.” Without further precision, the initial goal could not 
be accomplished. The lack of objective function is also what prevents (Chavalarias and 
Cointet 2013) to give full insight into the topology of knowledge dynamics.

Last, Shahaf et  al. (2013) did adopt the same building blocks than Chavalarias and 
Cointet (2013) and this paper. Moreover, they have several objective functions to filter 
out the interesting knowledge dynamics branches. However, these branches are built from 
a global clustering algorithm on all the knowledge fields independently of their periods. 
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Consequently, this approach cannot entangle time-scales (in terms of how far in time you 
search for predecessors or successors of a field) and inter-temporal matching strength (what 
is the weakest eligible association). As a result, while they do have a notion of scale, their 
method cannot convey the notion of level of observation.

Embodied cognition and users’ preferences

Although it is common practice to take users’ preferences into account in information 
retrieval tasks (cf. Druck et al. 2008; Shahaf et al. 2012 for examples), it is much less com-
mon in the literature on science and knowledge mapping (left part of Fig. 1). One reason 
could be that this field of science aims to provide as objective a view as possible of a whole 
scientific landscape, with the hope that we can capture some basic truth about what that 
landscape is. We must not forget, moreover, that the aim of part of this literature was to 
assess scientific production. This evaluation should therefore not depend on the evaluator.

In this paper, we propose a third way between the temptation to reach an absolute 
ground truth and the ad-hoc adaptation to a particular user’s preferences.

The present operation of reconstruction acknowledges that knowledge dynamics dwell 
in a very high-dimensional space R whose elements require to be projected in a lower-
dimensional space V in order to be grasped by the human mind. It also takes place at the 
level of a collective representation of a body of knowledge: once the perimeter of the rep-
resentation has been defined via a corpus and a vocabulary ( D and L ), the aim is to find a 
representation that can be common to any question formulated on the basis of this vocabu-
lary by a collective of users. These constraints lead us to make the distinction between two 
classes of adaptation to the user’s preferences:20

–	 The choices of a level and a scale of observation allow users to agree on the intrinsic 
and extrinsic complexity of the representation they want to share,

–	 The choice of functions � and � determines the aspects of the knowledge domain on 
which the collective interest is focused and on which reconstruction should be the most 
accurate.

Consequently, while the level and scale should be considered as tunable parameters allow-
ing users to interactively explore an object, � and � should be viewed as parameters to be 
learned by the system in a semi-supervised way, in order to maximize its relevance as a 
coordination tool for a collective. � models the interaction of users with different answers 
to the same question Q(x) . � models the frequency at which each question x is asked by a 
community of users. These two functions have a significant impact on the reconstruction of 
phylomemetic networks, as documented in SI F.1., where an alternative formulation for � 
has been tested.

If we imagine that phylomemy reconstruction can be used by a community of scholars 
to either retrieve documents or collectively assess the shapes and properties of a research 
landscape, then � and � should be estimated and revised according to the collective 
behavior of scholars. Phylomemetic networks can then play, at the collective level, a role 

20  In principle, our entire methodology could also be applied to a single user asking for the best answer to a 
particular query independently of potential other queries, but this is not where its originality lies.
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analogous to individual mental representations, and these collective representations can 
become true tools for the coordination among scholars. It is important to note that in such 
settings, these representations would be co-constructed through the users’ interactions with 
a digital environment. In that case, we cannot consider the representations provided by the 
system as external to its users anymore.

Phenomenological reconstruction, as formalized in this paper by the chain 
O ⟼ R ⟼ V , is consequently envisioned as an interface with the digital world. It is a 
fundamental step in the elaboration of meaning. But it is itself influenced by the mean-
ing we give to things, encapsulated in the functions � and �  . We thus have a circular 
dependency between the preferences of the members of a collective that interact with a 
phenomenological reconstruction and the parameters of this same reconstruction. This 
circular dependency can be related to Francisco Varela’s conception of cognition (Varela 
1979), thought as the result of the sensory-motor interactions of a living being with his 
environment. In this sense, our approach is in line with his epistemology of embodied 
cognition (Varela et  al. 2000). Collective cognition emerges from morphogenetic and 
path-dependent processes during our interactions with our environment. By simplifying 
reality through the transformations O ⟼ R ⟼ V , it allows us to grasp the complexity 
of structures of O despite our limited cognitive capacities. Meaning emerges in those 
circular interactions, there is no meaning or “ground truth” outside these processes.

Conclusions and perspectives

In this paper, we have set a general framework for a phenomenological reconstruction of 
science and knowledge dynamics from large digitized data sets.

We then have extended previous works in several ways:

–	 we have formalized the notion of level and scale of knowledge dynamics as complex 
systems,

–	 we have proposed a new class of meaning for the reconstruction of knowledge dynam-
ics formalized by a new objective function parameterized by the level of observation,

–	 we have properly formalized the concept of phylomemy as distinct from the concept of 
phylomemetic networks,

–	 we have proposed a new reconstruction algorithm for phylomemetic networks recon-
struction that outperforms previous ones,

–	 we have shown in case studies that this approach produces representations of knowl-
edge dynamics close to the ones that can be obtained by synthesizing the points of view 
of experts on a given domain,

–	 we have demonstrated with cases studies that this approach can be applied to any kind 
of unstructured corpora, even on relatively small data sets or short texts,

–	 we have proposed a new temporal clustering on temporal semantic networks as a natu-
ral output of the process of phylomemy reconstruction,

–	 we have integrated users’ preferences into our framework by providing an interaction 
model and contextualizing the different elements of our reconstruction workflow in the 
theoretical framework of Varela’s embodied cognition,

–	 by applying our method to the state-of-the-art of this paper, we have illustrated how it 
could be applied to specify the positioning of scientific articles.
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The diversity of our case studies demonstrates that we can address with the same method-
ology a wide variety of textual contents, from big data to small data, and from short texts 
to full texts, where other approaches are more focused on specific types of data. This paves 
the way to achieving D’Alembert’s dream for a large range of knowledge production arenas 
via a unified methodology (e.g. academic literature, patents, news, [micro-]blogs, etc.).

The formalisation of the notion of levels and scales allows the user to navigate and inter-
act intuitively with the knowledge dynamics. Implemented in a dedicated visualization 
software (Lobbé et al. 2021) phylomemy reconstruction thus offers the philosopher “a van-
tage point, so to speak, high above this vast labyrinth, whence he can [...] see at a glance 
the objects of their speculations and the operations which can be made on these objects; 
he can discern the general branches of human knowledge, the points that separate or unite 
them” (d’Alembert 1751).
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