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Abstract
Multiple studies have investigated bibliometric factors predictive of the citation count a 
research article will receive. In this article, we go beyond bibliometric data by using a 
range of machine learning techniques to find patterns predictive of citation count using 
both article content and available metadata. As the input collection, we use the CORD-
19 corpus containing research articles—mostly from biology and medicine—applicable to 
the COVID-19 crisis. Our study employs a combination of state-of-the-art machine learn-
ing techniques for text understanding, including embeddings-based language model BERT, 
several systems for detection and semantic expansion of entities: ConceptNet, Pubtator and 
ScispaCy. To interpret the resulting models, we use several explanation algorithms: random 
forest feature importance, LIME, and Shapley values. We compare the performance and 
comprehensibility of models obtained by “black-box” machine learning algorithms (neural 
networks and random forests) with models built with rule learning (CORELS, CBA), which 
are intrinsically explainable. Multiple rules were discovered, which referred to biomedical 
entities of potential interest. Of the rules with the highest lift measure, several rules pointed 
to dipeptidyl peptidase4 (DPP4), a known MERS-CoV receptor and a critical determinant 
of camel to human transmission of the camel coronavirus (MERS-CoV). Some other inter-
esting patterns related to the type of animal investigated were found. Articles referring to 
bats and camels tend to draw citations, while articles referring to most other animal species 
related to coronavirus are lowly cited. Bat coronavirus is the only other virus from a non-
human species in the betaB clade along with the SARS-CoV and SARS-CoV-2 viruses. 
MERS-CoV is in a sister betaC clade, also close to human SARS coronaviruses. Thus both 
species linked to high citation counts harbor coronaviruses which are more phylogeneti-
cally similar to human SARS viruses. On the other hand, feline (FIPV, FCOV) and canine 
coronaviruses (CCOV) are in the alpha coronavirus clade and more distant from the betaB 
clade with human SARS viruses. Other results include detection of apparent citation bias 
favouring authors with western sounding names. Equal performance of TF-IDF weights 
and binary word incidence matrix was observed, with the latter resulting in better interpret-
ability. The best predictive performance was obtained with a “black-box” method—neural 
network. The rule-based models led to most insights, especially when coupled with text 
representation using semantic entity detection methods. Follow-up work should focus on 
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the analysis of citation patterns in the context of phylogenetic trees, as well on patterns 
referring to DPP4, which is currently considered as a SARS-Cov-2 therapeutic target.

Keywords  Bibliometry · CORD-19: COVID-19 open research dataset · Text analysis · 
SARS-CoV-2 · Interpretability · Citation prediction · Phylogenetic distance · Virus clades

Introduction

With over 50 million research articles written to date (Jinha, 2010), it is often untractable 
for an individual scientist or group to review all research applicable to the problem at hand. 
To find documents matching a particular information need, such as checking if a hypoth-
esis has not already been scrutinized or finding prior results to build on, researchers have 
to rely on specialized search engines. While the search query acts as a first filter, citation 
count is often the main measure for ordering the documents. Why? As of writing, the only 
machine-readable information resulting from the many hours researchers spend reading 
their peers’ publications is the number of citations. Despite its limitations, citation count 
is a useful statistic as several studies have shown it can be used as a proxy for the quality 
of the article—if the article has many citations, it is more likely to be considered as worth 
reading.

Predicting the number of citations could be useful, for example, for finding research 
articles that are “under cited”, possibly because they are written by less known authors 
in specialized or lower impact journals. History shows that such research can sometimes 
be unnoticed for decades. Gregor Mendel has famously described the laws of inheritance 
in his paper ‘Experiments in Plant Hybridization’, which was published in 1866 in Trans-
actions of the Society after being presented at Czechoslovak meetings of Natural History 
Society in Brünn in 1865. It took 35 years for this seminal work to be rediscovered by 
biologists in 1900 (Fisher, 1936). More recently, it has been shown that automated analysis 
of past research literature can be used to identify new materials (Tshitoyan et al., 2019) or 
potential cancer treatments (Ravanmehr et al., 2021). The issue of timely identification of 
important research is relevant also in the short-term, such as in the pandemic. When the 
fast exchange of salient information between scientists is crucial, there is no time to wait 
for a sufficient number of citations to “naturally” accumulate.

In this article, we attempt to extract some additional insights from the citation count, in 
addition to the quite general statement about the article’s quality. Unlike prior research in 
bibliometry, which largely focused on analyzing the relationship between article metadata 
(such as a number of the authors) and citation count, in our research, we focus on seman-
tically interpretable patterns extracted from the article content (including author names), 
which are predictive of citations.

As the input dataset, we use a subset of articles from the CORD-19 corpus (Wang et al., 
2020). Some of the articles in the corpus are recent, while some were published already 
in the 1970s. We use the number of citations an article has received as a measure of the 
impact of the research presented in it. In other words, we assume that effective approaches 
with sound methodology are more likely to get cited.

Goals The hypothesis investigated in our study is that article citations will be associ-
ated with combinations of biomedical entities that appear in the text of the articles. We 
also investigate the applicability of citation biases, such as the preference for authors 



2315Scientometrics (2022) 127:2313–2349	

1 3

with western sounding names. We assume that this type of analysis may help subject 
matter experts to find new interesting combinations of concepts.

Novelty We are not aware of any systematic research focusing on explainable content-
based citation prediction. Many recent works focused on citation analysis (Klavans & 
Boyack, 2017; Wang, 2018), including multiple works specifically focusing on biomedi-
cine (de Winter, 2015; Kaldas et al., 2020; Rezaee-Zavareh & Karimi-Sari, 2020; Ruano 
et al., 2018), but none took into account the textual content of the articles. Article text 
was taken into account only for document clustering (Van Eck & Waltman, 2017), or 
suggestions of relevant literature (Giosa & Di  Caro, 2020). Association rule mining 
has been recently applied on a semantic representation of the CORD-19 dataset to help 
uncover frequent patterns in the published research (Cadorel & Tettamanzi, 2020). The 
limitation of this unsupervised approach is that it does not distinguish articles that made 
a large research impact from those which did not, and it also relies solely on one mod-
eling algorithm.

A novel element in our study is rule learning from text represented with seman-
tic entities for explainable classification of research articles, based on their estimated 
research impact inferred from the citation count. The bag-of-entities text representation 
was used in combination with rule learning by us (Kuchař & Kliegr, 2014) as well as by 
other research teams in combination with neural networks (Yamada & Shindo, 2019), 
but not in combination with biomedical entity detection or citation analysis.

Methodological contributions The secondary purpose of this research is methodo-
logical—to investigate the applicability of a range of existing machine learning and text 
mining techniques to the problem of content-based citation prediction in general, out-
side the biomedical domain. The merits of the individual combinations of techniques 
are assessed based both on their predictive performance and explainability.

Methods

In this research, we adopt the state-of-the-art in natural language processing and use an 
embeddings-based feature extraction method combined with a neural network classifier, 
a type of learning algorithm with highly versatile use, including the analysis of textual 
biomedical data (Mahmud et al., 2020). These high-performance algorithms are coupled 
with methods for the explanation of “black-box” models.

In parallel, we apply a combination of approaches that are intrinsically explainable 
(“white-box”). Specifically, this study evaluates a novel combination of entity-based text 
representation with rule learning. The entity-based text representation detects meaning-
ful biomedical entities (noun phrases). Then, we expand these detected entities with fur-
ther machine-readable information extracted from a large thesaurus. Rule models, as 
opposed to neural networks, are intrinsically explainable and can be directly understood 
by subject domain experts.

In this work, we contrast the intrinsic explanations generated by rule learning algo-
rithms with explanations derived using Explainable Machine Learning techniques from 
state-of-the-art “black-box” classifiers.

Methodological pipeline In order to obtain generalizable insights, our study employs 
the following methodology visualized in Fig.  1: (1) Input data collection, (2) Feature engi-
neering, (3) Machine learning (4) Explanation. These steps are described in detail below.
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Input data

The main data source for this work is the CORD-19 corpus (Wang et al., 2020) containing 
research articles mostly from biology and medicine applicable to the COVID-19 crisis. The 
target variable is derived from citation counts, which are not part of the corpus and were 
obtained by us. We also appended other bibliometric data—journal quality measures and 
topical categories—for use as additional features.

Input corpus

In our work, we used two versions of CORD-19. As shown in Fig. 2 and as described and 
justified below, we performed different preprocessing for each of the versions.

Dataset version 1. As the first version of the CORD-19 corpus, we used a release from 
2020-10-12 containing approximately 300,000 articles. Since the acquisition of citations 
and additional entity annotations from external APIs was demanding in terms of time, 
we limited the number of processed documents by using only the first 10% of articles 
(30,000) in CORD-19. As a source of additional metadata, we used an additional corpus 
called CORD-19-on-FHIR1, which contains semantic annotations mostly generated using 
Pubtator.2 By matching “pubmedid” identifiers from CORD-19-on-FHIR, we were able 
to retrieve metadata for 5174 articles in the used subset of CORD-19. For 2940 of arti-
cles with non-empty abstracts, citation counts from the OpenCitations database API were 

Fig. 1   Overview of methodological pipeline

Fig. 2   Process of collecting data and data reduction

1  https://​github.​com/​fhirc​at/​CORD-​19-​on-​FHIR.
2  https://​www.​ncbi.​nlm.​nih.​gov/​resea​rch/​pubta​tor/.

https://github.com/fhircat/CORD-19-on-FHIR
https://www.ncbi.nlm.nih.gov/research/pubtator/
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successfully retrieved. The last reduction of the data resulted from the unavailability of 
bibliometric data—Journal Quality Measures and Categories for some articles. The final 
composition of our V1 dataset consisted of 2,223 articles with all necessary information 
available. All selected articles are in English.

Dataset version 2 To investigate the effect of increasing the dataset size on the accuracy, 
we checked whether the results based on the smaller sample are sufficiently representative. 
For this analysis, which was performed as part of a revision of this article, we used a newer 
release of the CORD-19 corpus (2021-6-22). We also used an up-to-date list of citations, 
which was retrieved from OpenCitations database dump rather than from the OpenCita-
tions API as in the V1 version. This allowed the processing of a larger number of docu-
ments in a timely manner. Note that we have not performed the consequent filtering steps 
as in V1. In particular, FHIR-to-CORD19 was not updated to match newer CORD-19 ver-
sions, and its use would thus excessively reduce the size of the corpus. We also removed 
articles published in 2021, since for these articles only very limited citation data was avail-
able. As a result, the V2 version consisted of 72,336 articles. The distribution of the cita-
tions is visualized in Fig. 5.

Bibliometric data—number and quality of citations

We obtained the number of citations based on data from Openc​itati​ons.​org in order to 
derive the target variable for the classification model. Before we chose OpenCitations, we 
compared the citation counts with those retrieved from the proprietary services Microsoft 
Academic Graph API, Scopus API and Web of Science Expanded API (WoS).

To verify the degree of agreement between data sources, we analyzed citations of 1000 
randomly selected articles from CORD-19 (2021-6-22) for which OpenCitations and also 
WoS citations were available.

With correlation coefficient at 0.97, there is a near-perfect correlation between citation 
counts retrieved from both data sources (OpenCitations and WoS). The agreement between 
both data sources for individual articles is visualized in Fig. 3.

Fig. 3   Correlation between number of citations retrieved from OpenCitations and from Web of Science 
Expanded API

http://Opencitations.org
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In terms of quantity, the average number of citations retrieved from WoS was slightly 
lower than what we retrieved from OpenCitations (4.33 vs 5.13), which may reflect the 
curated nature of WoS. We further verified the complementarity of citation sources. To 
do this, we randomly selected 500 articles from CORD-19 (2021-6-22) for which Open-
Citations data were not available. For 60% of these articles (297), citation counts could 
be retrieved from WoS. The combination of data from multiple citation sources would 
thus be beneficial, but we left it for future work.

Effect of self-citations and “predatory” citation practices The number of citations 
of the article should reflect the quality of the scientific research. Because there is no 
penalty for the excessive number of self-citations, a number of studies suggest caution 
before accepting self-citations as indicators of scientific impact (Oermann et al., 2020; 
Soares et  al., 2015). Some citation databases try to actively address this problem. In 
particular, WoS monitors and excludes journals that demonstrate predatory behavior; 
journals in Journal Citation Reports are subject to additional analysis to detect abnor-
mal citation activity. Journals displaying evidence of excessive self-citation and cita-
tion stacking are suppressed from Journal Citation Reports to ensure the integrity of 
the reports (Web of Science Group, 2022). The high correlation between OpenCitations 
citation counts (used by us) and WoS citations indicates that the quality of the OpenCi-
tation count are for the purposes of statistical analysis comparable to WoS citations and 
thus of high quality.

Merging citation counts from multiple sources would probably improve the quality of 
the results. On the other hand, the inclusion of paid data sources would complicate the 
replicability of our research. For this reason, we used OpenCitations only.

In the bibliometric literature, a number of schemes for accounting for the age of pub-
lications has appeared. In our work, we adopt the proposal from Belikov and Belikov 
(2015), who suggest dividing the number of citations by the age of the publication in 
years. The justification provided is that this normalization is adequate since it follows 
the power-law distribution typical of citations. In our work, the number of citations 
according to OpenCitations was divided by the number of years, which passed between 
2020 and the year when the article was published. The effect of this normalization is 
depicted in Fig. 4. The plot shows that before normalization, only very few recent arti-
cles belonged to the high category, while the normalization corrects this. Notably, only 
relatively few pre-2000 articles belong to the high category after the normalization. This 
has a natural explanation since a large number of citations can be attributed to research 

Fig. 4   Distribution of highly vs lowly cited articles before the normalization by age (left) and after normali-
zation (right) for the V1 dataset
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related to SARS-CoV-1 and MERS virus outbreaks, which occurred in 2002-2003 and 
in 2012-2015 respectively (Kumar et al., 2020).

The distribution of the citations in the V2 version is visualized in Fig. 5. As can be 
seen from comparison with Fig. 4, the use of a newer release of CORD-19 resulted in 
the addition of a large number of COVID-19 related research articles published in 2020. 
The last two columns of Table 1 show how the low and high categories were defined to 
ensure balanced class distribution.

Since some of the state-of-the-art rule learning algorithms support only binary tar-
get variables, we transformed the citation count into a categorical predicted variable. 
We thus cast the problem as a classification task. We also considered directly formulat-
ing the problem as a regression task predicting a specific number of citations and then 
applying thresholding. However, as shown in our results section, this approach was less 
successful.

We thus performed equifrequent binning into two categories (bins). The use of the equi-
frequent algorithm resulted in nearly perfectly balanced datasets, with both target classes 
having almost the same number of articles (Table 1).

In our initial experiments, we performed binning into three manually designed catego-
ries of three logarithm 10 bins (< 10 citations, [10;100), >100 citations). As follows from 
earlier bibliometric studies, there are many more articles with a low number of citations 
than there are highly cited articles (Vieira & Gomes, 2010). As a consequence, the result-
ing classes were unevenly populated, requiring an application of oversampling or under-
sampling approaches such as SMOTE (Chawla et al., 2002), which would make both analy-
sis and explanation more convoluted. Therefore, after this initial study, we decided to use 
only two target categories and leave a more complex binning for future work. Since all 
compared algorithms use the same input, this should not substantially affect the fairness of 
the comparison. Moreover, the two created categories have clear semantics. The low cat-
egory with up to two citations (per year—due to normalization) corresponds to articles that 

Fig. 5   Distribution of highly vs lowly cited articles before the normalization by age (left) and after normali-
zation (right) for the V2 dataset

Table 1   Distribution of the target 
variable (discretized citation 
count adjusted for article age)

Category V1 (small) V2 (large)

Low High Low High

Citation count [0;2] (2;190] 0 (0;2905]
Frequency 1127 1096 36171 36165
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were subject of very modest follow-up interest, while the high category is for articles that 
were cited and built upon by other researchers.

Other bibliometric data as features

Journal quality measures and categories Prior bibliometric research focused on more gen-
eral article features has revealed that citation count is positively correlated with the number 
of authors, a longer length of the article, a higher number of references, and particularly 
journal impact factor (Vieira & Gomes, 2010). The aforementioned research found these 
correlations to hold also specifically for biology and biochemistry, which are the major 
domains in the CORD-19 corpus.

Since the bibliometric study of Vieira and Gomes (2010) has been published, the field 
of bibliometry has adopted Article Influence Score (AIS) as a more robust replacement for 
the impact factor (Roldan-Valadez et al., 2018). We used Clarivate Journal Citation Reports 
(JCR)3 as the source of both the impact factor and AIS.

We also used this database to include the information on the primary (first) topical cat-
egory to which the journal belongs, such as “Virology”. We also retrieved a less granular 
categorization via UNESCO’s Fields Of Research And Development (FORD) taxonomy, 
which maps Virology to the “Biological Sciences” category.

It should be noted that while the mapping between CORD-19-on-FHIR documents and 
JCR was straightforward in most cases, for more than one thousand articles, the listed jour-
nal names or abbreviations did not match the ISO-standardized journal name or abbrevia-
tion in JCR. In these cases, we performed automated matching based on text similarity. A 
relatively small number (711) of CORD-19 articles, which could not be mapped even with 
this method—mostly due to a completely missing journal title—was removed from the V1 
dataset.

Feature engineering

The first set of features was derived from the bibliometric indicators and placed into the 
“Bibliometric data“ matrix. This included the following information:

–	 number of authors,
–	 license (such as CC0, CC-BY, CC-BY-NC, bioarxiv license),
–	 impact factor and article influence score for a year when the article was published, 

when unavailable, the first known impact factor for the journal since the article was 
published,

–	 latest impact factor and article influence score (2019),
–	 first JCR category and its FORD mapping,
–	 tokenized journal name.

From the CORD-19-on-FHIR dataset, we used the abstracts of the articles. We decided 
not to use the full-texts, since this would limit the applicability of our method as well as 
reproducibility of our results as unlike full texts, abstracts are almost always available. The 
abstracts were processed in three alternative ways: using the standard TF-IDF approach, 

3  https://​jcr.​clari​vate.​com.

https://jcr.clarivate.com
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binary word incidence matrix, and embeddings. Additional feature matrices were obtained 
by applying entity detection and semantic expansion methods. Finally, dimensionality 
reduction methods have been applied. The details are covered in the following “Document 
representation methods” section.

Document representation methods

TF-IDF matrix Possibly the most common text representation used in prior work in bibli-
ometry is the Term Frequency-Inverse Document Frequency (TF-IDF) weighting scheme, 
cf. e.g., Glenisson et al. (2005). The TF-IDF matrix was created for unigrams, bigrams, and 
trigrams extracted from article abstracts.

Binary bag-of-words incidence matrix (BOW) The reason for including the binary ver-
sion of the BOW matrix is that the rule learning algorithms that we utilized are able to 
learn only from binary features. The application of discretization on TF-IDF scores and 
subsequent binarization (e.g., via one hot encoding or dummification) would be possible, 
but it would substantially increase the already high dimensionality and sparseness of the 
document-term matrix. Similarly, as the TF-IDF matrix, the BOW matrix was created for 
unigrams, bigrams, and trigrams extracted from article abstracts.

Embeddings with BERT As a representative of the state-of-the-art embeddings-based 
approach, we used the Bidirectional Encoder Representations from Transformers (BERT) 
(Devlin et al., 2019). We applied the BERT Tokenizer on the same set of abstracts in the 
CORD19-on-FHIR corpus as the previous two document representation techniques. We 
used a pretrained model4 with twelve hidden layers, the hidden size of 768, and twelve 
attention heads. The weights were the same as released by the original model authors (Dev-
lin et al., 2019) and the pretraining was performed on English Wikipedia and BooksCorpus 
(Zhu et al., 2015).

While new language models, such as BERT used in our work, provide excellent pre-
dictive performance on some tasks  (Devlin et  al., 2019), the difference in performance 

Table 2   Entity recognition systems used

List adapted from https://​allen​ai.​github.​io/​scisp​acy/

Training corpus Entity types

CRAFT GGP, SO, TAXON, CHEBI, GO, CL
JNLPBA DNA, CELL_TYPE, CELL_LINE, RNA, PROTEIN
BC5CDR DNA, CELL_TYPE, CELL_LINE, RNA, PROTEIN
BIONLP13CG AMINO_ACID, ANATOMICAL_SYSTEM, 

CANCER, CELL, CELLULAR_COMPONENT, 
DEVELOPING_ANATOMICAL_STRU​CTU​
RE, GENE_OR_GENE_PRODUCT, IMMA-
TERIAL_ANATOMICAL_ENTITY, MULTI-
TISSUE_STRU​CTU​RE, ORGAN, ORGANISM, 
ORGANISM_SUBDIVISION, ORGANISM_
SUBSTANCE, PATHOLOGICAL_FORMATION, 
SIMPLE_CHEMICAL, TISSUE

4  https://​tfhub.​dev/​tenso​rflow/​bert_​en_​uncas​ed_L-​12_H-​768_A-​12/2.

https://allenai.github.io/scispacy/
https://tfhub.dev/tensorflow/bert_en_uncased_L-12_H-768_A-12/2
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between BERT and TF-IDF is sometimes reported as relatively small  (Piskorski et  al., 
2020). On the other hand, generating the TF-IDF representation is faster and the resulting 
vectors allow for the application of intrinsically interpretable machine learning algorithms, 
retaining the interpretability of the resulting models. Entity extraction For entity extraction, 
we used a transition-based system based on the chunking model (Lample et al., 2016) as 
implemented in ScispaCy (Neumann et al., 2019). We used four pretrained ScispaCy mod-
els depicted in Table  2.

All models were executed independently, and the entities detected were merged into 
one feature vector. The feature vector contained only the detected entities. We did not use 
entity types, as these are not supported by all ScispaCy models, and when they are sup-
ported, they appear too general for our purpose as can be seen in Table 2. The most specific 
detected types are CELL or GENE, which is too coarse-grained. To construct the feature 
vector, we used the lemma returned by ScispaCy, which also made the semantic expansion 
covered in the next paragraph more successful.

Entity Expansion with ConceptNet Once entity extraction has been performed, we per-
formed entity expansion by adding related concepts. These were retrieved using the Con-
ceptNet semantic network (Speer et  al., 2017). The semantic relations covered by Con-
ceptNet include synonyms in other languages (for entity polypeptide, this is, e.g., peptidi 
in Finnish), related terms (polypeptidase, …), subtypes (adrenocorticotrophin,…) , super-
types (peptide, polymer, …), derived terms (copolypeptide, …) and context (organic chem-
istry, protein).5 As can be seen in this example, while ConceptNet is a general knowledge 
network, it also covers concepts related to specialized knowledge in CORD-19.

Input to ConceptNet expansion was a list of entities Ed detected in a given input docu-
ment d as described earlier. As part of entity expansion, for each document d, we identified 
a set of related ConceptNet entities Cd so that for each c ∈ Cd , ConceptNet 5 contains an 
edge e → c , or c → e , where c is a ConceptNet entity and e is a ConceptNet entity detected 
in document d, e ∈ Ed . Denoting the set of all ConceptNet expansion entities as

and the number of documents as N, we created a binary ConceptNet matrix M of dimen-
sion N × |C| , where Mjk = 1 if and only if at least for one entity detected in document j 
there is an edge between this entity and entity k in ConceptNet.

PubTator annotations The CORD-19-on-FHIR dataset comes with annotations pregen-
erated using Pubtator (Wei et al., 2013), which is a system for generating automatic anno-
tations of biomedical concepts. Each article was represented using text node annotations 
present in the source dataset. We considered only text nodes that were shorter than 40 char-
acters and did not contain any non-ASCII character. Example generated extracted anno-
tations for one article included infection, viral infection, human, CHME-5, astrocytoma, 
murine, and oligodendrocytic. Annotations longer than 20 characters tended to contain 
multiword fragments of text, which did not correspond to a single entity. To generate the 
binary PubTator feature matrix, documents were represented in the same way as described 
in the previous section for ConceptNet.

(1)C =

N⋃

i=1

Ci,

5  https://​conce​ptnet.​io/c/​en/​polyp​eptide.

https://conceptnet.io/c/en/polypeptide
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Table 3   Overview of input datasets

Dataset (Matrix) Features Reduction method Columns Original columns

AuthorsNames Binary min_df = 32 162 504,237
BibliometricFeatures Binary min_df = 32 539 504,614
Bow Binary min_df = 32 1495 547,769
Bow_BibliometricFeatures Binary min_df = 32 2034 1,052,383
TF-IDF float min_df = 32 1495 547,769
TF-IDF_BibliometricFeatures mixed min_df = 32 2034 1,052,383
PubTator Binary FI = max 1500 1500 3322
PubTator_Conceptnet Binary FI = max 1500 1500 2087
ScispaCy Binary FI = max 1500 1500 23,685
ScispaCy_Conceptnet Binary FI = max 1500 1500 9483
Bow_PubTator Binary min_df = 32, FI = max 1500 2995 551,091
Bow_PubTator_Conceptnet Binary min_df = 32, FI = max 1500 2995 549,856
Bow_ScispaCy Binary min_df = 32, FI = max 1500 2995 571,454
Bow_ScispaCy_Conceptnet Binary min_df = 32, FI = max 1500 2995 557,252
Bow_Pubtator_Conceptnet 

_BibliometricFeatures
Binary min_df = 32, FI = max 1500 3534 1,054,470

Table 4   Evaluation of BOW 
matrix for different value of the 
minimum document frequency 
(min_df) parameter with the 
RandomForest classifier

min_df Features Fit time Accuracy

1 426,272 87.03 0.72
4 13,397 4.25 0.72
8 5848 1.86 0.73
12 3841 1.23 0.73
16 2940 0.97 0.73
20 2359 0.83 0.72
24 1961 0.72 0.73
28 1708 0.66 0.72
32 1495 0.60 0.73
36 1350 0.57 0.71
40 1178 0.54 0.72
44 1079 0.51 0.72
48 985 0.49 0.72
52 894 0.47 0.73
90 456 0.36 0.71
120 320 0.32 0.71
150 232 0.30 0.70
200 153 0.28 0.70
250 101 0.26 0.70
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Dimensionality reduction of input datasets

An overview of the datasets representing the individual sets of features and their combina-
tions is provided in Table 3. This table also includes the results for various thresholds for 
feature selection, which was applied to reduce the size of the dataset to address scalability 
issues encountered with the rule learning algorithms. In order for the rule models to be 
learnt in a reasonable time (less than 1 hour), the input matrices have been reduced. For the 
(binary) BOW matrix and the TF-IDF matrix we excluded terms with low document fre-
quency, similarly as, e.g., in (Piskorski et al., 2020). To set the threshold value, we investi-
gated the relationship between the dimension of the matrix and the accuracy of the random 
forest model trained on it. Table 4 shows that in the case of the BOW matrix, the highest 
accuracy of 73% is most stably attained for a vector length of about 3000. Other matrices, 
like ScispaCy, ScispaCy Conceptnet, PubTator, and PubTator Concepnet, have also been 
reduced. We used a maximum of 1500 most important variables according to the MDI fea-
ture importance scores (cf. “Explanation algorithms” section). Other matrices are created 
by merging the existing ones.

Feature cleaning for improving interpretability

For rule learning, where the individual features are shown to the user as part of the rules, 
we also experimented with additional preprocessing of the Bow_Pubtator_Conceptnet 
matrix, which merges the text-based features from three sources and is used as a basis for 
interpreting rule learning results. For rule learning purposes, we generated a variant ver-
sion of this matrix with additional feature cleaning as described below.

Unification of features For the original Bow_Pubtator_Conceptnet matrix, in some cases 
clashing features were generated, i.e., the same feature appeared in each of the composite 
matrices, but the set of documents in which this feature was detected differed. For exam-
ple, entity ’cats’ was detected both as a word in the text and as an entity in the Pubtator 
annotations. By default, we kept such entities as separate features differentiated by a suffix. 
However, in the matrix version with extra cleaning, these features were collapsed into one 
feature, which was set to 1 if any of the composite features was 1.

Stopword removal Removal of stopwords did not affect the classifier accuracy but 
improved interpretability, therefore this was used in the version with extra cleaning.

Lemmatization and stemming We attempted replacing features with their lemmas, as 
well as stems. Both techniques decreased classifier accuracy, therefore this preprocessing 
was not used in either version.

Machine learning algorithms

As modeling algorithms, we tried to use a representative selection of current approaches—
random forests and neural networks. According to multiple benchmarks, these algorithms 
provide the best performance on a wide variety of different tasks (Fernández-Delgado et al., 
2014; Wainberg et  al., 2016). As representatives of the rule learning approach, we used 
Certifiably Optimal Rule Lists (CORELS) introduced by Angelino et al. (2017) and Classi-
fication Based on Associations (CBA) introduced by Liu et al. (1998). Both approaches are 
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representatives of associative classification, which has been used by Iqbal et al. (2020) for a 
similar task — extracting combinations of writing style features for authorship attribution.

In the following, we describe the setting of individual algorithms in detail.
Random Forest We used the Random Forest implementation from scikit-learn.6 Hyper-

parameter optimization was performed by grid search as part of internal cross-validation 
during model learning. The model parameters were optimized separately for each input 
matrix. The optimization criterion was accuracy. The parameter grid was as follows:

•	 ‘max_depth’: {10,150,500,1000},
•	 ‘max_features’: {30,500,3000},
•	 ‘min_samples_leaf’: {1,10,100},
•	 ‘min_samples_split’: {2,10,100},
•	 ‘n_estimators’: {10, 100}

Neural Networks (over BERT)Lee and Dernoncourt (2016) point out the effectiveness of 
convolutional neural network (CNNs) compared to other network architectures (LSTMs 
and Recurrent Neural Networks) for short text classification. Our model consists of three 
CNN layers as visualized in Fig. 6. The model was learned for four combinations of hyper-
parameters as depicted in Table 5.

CORELS We used the CORELS implementation from the method’s author7 with the 
default parameters. The maximum number of nodes was set to 100,000, and regularization 

Fig. 6   Architecture of the used Convolutional Neural Network, generated by Netron (https://​netron.​app/)

Table 5   Hyperparameter 
combinations evaluated for the 
neural network model

Parameters Run 1 Run 2 Run 3 Run 4

EMB_DIM 200 1400 500 1300
CNN_FILTERS 100 130 200 50
DNN_UNITS 256 256 256 256
OUTPUT_CLASSES 3 3 3 3
DROPOUT_RATE 0.2 0.2 0.2 0.2
NB_EPOCHS 5 5 5 5
Accuracy 0.56 0.70 0.59 0.68

6  https://​scikit-​learn.​org/.
7  https://​github.​com/​corels/​pycor​els.

https://netron.app/
https://scikit-learn.org/
https://github.com/corels/pycorels
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strength was set to 0.01. This value corresponds to adding a penalty equivalent to misclas-
sifying 1% of instances when adding the additional rule to the list of the generated rules. 
We also experimented with other regularization settings (including disabling regularization 
by setting the corresponding parameter to 0), but the effect on the resulting model was 
small. The minimum support bounds optimization and lookahead bound optimization were 
enabled.

CBA We used our implementation of CBA, which is available in the arc R package 
(Hahsler et al., 2019). We used the recommended hyperparameter values as suggested by 
the author of the method in (Liu et  al., 1998): minimum support of 1%, minimum con-
fidence 50%. In an evaluation of the effect of tuning CBA hyperparameters reported 
by Kliegr and Kuchař (2019), it was found that different sets of these thresholds do not 
noticeably improve predictive performance therefore we did not perform any tuning. We 
additionally applied a limit on the rule length of four items.

Explanation algorithms

The algorithms used for modeling include rule learning, which generates a directly inter-
pretable representation, as well as random forests and neural networks, whose interpre-
tation requires the application of additional explanation algorithms. In the following, we 
provide a brief overview of these explanation approaches.

Rule models Both CORELS and CBA algorithms involved in our study generate rule 
lists. A rule list is an ordered collection of rules, where each rule is associated with a dis-
tinct priority value. A rule has a form of the antecedent → consequent . The rule consists of 
a set of conditions (antecedent). The consequent contains the predicted value of the target 
class. To classify (predict a class) for a particular instance, the evaluation algorithm pro-
cesses the rules in the rule list in the order of priority, highest to lowest. Once it finds a rule 
with all conditions in the antecedent matching the current instance, the consequent of this 
rule is used as a prediction for the instance. Rules with lower priority are not processed.

The principal difference between CORELS and CBA is the type of models they pro-
duce. The CORELS algorithm tends to provide very condensed models, often containing 
only one if-else rule. In this respect, the application of the CORELS algorithm on real data 
for parole and bail decisions received significant attention. In a paper titled Stop Explain-
ing Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable 
Models Instead (Rudin, 2019), some of the authors of CORELS have argued that a rule 
model composed of several rules generated by CORELS performs comparably in terms of 
accuracy to the black-box COMPAS model widely used for actual bail decisions in the U.S. 
Angelino et al. (2017) have also shown that CORELS is competitive against multiple other 
machine learning models, including C4.5 and CART decision trees.

CORELS outputs very short models, which is not always desirable. As also demon-
strated in our experiments, CORELS models can have lower predictive performance. To 
complement CORELS, we used CBA, which is one of the most commonly used rule learn-
ing algorithms based on association rule learning. Unlike CORELS, CBA results in models 
that contain a higher number of rules. The advantage of this approach is that it provides 
better insight into the data since the individual rules correspond to local patterns and could 
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thus be used as a tool for descriptive data mining or explanation. The disadvantage is that 
CBA-generated models may contain too many rules for the user to be able to manually 
review. To present these rules in a concise way, we applied grouped matrix clustering, 
which is a rule clustering technique recently proposed by Hahsler and Karpienko (2017). 
To communicate the shared elements between the rules, we used the graph-based rule visu-
alization, also adapted from Hahsler and Karpienko (2017).

Random forest and neural networks Both these algorithms belong to the group of 
“black-box” approaches, which are characterized by the opacity of the internal working of 
the generated models.

Models generated from random forests cannot be directly interpreted due to the number 
of trees, their complexity and also the fact that multiple trees can take part in the decision. 
However, the random forest learning algorithm was designed so that estimates of feature 
importance scores are readily provided (Breiman, 2001). In our work, we adopt the origi-
nal method for computing the feature importance scores of random forests, which is based 
on Mean Decrease of Impurity (MDI). For this method, it has been shown that the MDI 
importance of a relevant feature is invariant with respect to the removal or addition of irrel-
evant features and that the importance of a feature is zero if and only if the feature is irrel-
evant (Louppe et al., 2013).

For neural networks, a number of feature importance methods have been proposed, but 
as has been recently shown, many of these methods do not provide stable results (Ghorbani 
et al., 2019). In addition, there is a number of model agnostic methods by which feature 
importance for models like random forests can be computed. In our work, we adopt Shap-
ley values (Lundberg et al., 2020) and LIME (Ribeiro et al., 2016). Unlike the MDI method 
for Random Forests, which generates global feature importance scores, these algorithms 
provide local feature importance values for a particular test instance.

SHapley Additive exPlanations (SHAP) value emerges from the Shapley concept from 
game theory (Rodríguez-Pérez & Bajorath, 2020). The SHAP values allow global interpre-
tation. Each observation gets its own set of SHAP values so it is possible to also interpret 
it locally.

LIME (Local Interpretable Model-agnostic Explanations) shows which feature values 
contributed to a particular prediction and how. This explanation is only approximate since 
the LIME model is learnt by modification of the explained instance by perturbing the fea-
ture values and collecting the resulting impact of each individual feature change on the 
prediction. The explanation is obtained by locally approximating the explained model with 
an interpretable one.

Results

We provide two perspectives—predictive performance and model interpretability. When 
interpreting the models, we noticed a pattern indicating that low citations are associated 
with Asian names and high citations more commonly with western-sounding names. The 
last part of this section is devoted to detailed results related to this phenomenon.

Predictive performance

To evaluate predictive performance, we split the data into 70% training and 30% test-
ing. The results were evaluated in terms of accuracy, computed as the number of correct 
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classifications divided by the number of all predictions. We have also evaluated the mod-
el’s F1 score, but we do not report this since it was in most cases almost identical (within 
2%) to the model accuracy. We attribute this to the fact that the dataset was balanced.

The main results for the V1 version of the dataset are presented in Table 6 for “black-
box” model (random forest and neural network) and in Table  7 for “white-box” models 
generated with rule learning (CORELS and CBA).

We refer to results obtained with Random Forest as the main baseline. The first inter-
esting result following from Table 6 is that the binary BOW matrix performs equally well 
as the matrix with TF-IDF weights, despite the fact that it contains more information. All 
attempts at representing the abstracts only with extracted entities (ScispaCy, PubTator) 
resulted in a lower predictive accuracy than this baseline. Further expansion with Con-
ceptNet had no effect either. As expected, the matrix combining all available features for 
random forest had the best predictive performance with 72% accuracy.

The combination of BERT document representation with Neural Network training per-
forms better than RandomForest trained on the TF-IDF vectors.

Results for rule learning algorithms are summarized in Table  7. The state-of-the-
art CORELS classifier did not match the predictive performance of the CBA algorithm. 
Overall, there is about 4% difference between the best Random Forest model trained over 
BOW-based representation and the best rule-based model. This gap can be attributed to 

Table 6   Predictive performance 
of random forests and neural 
networks for V1 dataset of 2223 
articles

a BERT results were updated for the final version of the article using 
BERT TF HUB Model (bert_en_uncased_L-12_H-768_A-12/2) 
instead of V1 of the same model. The previous accuracy for BERT 
(Classification) was 0.71 and accuracy for BERT (regression) was 0.56

Matrix Binary Regression

Accuracy MSE Accuracy

Random Forest
AuthorsNames 0.68 25,25 0.55
BibliometricFeatures 0.68 21.26 0.61
Bow 0.70 22.79 0.61
Bow_BibliometricFeatures 0.70 21.98 0.59
Bow_PubTator 0.72 22.50 0.61
Bow_PubTator_Conceptnet 0.71 22.66 0.62
Bow_PubTator_Conceptnet_Bib-

liometric_Features
0.72 17.61 0.67

Bow_ScispaCy 0.69 22.61 0.59
Bow_ScispaCy_Conceptnet 0.70 22.36 0.64
PubTator 0.68 27.90 0.60
PubTator_Conceptnet 0.67 28.60 0.58
ScispacC 0.60 32.12 0.53
ScispaCy_Conceptnet 0.60 31.80 0.53
TF-IDF 0.70 25.17 0.54
TF-IDF_Bibliometric_Features 0.71 21.30 0.61
BERT embeddings 0.67 32.92 0.54
Neural Network
BERT embeddingsa 0.83 22.04 0.80
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the interpretability-accuracy trade-off and is several percentage points lower than the aver-
age difference between the accuracy of the best Random Forest model and the best rule-
based model as reported in (Fernández-Delgado et al., 2014). Somewhat unexpectedly, rule 
learning (CBA) slightly outperformed Random Forest on the Bibliometric features dataset. 
However, the gap between the best rule-based model and a neural network trained over the 
BERT representation is substantially bigger.

Effect of training a regression model instead of a binary classification model

To evaluate the benefit of the early transformation of the problem into a binary classifica-
tion task, we trained a regression model using the V1 datasets, with the target variable 
being the citation count. We evaluated the regression model using Mean Square Error 
(MSE). Then, we applied the same threshold as in our main analysis but on the predicted 
citation counts. The results are shown in the last two columns of Table  6. This experi-
ment shows that better accuracy is obtained when the problem is reformatted to a binary 
classification problem as opposed to when the problem is dealt with using regression with 
subsequent thresholding.

Effect of the training data size

Here we investigate the effect of increasing the dataset size on the accuracy of the models. 
For this analysis, we used the V2 version of the dataset, which was with nearly 72,238 arti-
cles more than 30× larger than V1.

Table 7   Predictive performance and model size of rule learning (CBA and CORELS) for V1 dataset of of 
2223 articles

For Bow_PubTator_Conceptnet, the number in parenthesis is for the version with extra feature cleaning 
described in “Feature cleaning for improving interpretability” section, the remaining results were the same 
as for the base version

Matrix CORELS CBA

Accuracy avgRuleLen ruleCount Accuracy avgRuleLen ruleCount

AuthorsNames 0.51 1.0 1 0.67 1.3 99
BibliometricFeatures 0.66 1.5 2 0.69 2.1 192
Bow 0.64 1.5 2 0.66 2.2 350
Bow_BibliometricFeatures 0.65 1.5 2 0.68 2.1 417
Bow_PubTator 0.66 1.5 2 0.67 2.1 349
Bow_PubTator_Conceptnet 0.66 1.5 2 0.67 2.1 424 (465)
Bow_Pubtator_Conceptnet
_BibliometricFeatures

0.61 1.5 2 0.68 2.0 349

Bow_ScispaCy 0.61 1.5 2 0.68 1.5 162
Bow_ScispaCy_Conceptnet 0.65 1.0 2 0.67 1.1 121
PubTator 0.62 1.8 5 0.66 1.7 64
PubTator_Conceptnet 0.64 1.5 2 0.64 1.9 73
ScispaCy 0.60 1.5 2 0.57 0.5 2
ScispaCy_Conceptnet 0.60 1.5 2 0.57 0.7 3
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Table 8   Topmost important features (MDI method) by matrix

(WoScategory|FORD)_0 indicates the value is for the journal’s primary FORD (Web of Science) category. 
(AIS|Impact)Q_Q{q} indicates that the journal in which the publication appeared is in the q-th quartile by 
AIS (impact factor). If the journal is in the first two deciles of Q1, then D{d} indicates the decile

BibliometricFeatures PubTator_Concepnet Bow_PubT_Conc_BiblFeatures

Feature Imp. Feature Imp. Feature Imp.

FORD_0_impactQ_Q2 0.076 Mers 0.050 FORD_0_impactQ_Q2 0.026
FORD_0_aisQ_Q1_D1 0.047 Humans 0.023 east 0.021
WoScategory_0_impactQ_Q3 0.031 Human 0.021 middle east 0.019
FORD_0_impactQ_Q1_D2 0.031 Dromedary 0.019 east respiratory 0.017
license_elscovid 0.029 Camels 0.016 WoScategory_0_aisQ_Q1_D2 0.016
FORD_0_aisQ_Q2 0.029 Cov 0.015 FORD_0_aisQ_Q1_D1 0.015
WoScategory_0_aisQ_Q3 0.028 Cow 0.013 FORD_0_impactQ_Q1_D2 0.014
FORD_0_impactQ_Q1_D1 0.028 Body 0.010 east respiratory syndrome 0.013
WoScategory_0_aisQ_Q1_D2 0.025 Infection 0.009 respiratory syndrome 0.012
FORD_0_aisQ_Q1_D2 0.023 Rats 0.009 syndrome 0.010
license_unk 0.022 Fever 0.008 license_unk 0.010
WoScategory_0_aisQ_Q1_D1 0.020 Bovine 0.008 FORD_0_aisQ_Q1_D2 0.009
FORD_0_aisQ_Q3 0.013 Canine 0.008 WoScategory_0_aisQ_Q3 0.009
peter 0.011 Failure 0.008 middle_east_raspiratory 0.009
journal_Journal_of_Virology 0.010 C 0.007 middle 0.008
journal_Arch_Virol 0.008 Pneumonia 0.007 WoScategory_0_aisQ_Q1_D1 0.008
WoScategory_0_impactQ_Q2 0.008 Respiratory 0.007 FORD_0_impactQ_Q1_D1 0.007
WoScategory_0_aisQ_Q2 0.008 Transgenic 0.006 FORD_0_aisQ_Q2 0.007
WoScategory_0_impactQ_Q2 0.007 Dog 0.006 journal_Journal_of_Virology 0.007
paul 0.007 People 0.006 license_elscovid 0.005

Fig. 7   Shapley plot for bibliometric features (left) and article abstracts (right). Features are sorted by mean 
SHAP value. Example explanation: articles annotated with license_nocc “no Creative Commons license” in 
CORD-on-FHIR-19 have value 1 (denoted by red dots), and articles with other license value 0 (blue dots). 
Concentration of red dots left of the vertical line (SHAP value < 0 ) indicates that article license “nocc” 
has a negative effect on the number of citations. Note that some features like camel and camels could have 
been aggregated by stemming. This was not performed for the Random Forest model, since it had negative 
effect on predictive performance (e.g. human and humans are often used in different contexts). (Color figure 
online)
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The results presented in Table 9 indicate that the availability of the additional training 
data had no effect on the accuracy of Random forest and had a small negative effect for the 
Neural Network.

Model interpretation

Random forest models can be interpreted through feature importance values. Top features 
by importance computed by the MDI method for three representative matrices are pre-
sented in Table 8. The importance of individual bibliometric features and abstracts is cap-
tured using a SHAP plot in Fig. 7. Note that, unlike the MDI feature importance values, the 
SHAP plot also captures the direction of the effect. LIME plot explaining the prediction of 
a random forest model for a representative document based on its author information is in 
Fig. 8 and based on the text of the abstract in Fig. 9.

Summary statistics for rule learning models are present in Table 7. Remarkably, for 
datasets containing entities extracted from PubTator, which were further semantically 

Table 9   Predictive performance 
of Random Forest and Neural 
Network for both versions of the 
input dataset

Results for V1 are taken for reference from Table 6 (2223 articles), V2 
dataset contains 72,336 articles

Model Matrix Accuracy

V1 (small) V2 (large)

Random Forest Bow 0.70 0.70
Random Forest TF-IDF 0.70 0.70
Neural Network BERT 0.83 0.66

Fig. 8   LIME plot for authors

Fig. 9   LIME plot for abstract
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Table 10   Example rules generated by the CBA algorithm grouped by input dataset (matrix)

Matrix LHS RHS Supp. Conf. Cov. Lift

Bow_ScispaCy {oc43 strain,bcv} {low} 22 1.00 0.01 1.89
Bow_ScispaCy {merscov infection,virus} {high} 22 1.00 0.01 2.13
Bow_ScispaCy {killing,merscov infection} {high} 44 0.97 0.02 2.07
Bow_ScispaCy {neutralizing antibody,

merscov infection}
{high} 44 0.96 0.02 2.04

Bow_ScispaCy_Conc {bradycardie,bcv} {low} 22 1.00 0.01 1.89
Bow_ScispaCy_Conc {results indicated} {low} 23 0.96 0.01 1.81
Bow_ScispaCy_Conc {canine,dogs} {low} 21 0.96 0.01 1.81
Bow_ScispaCy_Conc {merscov infection} {high} 40 0.94 0.03 2.01
Bow_PubTator {reversed,bcv} {low} 22 1.00 0.01 1.89
Bow_PubTator {merscov infection} {high} 40 0.94 0.03 2.01
Bow_PubT_Concepnet {canine,virus} {low} 23 1.00 0.01 1.89
Bow_PubT_Concepnet {bats,coronavirus,transmission} {high} 17 1.00 0.11 2.01
Bow_PubT_Concepnet {merscov,mice} {high} 22 1.00 0.01 2.13
Bow_PubT_Concepnet {ifn,innate,respiratory} {high} 22 1.00 0.01 2.13
Bow_PubT_Concepnet {mice,protection,vaccine} {high} 22 1.00 0.01 2.13
Bow_PubT_Concepnet {dpp4,respiratory} {high} 22 1.0 0.014 2.02
Bow_PubT_Concepnet {virus,infectious} {high} 34 0.72 0.02 1.53
BibliometricFeatures {FORD_0_aisQ_Q1_D1 ,christian} {high} 20 1.00 0.01 2.02
BibliometricFeatures {FORD_0_impactQ_Q1 _D1,van} {high} 22 1.00 0.01 2.02
BibliometricFeatures {WoSkateg._0_obor_ VIROLOGY_SCIE,

FORD_0_aisQ_Q1_D2}
{high} 378 0.7 0.24 1.41

BibliometricFeatures {FORD_0_ford_10600, FORD_0_aisQ_
Q1_D2,

FORD_0_impactQ_Q1_D2}

{high} 375 0.7 0.25 1.4

Bow_BibFeatures {FORD_0_aisQ_Q1_D1,
merscov}

{high} 67 1.00 0.03 2.02

Bow_BibFeatures {antibodies,middle east} {high} 44 1.00 0.03 2.02
Bow_BibFeatures {WoScategory_0_ aisQ_Q1_D1,merscov} {high} 67 1.00 0.03 2.02
Bow_BibFeatures {middle east,spike protein} {high} 36 1.00 0.02 2.02
Bow_BibFeatures {dromedary,

east respiratory syndrome}
{high} 35 1.00 0.02 2.02

Bow_BibFeatures {WoScategory_0_obor_
VIROLOGY_SCIE,
homology,sequence}

{low} 22 0.89 0.01 1.76

Bow_BibFeatures {FORD_0_impactQ_Q2,
coronavirus, substitutions}

{low} 22 0.89 0.01 1.76

Bow_PubT_Conc_BibF {merscov, FORD_0_aisQ_Q1_D1} {high} 67 1.00 0.03 2.02
Bow_PubT_Conc_BibF {antibodies,middle east} {high} 67 1.00 0.03 2.02
Bow_PubT_Conc_BibF {merscov,WoScategory_0_

aisQ_Q1_D1}
{high} 67 1.00 0.03 2.02

Bow_PubT_Conc_BibF {flea,canine,
FORD_0_ford_10600}

{low} 22 0.89 0.01 1.76

Bow_PubT_Conc_BibF {coronavirus,isolate,
FORD_0_impactQ_Q2}

{low} 22 0.89 0.01 1.76

ScispaCy {simple antibody
test methods}

{low} 689 0.58 0.53 1.1
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enriched (matrix PubTator_ConceptNet), the accuracy of a CORELS model consisting 
only of two rules matched the accuracy of a CBA model with 73 rules. For the remain-
ing matrices, CBA outperformed CORELS, but the CBA models contained a notice-
ably larger number of rules. Whether this can be considered an accuracy-interpretability 
trade-off is unclear, since these rules provided possibly useful insights. Manually cho-
sen representative selections from the rules generated by CBA for individual matrices 
are included in Table 10 and for CORELS in Table 11.

For a more in-depth analysis, we chose the matrix BOW_Pubtator_Conceptnet, since 
it contains most of the features related to article content and at the same time does not 
contain the bibliometric features, which are analyzed separately. The rule mining on this 
matrix also generated most rules; CBA returned 465 rules for the matrix version with 
additional feature cleaning. Figure  10 shows the clusters generated from these rules 
with setting k = 30 , lhs_items = 3 . Out of multiple evaluated configurations, this setting 
produced the best results according to our subjective evaluation.

When reviewing the rules, we noticed that multiple rules refer to specific animals (cf. 
Table 14 in the Appendix). These are visualized in the form of a graph in Fig. 11. These 
rules form two clusters. Rules referring to camels and bats (and their synonyms or word 
forms) are associated with a high citation count. In contrast, rules referring to other ani-
mals (dogs, cats, cows, rats, squirrels) are associated with a low citation count. A spe-
cial case are mice, which are associated both with low and high citation counts. Rules 
in the CBA model are selected so that they are not redundant, however, the CBA rule 
list is a result of extensive rule pruning and therefore may not always be representative. 

LHS antecedent of the rule, RHS prediction made by the rule, Supp number of articles matching the com-
plete rule, Conf percentage of articles matching LHS for which the RHS is true (1 is 100%). Cov percentage 
of articles in the input dataset for which LHS is true, Lift is a ratio of the confidence of the rule (conf) and 
the expected confidence, which is the percentage of articles in the input dataset being assigned to the target 
class in the RHS of the rule

Table 10   (continued)

Matrix LHS RHS Supp. Conf. Cov. Lift

PubTator_Conceptnet {mers,Mice,us} {high} 22 1.00 0.01 2.13
PubTator_Conceptnet {mers,infection,Mice} {high} 22 0.96 0.01 2.04
PubTator_Conceptnet {canine,flea} {low} 21 0.95 0.01 1.8
PubTator_Conceptnet {mers,body,us} {high} 44 0.94 0.02 2
PubTator_Conceptnet {infection,infected} {high} 22 0.65 0.02 1.39
PubTator {recombinant fcov

nucleocapsid protein rnp}
{low} 689 0.58 0.53 1.1

AuthorsNames {woo,yuen kwok yung} {high} 44 0.97 0.02 2.06
AuthorsNames {patrick,yuen kwok yung} {high} 22 0.97 0.01 2.05
AuthorsNames {chan,patrick} {high} 22 0.96 0.01 2.05
AuthorsNames {chan,yuen kwok} {high} 27 0.94 0.02 2.01
Bow {canine,virus} {low} 23 1.00 0.01 1.89
Bow {merscov,mice} {high} 28 1.00 0.01 2.13
Bow {ifn,innate,respiratory} {high} 22 1.00 0.01 2.13
Bow {mice,protection,vaccine} {high} 22 1.00 0.01 2.13
Bow {hepatitis,study} {low} 16 0.73 0.03 1.38
Bow {associated,recently} {high} 22 0.73 0.02 1.55
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Therefore, we analyzed all 178,098 candidate rules output by the apriori algorithm. The 
results shown in Table  12 confirm the same pattern that emerged from the clustering 
of the rules in the CBA model. For example, for ‘camel’, there were 503 rules in the 
high citation count category, but no rule predicting the low citation count. Conversely, 
rules referring to cats, dogs, or cows were always predicting the low citation category. 
Analysis of these reasons and the interpretation of this finding follows in the discussion 
section.

Analysis of author names

There are multiple rules associating first names with the high citation category. Table 15 
presents a list of rules with the highest lift referring to author names. This includes both 
western-sounding names (Albert, Eric, Susanna, Christian) and, to a lesser degree, other 
names (Deng, Shibo). However, focusing on the rules predicting a low citation count, there 

Table 11   Example rule lists generated by CORELS

Matrix Rule list

ScispaCy if [cos7 cells&& not wildtype di rna ne1 rna]:
high_citation = True, else high_citation = False

PubTator_Conceptnet if [not mers&& not body]:
high_citation = False, else high_citation = True

ScispaCy_Conceptnet if [chemoattractant&& not pegylated]:
high_citation = True, else high_citation = False

PubTator if [ not human&& not MERS-CoV ]:
high_citation = False, else high_citation = True

AuthorsNames if [ not paul&& not peter ]:
high_citation = False, else high_citation = True

Bow if [respiratory syndrome]:
high_citation = True, else high_citation = False

Bow_ScispaCy if [assessment&& not east]:
high_citation = False, else high_citation = True

Bow_ScispaCy_Conceptnet if [respiratory syndrome]:
high_citation = True, else high_citation = False

Bow_PubTator if [respiratory syndrome]:
high_citation = True, else high_citation = False

Bow_PubTator_Conceptnet if [respiratory syndrome&& not sars patients]:
high_citation = True, else high_citation = False

BibliometricFeatures if [not FORD_0_aisQ_Q1_D1&& not 
FORD_0_aisQ_Q1_D2]:

high_citation = False, else high_citation = True
Bow_BibliometricFeatures if [FORD_0_impactQ_Q2&& not middle east]:

high_citation = False, else high_citation = True
Bow_PubT_Conc_BibFeatures if [respiratory syndrome]:

high_citation = True, else high_citation = False
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is only one rule referring to a western sounding name (Nicola), but nearly 20 rules refer-
ring to non-western sounding names, and one rule referring to a combination.

We performed a deeper analysis of these names to clarify this phenomenon. As can be 
seen in Table 3, the names of the authors were processed using the BOW matrix, which 
has been reduced by removing words not occurring in at least 32 different documents 
( min_df = 32 ). A total of 143 unigrams, 17 bigrams and 2 trigrams (considered as names) 
meeting the threshold were extracted from the author information. These names were 
assigned a nationality using the approach described by Ye et  al. (2017)8, which assigns 
multiple nationalities with different probabilities to each name. One of three continents 
(Africa, Asia, Europe) is consequently assigned based on the nationality. For our analysis, 

G
rouped M

atrix for 465 R
ules

S
ize: support 

C
olor: lift

102 rules: {middle east, middle, merscov, mers, +127 items}
  7 rules: {central nervous, mice, bcv, mouse, +9 items}
 15 rules: {pathogens, east, developed, lower respiratory, +25 items}
 22 rules: {signaling, induction, envelope, airway, +35 items}
  1 rules: {bovine, cells, antibodies, middle east}
 12 rules: {enzymes, type interferon, evolutionary, unclear, +20 items}
 14 rules: {index, independent, studies, public health, +24 items}
 18 rules: {angiotensinconverting enzyme, serine, data suggest, similar, +32 items}
 17 rules: {method, rat, bovine coronavirus, central, +24 items}
 11 rules: {interactions, synthesis, screening, protective, +19 items}
 34 rules: {findings, regulatory, animal, pathogenesis, +54 items}
 21 rules: {cdna, demyelinating, kda, weight, +31 items}
 17 rules: {nonstructural, deaths, vaccines, induce, +30 items}
 12 rules: {inoculated, encoding, brain, mhv, +18 items}
 17 rules: {canine, detection, degree, mrnas, +23 items}
 18 rules: {enteritis, blot, translation, studied, +26 items}
 11 rules: {reveal, expression, recently, association, +18 items}
 17 rules: {gastroenteritis, signal, acid, contain, +30 items}
 26 rules: {antigen, quantitative, inoculation, specificity, +39 items}
 19 rules: {respiratory coronavirus, sites, sars patients, samples, +30 items}
 16 rules: {mature, identified, order, background, +25 items}
  6 rules: {isolated, feline, proteinase, wild type, +6 items}
  7 rules: {sars cov, provide, chemical, frame, +10 items}
  3 rules: {sars coronavirus, produced, role, assay, +2 items}
  5 rules: {oc43, pcr, respectively, days, +7 items}
  5 rules: {difference, mrna, significantly, peritonitis, +5 items}
  5 rules: {modified, contrast, N, residues, +7 items}
  1 rules: {bronchitis virus, cell, antibodies, middle east}
  5 rules: {function, lead, differential, associated, +6 items}
  1 rules: {}

{Target=low
}

{Target=high}

Items in LHS Group

R
H

S

Fig. 10   Rule clustering results for CBA model generated on BOW_Pubtator_Conceptnet (version with 
additional cleaning)

8  We used https://​www.​name-​prism.​com/, a system used by Ye et al. (2017) authors.

https://www.name-prism.com/
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we assigned the name to the continent associated with the highest probability. An overview 
of the results is in Table 13. Note that three names had the same probability for both conti-
nents, therefore they are counted twice in Table  13.

dromedary

east respiratory
syndrome

camel

infectionn

mers

cells

central nervousresults

mouse

proteinn

infected

caninec ne

study

bat

new

bovinee

rat

genomegsquirrel

specific

sequences

ssociatedat dddddasas

cdna

dog

feline

Target=highgg

Target=lowTaTaTaTaTa

size: support (0.01 − 0.053)
color: lift (1.489 − 2.016)

Fig. 11   Visualization of CBA rules related to animals from BOW_Pubtator_Conceptnet (version with extra 
feature cleaning). This graph was automatically generated by arulesViz (Hahsler & Karpienko, 2017), and 
subsequently edited for better readability (visually overlapping text and nodes were moved, no changes to 
the nodes, their labels, or their connections were made)

Table 12   Number of rules 
predicting the high/low 
categories containing the given 
concept in the antecedent

The counts were generated from all candidate rules learned with the 
apriori algorithm from BOW_Pubtator_Conceptnet (version with extra 
feature cleaning)

Concept High Low

Camel 503 0
Dromedary 575 0
Feline 0 162
Dog 0 35
Rat 0 6
Mouse 537 950
Bat 292 0
Cow 0 156
Bovine 0 200
Squirrel 0 8
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Individual names can be associated with different ratios of high citations. These ratios 
can range from 0 (all articles co-authored by given name are in the lowly cited category) to 
1 (all articles are in the highly cited category).

Table 13   The continent, 
nationality, and number of author 
names, based on (Ye et al., 2017)

Continent Nationality Number 
of names

Africa Muslim-Nubian 2
Africa African-WestAfrican 1
Africa Muslim-Maghreb 1
Africa African-EastAfrican 3
Asia EastEasian-Malay-Indonesia 1
Asia EastEasian-Malay-Malaysia 1
Asia Muslim-ArabianPeninsula 1
Asia EastAsian-Indochina-Myanmar 2
Asia EastAsian-Chinese 64
Asia EastAsian-South Korea 8
Asia EastAsian-Indochina-Vietnam 9
Asia EastAsian-Japan 4
Europe Hispanic-Portuguese 3
Europe Hispanic-Spanish 4
Europe European-SouthSlavs 1
Europe European-Italian-Romania 1
Europe European-Italian-Italy 1
Europe Europe- French 1
Europe European-German 12
Europe European-French 13
Europe Celtic-English 31
Europe Nordic-Finland 1
Total 165

Fig. 12   Left side: distribution of the number of European and Asia names by the percentage of highly cited 
articles discretized by the number of bins = 20. Right side: Distribution of the number of articles with 
Europe and Asian author names by the number of citations
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Figure 12 (left) depicts these ratios and the corresponding count of names.9 For exam-
ple, author name ‘Susanna’ has in total 32 highly cited articles out of 36 total co-authored, 
which corresponds to ratio of 0.88 (plotted on the x-axis). Figure 12 (right) shows a differ-
ent perspective. Authors with Asia-categorized names are more commonly co-authoring 
less cited articles than authors from Europe-categorized names.

We tested the statistical significance of the difference in the distributions shown in 
Fig. 12 (left). Based on the Mann-Whitney U test and the t-test, we can confirm at 1 per-
centage level of significance that the distributions are statistically significantly different. 
The same statistical test was applied on the distributions shown in Fig. 12 (right). There the 
distributions were also found to be statistically significantly different at 1 percentage level 
of significance. This provides further evidence for the results based on the interpretation of 
discovered rules.

Discussion

In this article, we have reported on an explorative analysis of factors influencing whether 
an academic paper will be cited or not. First, we analyze effects influencing predictive per-
formance. The remainder of the discussion is structured by the group of features used.

Effect of dataset size The results have shown that accuracy of up to 83% can be obtained 
based on a relatively small training set. Increasing the training set size have not resulted in 
increased accuracy, but this can be partly attributed to the fact that the experiments with 
larger data were performed on a newer release of the underlying corpus, which was pos-
sibly harder as it had more articles from 2020. For these freshly published articles, fewer 
citations were available.

Regression vs classification task formulation Our results indicate that formulating the 
problem as a classification task already in the early stage of data processing leads to 
better results. One explanation is that the classification problem is more robust to noise 
because the number of citations that defines a given class of the target variable depends 
on the median of normalized (by age) number of citations. For example, even though we 
have shown that the used citation counts are in good agreement with high-quality WoS 
data, it could happen that citations for a specific paper are increased due to unhealthy 
citation practices. In the binary classification formulation, the same article would likely 
belong to the same class of the target variable even if these spurious citations have not 
been removed.

Author names There is a clear pattern showing that English-sounding author names are 
associated with a higher citation count. This observation is most succinctly characterized 
by the CORELS models for AuthorsNames featured in Table 11. After applying De Mor-
gan’s laws, a verbalized version of this classification model would read as: 

9  Note that Africa was omitted due to paucity of data.
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It should be noted that this classification model has the lowest accuracy of all models 
that we generated. Nevertheless, the underlying pattern is also confirmed by other models, 
including the explanation generated for a random forest model by LIME in Fig. 8.

What came as a surprise was that the CBA rule model learned on author names out-
performed a rule model learned on the article content (AuthorsNames vs Bow in Table 7). 
Focusing on the random forest results in Table 6, the BOW model was slightly better, but 
we find it still remarkable that only author names are so predictive of citation count. Inter-
estingly, using both pieces of information did not improve the performance (Bow_Biblio-
metricFeatures in Table 6).

Bibliometric features The bibliometric features include journal Impact Factor (IF), Arti-
cle Influence Score (AIS) and additional features derived from these measures. Since our 
analysis was built in a cumulative manner, the corresponding BibliometricFeatures matrix 
also contained the author names.

The results largely confirm the expectations. As Table 8 shows, considering bibliomet-
ric features only, AIS for the primary journal category has the highest feature importance, 
closely followed by the journal impact factor. English-sounding names were also included 
among the strongest predictors.

Impact factor and AIS were the strongest predictors overall, also considering all other 
predictors, including individual n-grams from the article content (Table  8—third col-
umn). Congruently with prior results (Vieira & Gomes, 2010), the author count came out 
as a modestly strong predictor. A possibly interesting implication from this analysis is 
that the Article Influence Score (AIS), the newer of the two measures of journal quality, 
does not substantially change citation prediction over the Journal Impact Factor. The lat-
ter is an older metric, which unlike AIS does not distinguish the quality of the citations. 
This result could be interpreted so that AIS serves as a comparably good predictor for 
the number of citations as the journal impact factor, while at the same time carrying the 
additional information on the impact of the journals in which the citations appeared.

Bag of words and entity enrichment As can be seen from the last pair of columns in 
Table 8, feature importance for n-grams computed for Random Forests does not provide 
much insight. Those found most important are very general n-grams (e.g., east respira-
tory syndrome) and are likely an artefact of the way the input corpus was constructed as 
articles to CORD-19 corpus were included based on their applicability to the research on 
Sars-Cov-2.

In contrast, the utility of using the extracted entities to represent article content can be 
seen on the second pair of columns in Table 8. In this case, the features correspond to enti-
ties. Out of the twenty top entities by feature importance (random forest), about ten cor-
respond to subspecies of mammals (dromedary, camels, cow, rats, bovine, canine, human, 
humans, people, dog). A limitation of the interpretation of the Random Forest results is 
that the used feature importance score does not provide information on the direction, i.e., 
whether the presence of this entity is associated with a high/low citation count.

Rule learning results Figure 11 shows that the presence of words (or entities) referring 
to bats and camels is associated with high citation count, while other animals are associ-
ated with low citation count, except mice, which are associated with both categories. The 
relatively high number of rules referring to animals could be attributed to the fact that ani-
mals have been much debated in relation to coronavirus. One important context are the 
animal models, which were used for the study of viruses and therapeutics. Other contexts 
include the discussion of whether the animal can become infected, or is directly a source of 
infection, is a host for another virus which is a close known relative of a human coronavi-
rus and can spread the infection to other host species. This is the case for dromedaries (or 
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camels) (Reusken et al., 2013; Sharun et al., 2020) and bats (MacFarlane & Rocha, 2020; 
Pereira et  al., 2020; Poon et  al., 2005), which are all predictive of the high citation cat-
egory. Camels have been discussed as the source of infection, as have bats  (Shereen et al., 
2020). Camels are mainly associated with the MERS virus (Azhar et al., 2014), which is 
also confirmed by one of the rules. The combination of the words camel and human in one 
rule indicates that articles often discuss the transmission of the virus from camel to human. 
Examples of articles matching this rule include “Infection, Replication, and Transmission 
of Middle East Respiratory Syndrome Coronavirus in Alpacas” (Adney et  al., 2016) or 
“Presence of Middle East respiratory syndrome coronavirus antibodies in Saudi Arabia: a 
nationwide, cross-sectional, serological study” (Müller et al., 2015).

In contrast, most other animals, which have often been discussed in connection with 
coronavirus as possible spreaders (Muñoz-Fontela et al., 2020), are predictive of the low 
citation category. The same seems to also apply to dogs (also canines) and cats (or felines). 
Dogs and cats are common pets and many researchers investigated if they could suffer from 
coronavirus infections. However, until early 2020, there was essentially no evidence indi-
cating that domestic animals like cats or dogs can be infected with Sars-Cov-2 (Goumenou 
et al., 2020).

Articles referring to mice were present in both categories. Mice are often used as model 
organisms for studying human diseases (Justice & Dhillon, 2016) and as such, are referred 
to from a wide variety of contexts. An example of rules representative of the different con-
texts (and citation categories) is given in the following two boxes. For each rule, we also 
provide example articles from CORD-19 covered by these rules. 

Biological Interpretation Based on a phylogeny of coronaviruses and their clades 
(Chan et al., 2015) we interpreted these results with respect to phylogenetic groupings and 
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distances. Bat coronaviruses are found in at least 4 different coronavirus clades, includ-
ing the group betaB with human SARS, suggesting a high phylogenetic diversity of cor-
onaviruses in bats. This is consistent with bats harboring persistent viral infections with 
enhanced viral shedding (Subudhi et al., 2019). It may also be that bats have been more 
studied in this respect, and we are observing a host and virus sequencing bias. Of note, a 
bat coronavirus is the only other virus from a non-human species in the betaB clade along 
with the SARS-CoV and SARS-CoV-2 viruses. The camel coronavirus (MERS) is in a sis-
ter betaC clade, also close to human SARS coronaviruses. Thus both species linked to high 
citation counts harbor coronaviruses which are more phylogenetically similar to human 
SARS viruses. On the other hand, feline (FIPV, FCOV) and canine coronaviruses (CCOV) 
are in the alpha coronavirus clade (Whittaker et al., 2018) and more distant from the betaB 
clade with human SARS viruses. There is also a murine coronavirus MHV, which is in 
the betaA clade, further from both the SARS and MERS clades. Together, these results 
highlight a pattern of virus phylogenetic distance to human SARS-CoV and SARS-CoV-2 
related to high and low citation counts. This would be consistent with closer phylogenetic 
distance allowing better molecular inferences and transfer of information and virus study 
results from one species (e.g. bat) to human.

Rules also uncovered multiple patterns referring to specific types of biomedical entities, 
such as drugs or other compounds or manifestations of diseases. From the group of 465 
rules selected by CBA from the association rule learning results on Bow_Pubtator_Con-
ceptnet (with extra cleaning), we selected rules with the highest lift value: 102 rules had 
lift 2.015. All these rules predicted the high citation category. A lift of 2.0 indicates that 
articles containing this concept are about twice as likely to belong to the highly cited cat-
egory than an average article in the training data. Among these rules, several rules referred 
to biomedical entities of potential interest (interferons, protease, spike protein, peptidase, 
dpp4). Dipeptidyl peptidase 4 (DPP4) is a MERS-CoV receptor (Li et  al., 2020), which 
is, along with interferons and proteases, a possible critical determinant for MERS-CoV 
pathogenesis and transmission—both inter and intraspecies (Widagdo et al., 2019). Also, 
DPP4 was considered as a candidate binding target of SARS-CoV-2 spike protein (Li et al., 
2020). Since DPP4 inhibitors are considered as possible therapeutic targets for Sars-Cov-2 
(Strollo & Pozzilli, 2020), we consider DPP4 as a particularly interesting focus for a tar-
geted future rule learning analysis.

Limitations

The work presented in this article is one of the first attempts to predict citations based on the 
contents of research articles using machine learning techniques and to explain the predictions. 
We tried to select a representative selection of machine learning and explanation methods, as 
well as a current dataset for which such analysis could be validated by domain experts. We 
acknowledge that our work suffers from multiple limitations, which we have explained and 
discussed further below, and some of which we would like to address in follow-up work.

The quality of citation data was also limiting. In future work, we will thus consider sup-
plementing OpenCitations with a commercial bibliometric service. We found that for 60% 
of articles uncovered by OpenCitations, citation counts could be retrieved from Web of Sci-
ence. The predictive performance could also possibly be improved by involving additional 
features, such as the country and reputation of the authors’ institutions, and the h-index of 
authors, and features of citation, like how prominent the citation in the source paper is.
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In our analysis, we have controlled for the age of the publication, but not for the rank 
of the journal in which it appeared. This could be done, e.g., by performing the analysis 
only for articles from journals assigned to the same quartile by impact factor or AIS. The 
combination of the most recent natural language processing techniques—BERT combined 
with a neural network classifier—yield the best performance. The accuracy of the BERT 
model would have likely further increased if we retrained the BERT model on research lit-
erature instead of using a generic model trained on Wikipedia. In addition, more thorough 
tuning of hyperparameters could have led to improved results. Both of these directions 
would, however, require considerable computational resources. Possibly the most promis-
ing approach that could also address the lower performance of the entity detection coupled 
with semantic enrichment from external sources is the utilization of graph-based embed-
ding techniques, such as RDF2vec (Ristoski et al., 2019). In terms of interpretability, future 
work could employ some of the recently proposed modifications of LIME that aspire to 
address some of its shortcomings. A particularly promising direction can provide LioNets, 
which were shown to generate more precise explanations than LIME (Mollas et al., 2019). 
Another appealing direction is the use of explanation techniques combining relational rule 
learning and deep learning (Schmid & Finzel, 2020) techniques on a graph-based version 
of COVID-19 research data (Reese et al., 2020).

Conclusion

Research articles get cited for many different reasons. Most prior works focused on those 
attributable to general bibliometric factors, such as the quality of the journal, whether 
the article is openly available or not, and the number of authors. In this work, we have 
attempted to link research interest to the content of the article. Due to the paucity of 
prior work in this area, there were limited clues as to which group of methods would 
yield the best results on this problem. In our study, we have tried to address this research 
gap by applying a representative choice of preprocessing, data analysis, and interpreta-
tion techniques.

We were disappointed with the performance of enrichment with entity detection meth-
ods, which we hoped could improve results over the standard bag-of-words approach. 
Nevertheless, when combined with rule learning, the rules learned from the entity-based 
representation were subjectively more interpretable. Overall, our research confirmed the 
applicability of the interpretability-accuracy trade-off. The best predictive performance 
was obtained with a “black-box” method—neural network classifier over BERT-based text 
representation. The rule-based models yielded the most insights. In our work, we have 
shown how both techniques can be combined. We used random forests to evaluate data pre-
processing setups and additionally used their results evaluated with eXplainable Artificial 
Intelligence (XAI) techniques to support a fine-grained interpretation based on rules.

One of the unique elements of our research is the rule-based approach, which provides 
both local classification and insight. Such rules can be useful also once a selection of a 
research topic and a method has been made. Our results provide information about animal 
species as virus hosts, which are of high interest in the context of COVID-19 research. 
Given a specific topic, the extracted rules can also provide more general guidance on which 
combination of a journal and a license for the distribution of the content, or a specific pre-
print server, has been associated with most citations.
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Table 14   Example of the rules considering animals for CBA algorithm

Matrix LHS RHS Support Confidence Lift

Bow_ScispaCy {evolutionary flexibility,animal 
models}

{Target=high} 16 0.76 1.53

Bow_ScispaCy_Conceptnet {theoretic,animal models} {Target=high} 16 0.76 1.53
Bow_PubTator {animal,evidence} {Target=high} 18 0.90 1.81
Bow_PubTator_Conceptnet {us,animal} {Target=high} 25 1.00 2.01
Bow_BibliometricFeatures {animals,zoonotic} {Target=high} 18 1.00 2.01
Bow_BibliometricFeatures {journal_Journal_of_

Virology,animals}
{Target=high} 30 0.85 1.72

Bow_Pubtator_Conceptnet
_BibliometricFeatures

{cov,animal} {Target=high} 25 1 2.01

Bow {animals,middle east} {Target=high} 26 1.00 2.01
Bow {animals,zoonotic} {Target=high} 18 1.00 2.01
Bow {animal,evidence} {Target=high} 18 0.90 1.81
Bow_ScispaCy {dogs} {Target=low} 22 0.79 1.55
Bow_BibliometricFeatures {canine,dogs} {Target=low} 21 0.88 1.73
Bow_PubTator_Conceptnet {Cats,feline 

coronavirus,infectious_y}
{Target=low} 18 0.81 1.62

PubTator_Conceptnet {coronavirus,cat,Cats} {Target=low} 22 0.73 1.45
PubTator {cats,feline coronavirus} {Target=low} 20 0.71 1.41
Bow_ScispaCy {bats rhinolophus ferrumequinum,

demyelinating}
{Target=low} 16 1.00 1.98

Bow_ScispaCy_Conceptnet {bats} {Target=high} 47 0.80 1.60
Bow {bats,coronavirus,

east respiratory syndrome}
{Target=high} 21 1.00 2.01

Bow {bats,coronavirus,transmission} {Target=high} 17 1.00 2.01
Bow {bats,respiratory,virus} {Target=high} 22 0.96 1.92
PubTator {rats} {Target=low} 16 0.84 1.67
Bow_BibliometricFeatures {camels,east respiratory syndrome,

infection}
{Target=high} 31 1.00 2.01

Bow_BibliometricFeatures {camel,east respiratory syndrome} {Target=high} 21 1.00 2.01
PubTator_Conceptnet {mers,camel} {Target=high} 35 1.00 2.01
PubTator_Conceptnet {humans,camel} {Target=high} 25 1.00 2.01
PubTator_Conceptnet {camel,coronavirus} {Target=high} 16 1.00 2.01
PubTator_Conceptnet {camel,infection} {Target=high} 31 0.97 1.95
PubTator {humans,camels} {Target=high} 22 1.00 2.01
PubTator {camel,camels} {Target=high} 17 1.00 2.01
PubTator {camel} {Target=high} 24 0.96 1.93
PubTator {camels} {Target=high} 46 0.96 1.93
Bow_ScispaCy_Conceptnet {dromedary} {Target=high} 36 0.97 1.96
PubTator_Conceptnet {mers,dromedary} {Target=high} 26 1.00 2.01
PubTator {humans,dromedary} {Target=high} 18 1.00 2.01
Bow {dromedary,east respiratory  

syndrome}
{Target=high} 35 1.00 2.01
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Table 15   Example of the author 
names rules for CBA algorithm

LHS RHS Support Lift

{m_ller marcel} {Target=high} 0.012211 2.015544
{abdullah} {Target=high} 0.010925 2.015544
{baric ralph,mark} {Target=high} 0.010283 2.015544
{peter,van} {Target=high} 0.013496 1.923928
{memish} {Target=high} 0.012853 1.919566
{lai,michael} {Target=low} 0.010925 1.874433
{wang,zheng} {Target=high} 0.010925 1.903569
{yi,yuen kwok} {Target=high} 0.010925 1.903569
{haagmans} {Target=high} 0.015424 1.860502
{lai} {Target=low} 0.017352 1.786224
{baker susan} {Target=high} 0.010925 1.803382
{drosten christian} {Target=high} 0.015424 1.791595
{kwok yung,woo} {Target=high} 0.017995 1.763601
{woo patrick} {Target=high} 0.017352 1.755474
{m_ller} {Target=high} 0.012853 1.752647
{albert} {Target=high} 0.012211 1.740697
{hung,woo} {Target=high} 0.012211 1.740697
{woo,yuen} {Target=high} 0.018638 1.719141
{jian,zheng} {Target=high} 0.010925 1.713212
{huang,yi} {Target=high} 0.010925 1.713212
{eric} {Target=high} 0.025064 1.708831
{poon} {Target=high} 0.014139 1.70546
{chan,patrick} {Target=high} 0.014139 1.70546
{chan,yuen kwok} {Target=high} 0.017352 1.700615
{peiris malik} {Target=high} 0.010283 1.6973
{te,tseng} {Target=high} 0.010283 1.6973
{li,zheng} {Target=high} 0.010283 1.6973
{li,wang,yi} {Target=high} 0.010283 1.6973
{berend} {Target=high} 0.013496 1.693057
{baric} {Target=high} 0.029563 1.685728
{woo} {Target=high} 0.022494 1.67962
{wang,yi} {Target=high} 0.012853 1.67962
{susanna} {Target=high} 0.015424 1.668036
{christian} {Target=high} 0.020566 1.65378
{deng} {Target=high} 0.011568 1.649081
{fang,li} {Target=high} 0.011568 1.649081
{graham} {Target=high} 0.014139 1.642295
{lau} {Target=high} 0.018638 1.623633
{patrick} {Target=high} 0.023136 1.612435
{ali} {Target=high} 0.015424 1.612435
{du,jiang} {Target=high} 0.010283 1.612435
{li,zhou} {Target=high} 0.010283 1.612435
{chan,yi} {Target=high} 0.010283 1.612435
{stefan} {Target=high} 0.012211 1.595639
{al} {Target=high} 0.023136 1.577382
{baker} {Target=high} 0.011568 1.577382



2345Scientometrics (2022) 127:2313–2349	

1 3

The patterns obtained with the methodology described in our paper can be used to help 
shape research plans, as it provides a perspective on which concepts and their combina-
tions resulted in follow-up scientific interest and which did not. Possible applications of 
our work thus include utilization in platforms for sharing and analyzing scientific articles. 
We envisage that obtaining insights on which combination of topics has a scientific impact, 
could be useful for research lab managers, and other decision makers in science, such as 
those allocating budget to individual research areas.

Appendix

See Tables 14 and 15.

Table 15   (continued) LHS RHS Support Lift

{shibo} {Target=high} 0.011568 1.577382
{te} {Target=high} 0.016067 1.574644
{zheng} {Target=high} 0.017995 1.567645
{matthew} {Target=high} 0.01928 1.550418
{buonavoglia} {Target=low} 0.012853 1.526688
{vincent} {Target=high} 0.014781 1.54525
{van} {Target=high} 0.041131 1.535653
{jan,peter} {Target=high} 0.010283 1.535653
{peter} {Target=high} 0.044344 1.52827
{mark} {Target=high} 0.025064 1.511658
{li,yi} {Target=high} 0.015424 1.511658
{christopher} {Target=high} 0.012211 1.472898
{joo} {Target=low} 0.012211 1.450353
{yee} {Target=low} 0.012211 1.450353
{xiang} {Target=high} 0.015424 1.46585
{alexander} {Target=high} 0.010283 1.46585
{liu ding} {Target=high} 0.010283 1.46585
{haan} {Target=high} 0.010283 1.46585
{ching} {Target=low} 0.010283 1.443414
{jiang,liu} {Target=high} 0.010283 1.46585
{chen,wei} {Target=low} 0.011568 1.42898
{jan} {Target=high} 0.017995 1.447057
{andrew} {Target=high} 0.021208 1.445934
{jian} {Target=high} 0.017352 1.432097
{yuan} {Target=low} 0.018638 1.403808
{peiris} {Target=high} 0.015424 1.422737
{zhou} {Target=high} 0.019923 1.420042
{nicola} {Target=low} 0.012211 1.396636
{paul} {Target=high} 0.037918 1.41568
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