Skip to main content
Log in

Fusion Matrix–Based Text Similarity Measures for Clustering of Retrieval Results

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

To address the deficiency in semantic representations of medical texts and achieve the clustering of PubMed database retrieval results, this study presented a method to construct a fusion matrix using text similarity measures. Similarity relations between phrases, texts, and the content of phrases and texts were combined to create a fusion matrix, and several clustering algorithms were trained to group a collection of texts from the PubMed database. Category annotations were then created to describe the meaning of each category of clustered texts. Experimental results showed that the fusion matrix-based clustering was superior in grouping the text sets, and clustering the training set was not necessary to improve clustering performance. Moreover, the extracted high-frequency words in the category descriptions distinguished the meanings of the categories well; therefore, the fusion matrix design was effective for clustering descriptions of academic texts. As only the PubMed database was used in this study, future research should extend the fusion matrix to other text repositories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aggarwal, C. C., & Zhai, C. (2012). A survey of text clustering algorithms (pp. 77–128). Springer.

    Google Scholar 

  • Amer, A. A., & Abdalla, H. I. (2020). A set theory based similarity measure for text clustering and classification. Journal of Big Data, 7(1), 74.

    Article  Google Scholar 

  • Bahdanau, D., Cho, K. & Bengio, Y. (2015). Neural machine translation by jointly learning to align and translate. Proceedings of 3rd International Conference on Learning Representations, pp 1–14

  • Basu, T., & Murthy, C. A. (2013). Cues: A new hierarchical approach for document clustering. Journal of Pattern and Recognition Research, 8(1), 66–84.

    Article  Google Scholar 

  • Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., & Harshman, R. (1990). Indexing by latent semantic analysis. Journal of the American Society for Information Science, 41(6), 391–407.

    Article  Google Scholar 

  • Dice, L. (1945). Measures of the amount of ecologic association between species. Ecology, 26(3), 297–302.

    Article  Google Scholar 

  • Egghe, L. (2010). Good properties of similarity measures and their complementarity. Journal of the Association for Information Science & Technology, 61(10), 2151–2160.

    Google Scholar 

  • Ester, M., Kriegel, H. P., Sander, J., & Xu, X. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise. AAAI Press, 96(34), 226–231.

    Google Scholar 

  • Eugene, F. K. (1987). Taxicab geometry. Dover Publications.

    Google Scholar 

  • Fabris, E., Kuhn, T., Silvello, G. (2019). A framework for citing nanopublications. Proceedings of the International Conference on Theory and Practice of Digital Libraries. Cham: Springer, pp 70–83

  • Github. KeyBERT[EB/OL]. [5-19]. https://maartengr.github.io/KeyBERT/

  • Guan, R., Shi, X., Marchese, M., Yang, C., & Liang, Y. (2011). Text clustering with seeds affinity propagation. IEEE Transactions on Knowledge & Data Engineering, 23(4), 627–637.

    Article  Google Scholar 

  • He, Y., Tan, H., & Luo, W. (2011). MR-DBSCAN: An efficient parallel density-based clustering algorithm using Map Reduce. Proceedings of the 2011 IEEE 17th International Conference on Parallel and Distributed Systems, pp 473–480

  • Hirai, S., & Yamanishi, K. (2013). Efficient computation of normalized maximum likelihood codes for gaussian mixture models with its applications to clustering. IEEE Transactions on Information Theory, 59(11), 7718–7727.

    Article  MathSciNet  MATH  Google Scholar 

  • Hirschberg, J., & Manning, C. D. (2015). Advances in natural language processing. Science, 349(6245), 261–266.

    Article  MathSciNet  MATH  Google Scholar 

  • Hofmann, T. (2013). Probabilistic latent semantic analysis. arXiv:1301.6705v1 [cs.LG]

  • Huang, W., Chen, E., Liu, Q., Chen, Y., & Wang, S. (2019). Hierarchical multi-label text classification: An attention-based recurrent network approach. Proceedings of 28th ACM International Conference on Information and knowledge management, pp 1051–1060

  • Jaccard, P. (1901). Etude comparative de la distribution florale dans une portion des Alpes et des Jura. Bulletin Del La Societe Vaudoise Des Sciences Naturelles, 37(142), 547–579.

    Google Scholar 

  • Jia, C., Carson, M. B., Wang, X., & Yu, J. (2017). Concept decompositions for short text clustering by identifying word communities. Pattern Recognition, 76, 691–703.

    Article  Google Scholar 

  • Kohonen, T., Kaski, S., Lagus, K., Salojrvi, J., Honkela, J., Paatero, V., & Saarela, A. (2000). Self organization of a massive document collection. IEEE Transactiongs on Neural Networks, 11(3), 574–585.

    Article  Google Scholar 

  • Lai, S. W. (2016). Research on word and document semantic vector representation method based on neural network. University of Chinese Academy of Sciences.

    Google Scholar 

  • Leydesdorff, L. (2008). On the normalization and visualization of author co-citation data: Salton’s cosine versus the Jaccard index. Journal of the American Society for Information Science and Technology, 59(1), 77–85.

    Article  Google Scholar 

  • Li, G. S., Meng, K., & Xie, J. (2013). An improved topic detection method for chinese microblog based on incremental cluste-ring. Journal of Software, 8(9), 2313–2320.

    Article  Google Scholar 

  • Liao, Y., Hua, J. L., & Zhu, W. S. (2015). An effective divide-and-merge method for hierarchical clustering. Journal of Computational and Theoretical Nanoscience, 12(12), 5547–5554.

    Article  Google Scholar 

  • Liu, T., Zhang, X., Xu, H. Y., & Lei, C. Y. (2020). Review of application research on text mining methods for technical path identification. Information studies: Theory & Application, 43(7), 179–185.

  • Lozano-Diez, A., Zazo, R., Toledano, D. T., & Gonzalez-Rodriguez, J. (2017). An analysis of the influence of deep neural network (DNN) topology in bottleneck feature based language recognition. PLoS ONE, 12, 1–22.

    Article  Google Scholar 

  • Macqueen, J. (1965). Some Methods for Classification and Analysis of MultiVariate Observations. Berkeley Symposium on Mathematical Statistics & Probability, pp 281–297.

  • Mehta, V., Bawa, S., & Singh, J. (2021). WEClustering: Word embeddings based text clustering technique for large datasets. Complex & Intelligent Systems, 7, 3211–3224.

    Article  Google Scholar 

  • Mu, T., Goulermas, J. Y., & Korkontzelos, I. (2016). Descriptive document clustering via discriminant learning in a co-embedded space of multilevel similarities. Journal of the American Society for Information Science and Technology, 67(1), 106–133.

    Google Scholar 

  • Niasi, K., & Sidheshwari, P. (2019). Self-tuned descriptive document clustering using a predictive network. IEEE Transactions on Knowledge and Data Engineering, 30(10), 1929–1942.

    Google Scholar 

  • Nielsen, F. (2016). Introduction to HPC with MPI for Data Science. Introduction to HPC with MPI for Data Science

  • Ning, W. H., Liu, J. H., & Xiong, H. (2021). Knowledge discovery using an enhanced latent Dirichlet allocation-based clustering method for solving on-site assembly problems. Robotics and Computer-Integrated Manufacturing, 73, 102246.

    Article  Google Scholar 

  • Qiao, Y. F., Xiong, C. Y., Liu, Z., & Liu, Z. Y. (2019). Understanding the Behaviors of BERT in Ranking. arXiv. https://doi.org/10.48550/arXiv.1904.07531

    Article  Google Scholar 

  • Salton, G., Wong, A., & Yang, C. S. (1975). A vector space model for automatic indexing. Communications of the ACM, 8(11), 613–620.

    Article  MATH  Google Scholar 

  • Sculley, D. (2010). Web-scale k-means clustering. International Conference on World Wide Web, pp 1177–1178

  • Sinaga, K. P., & Yang, M. S. (2020). Unsupervised K-means clustering algorithm. IEEE Access, 8, 80716–80727.

    Article  Google Scholar 

  • Sánchez, D., Batet, M., Isern, D., & Valls, A. (2012). Ontology-based semantic similarity: A new feature-based approach. Expert System Application, 39(9), 7718–7728.

    Article  Google Scholar 

  • Sohangir, S., & Wang, D. (2017). Improved sqrt-cosine similarity measurement. J Big Data, 4(1), 25.

    Article  Google Scholar 

  • Song, Y., Wang, H., Wang, Z., Li, H., & Chen, W. (2011). Short text conceptualization using a probabilistic knowledgebase. Proceedings of 22nd International Joint Conference on Artificial Intelligence. https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-388

    Article  Google Scholar 

  • Stefanovič, P., Kurasova, O., & Štrimaitis, R. (2019). The N-grams based text similarity detection approach using self-organizing maps and similarity measures. Applied Science, 9, 1870.

    Article  Google Scholar 

  • Sun, M. X., & Liu, C. Q. (2017). Research on hot topic detection based on DBSCAN algorithm and inter sentence relationship. Library and Information Service, 61(12), 113–121.

    Google Scholar 

  • Wang, A. J. (2019). An improved news text clustering algorithm based on MinHash. Computer Technology and Development, 29(2), 39–42.

    Google Scholar 

  • Wang, C. L., Yang, Y. H., Deng, F., & Lai, H. Y. (2019). A review of text similarity approaches. Information Science, 37(3), 158–168.

    Google Scholar 

  • Wang, D., Liang, Y., Xu, D., Feng, X., & Guan, R. (2018). A content-based recommender system for computer science publications. Knowledge-Based Systems, 157, 1–9.

    Article  Google Scholar 

  • Wang, Z., Mi, H., & Ittycheriah, A. (2016). Semi-supervised clustering for short text via deep representation learning. Proceedings of the 20th SIGNLL Conference on Computational Natural Language Learning. https://doi.org/10.18653/v1/K16-1004

    Article  Google Scholar 

  • Xie, H. (2021). Improved Jaccard coefficient text similarity calculation based on word frequency ratio. Neijiang Science and Technology, 42(8), 27.

    Google Scholar 

  • Xie, J., Girshick, R., & Farhadi, A. (2016). Unsupervised deep embedding for clustering analysis. International Conference on Machine Learning. PMLR, pp 478–487

  • Xu, J. M., Xu, B., Wang, P., Zheng, S. C., Tian, G. H., Zhao, J., & Xu, B. (2017). Self-Taught convolutional neural networks for short text clustering. Neural Networks, 88, 22–31.

    Article  Google Scholar 

  • Yang, L., & Xu, S. (2017). A local context-aware LDA model for topic modeling in a document network. Journal of the Association for Information Science & Technology, 68, 1429–1448.

    Article  Google Scholar 

  • Yu, P. (2020). Jaccard distance of logical formulas and its application. Journal of Frontiers of Computer Science & Technology, 14(11), 1975–1980.

    Google Scholar 

  • Yu, S., Tranchevent, L., & Liu, X. (2011). Optimized data fusion for kernel k-means clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(5), 1031–1039.

    Google Scholar 

  • Zhang, D., Nan, F., & Wei, X. (2021). Supporting clustering with contrastive learning. ar Xiv preprint ar Xiv:2103.12953.

  • Zhang, T., Ramakrishnan, R., & Livny, M. (1997). BIRCH: A new data clustering algorithm and its applications. Journal of Data Mining and Knowledge Discovery, 1(2), 141–182.

    Article  Google Scholar 

  • Zhang, X. L., Fu, Y. Z., & Chu, X. P. (2015). Application of jaccard similarity coefficient in recommender system. Computer Technology and Development, 25(4), 158–161.

    Google Scholar 

  • Zhao, J., Zhu, T. T., & Lan, M. (2014). ECNU: One stone two birds: Ensemble of heterogenous measures for semantic relatedness and textual entailment. International Workshop on Semantic Evaluation in COLing, Dublin. https://doi.org/10.3115/v1/S14-2044

    Article  Google Scholar 

  • Zheng, S. Y., Huang, Q., Zhang, G., Li, Y. X., & Chen, X. (2019). A ontology construction method for user generated content. Information Science, 37(11), 43–47.

    Google Scholar 

Download references

Funding

This study was funded by the Liaoning Social Science Planning Fund project (Grant No. L20BTQ003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yueyang Zhao.

Ethics declarations

Conflict of interest

All authors declares that they have no conflict of interest to disclose.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Cui, L. Fusion Matrix–Based Text Similarity Measures for Clustering of Retrieval Results. Scientometrics 128, 1163–1186 (2023). https://doi.org/10.1007/s11192-022-04596-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-022-04596-z

Keywords

Navigation