Skip to main content
Log in

The effect of structural holes on producing novel and disruptive research in physics

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

As teams become prevalent in contemporary science, how to establish collaborations is key to tomorrow’s breakthrough, which has broad implications to individual scientists, institutions, and funding agencies. In this paper, we focus on the association between collaboration networks and scientists producing novel and disruptive research, based on the publication data from the American Physical Society. In particular, we focus on the role of spanning structural holes on producing novel and disruptive research. Our primary finding is that scientists whose collaboration networks span over structural holes in their collaboration networks not only produce more novel and disruptive research, but also have higher chance to produce novel and disruptive research. Although both male and female scientists benefit from structural holes, we find suggestive evidence that female researchers benefit more. This paper provides empirical evidence on the relationship between structural holes and novel/disruptive research in the field of physics, which has policy implications for nurturing scientists and developing science policies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • 2021 Best Global Universities Rankings. Retrieved August 1, 2021 from https://www.usnews.com/education/best-global-universities/rankings

  • Abbasi, A., Altmann, J., & Hossain, L. (2011a). Identifying the effects of co-authorship networks on the performance of scholars: A correlation and regression analysis of performance measures and social network analysis measures. Journal of Informetrics, 5(4), 594–607.

    Article  Google Scholar 

  • Abbasi, A., Hossain, L., & Leydesdorff, L. (2012). Betweenness centrality as a driver of preferential attachment in the evolution of research collaboration networks. Journal of Informetrics, 6(3), 403–412.

    Article  Google Scholar 

  • Abbasi, A., Hossain, L., Uddin, S., & Rasmussen, K. (2011b). Evolutionary dynamics of scientific collaboration networks: Multi-levels and cross-time analysis. Scientometrics, 89(2), 687–710.

    Article  Google Scholar 

  • Abbasi, A., & Jaafari, A. (2013). Research impact and scholars’ geographical diversity. Journal of Informetrics, 7(3), 683–692.

    Article  Google Scholar 

  • Ahmadpoor, M., & Jones, B. (2017). The dual frontier: Patented inventions and prior scientific advance. Science, 357(6351), 583–587.

    Article  Google Scholar 

  • Ahmadpoor, M., & Jones, B. (2019). Decoding team and individual impact in science and invention. Proceedings of the National Academy of Sciences of the United States of America, 116(28), 13885–13890.

    Article  Google Scholar 

  • Alshebli, B., Rahwan, T., & Wei, L. (2018). The preeminence of ethnic diversity in scientific collaboration. Nature Communications, 9, Article 5163.

    Article  Google Scholar 

  • American Physical Society. Retrieved December 9, 2021 from https://publish.aps.org/datasets

  • Azoulay, P. (2019). Small research teams ‘disrupt’science more radically than large ones. Nature, 566, 330–332.

    Article  Google Scholar 

  • Azoulay, P., Graff-Zivin, J., Uzzi, B., Wang, D., Williams, H., Evans, J., Jin, G., Lu, S., Jones, B., & Boerner, K. (2018). Toward a more scientific science. Science, 361(6408), 1194–1197.

    Article  Google Scholar 

  • Barjak, F., & Robinson, S. (2008). International collaboration, mobility and team diversity in the life sciences: impact on research performance. Social Geography, 3(1), 23–36.

    Article  Google Scholar 

  • Boccaletti, S., Bianconi, G., Criado, R., Genio, C. I. D., Gómez-Gardees, J., Romance, M., Nadal, S., Wang, Z., & Zanin, M. (2014). The structure and dynamics of multilayer networks. Physics Reports, 544(1), 1–122.

    Article  MathSciNet  Google Scholar 

  • Bol, T., de Vaan, M., & van de Rijt, A. (2018). The Matthew effect in science funding. Proceedings of the National Academy of Sciences of the United States of America, 115(19), 4887–4890.

    Article  Google Scholar 

  • Bornmann, L., Devarakonda, S., Tekles, A., & Chacko, G. (2020). Disruptive papers published in Scientometrics: Meaningful results by using an improved variant of the disruption index originally proposed by Wu, Wang, and Evans (2019). Scientometrics, 123(2), 1149–1155.

    Article  Google Scholar 

  • Bornmann, L., & Tekles, A. (2019). Disruption index depends on length of citation window. Profesional De La Informacion, 28(2), e280207.

    Google Scholar 

  • Bornmann, L., & Tekles, A. (2021). Convergent validity of several indicators measuring disruptiveness with milestone assignments to physics papers by experts. Journal of Informetrics, 15(3), 101159.

    Article  Google Scholar 

  • Burt, R. (1995). Structural holes: The social structure of competition. Havard Universtity Press.

    Google Scholar 

  • Burt, R. (2004). Structural holes and good ideas. American Journal of Sociology, 110(2), 349–399.

    Article  Google Scholar 

  • Cummings, J., & Cross, R. (2003). Structural properties of work groups and their consequences for performance. Social Networks, 25(3), 197–210.

    Article  Google Scholar 

  • Didegah, F., & Thelwall, M. (2013). Which factors help authors produce the highest impact research? Collaboration, journal and document properties. Journal of Informetrics, 7(4), 861–873.

    Article  Google Scholar 

  • Dong, J., Mccarthy, K., & Schoenmakers, W. (2017). How central is too central? Organizing interorganizational collaboration networks for breakthrough innovation. Journal of Product Innovation Management, 34(4), 526–542.

    Article  Google Scholar 

  • Eagle, N., Macy, M., & Claxton, R. (2010). Network diversity and economic development. Science, 328(5981), 1029–1031.

    Article  MathSciNet  MATH  Google Scholar 

  • Evans, J., & Foster, J. (2011). Meta knowledge. Science, 331(6018), 721–725.

    Article  MathSciNet  Google Scholar 

  • Fleming, L. (2001). Recombinant uncertainty in technological search. Management Science, 47(1), 117–132.

    Article  Google Scholar 

  • Fontana, M., Iori, M., Montobbio, F., & Sinatra, R. (2020). New and atypical combinations: An assessment of novelty and interdisciplinarity. Research Policy, 49(7), 104063.

    Article  Google Scholar 

  • Fortunato, S., Bergstrom, C., Boerner, K., Evans, J., Helbing, D., Milojevic, S., et al. (2018). Science of science. Science, 359(6379), 1007–1007.

    Article  Google Scholar 

  • Freeman, L. (1979). Centrality in social networks: Conceptual clarification. Social Network, 1(3), 215–239.

    Article  MathSciNet  Google Scholar 

  • Funk, R., & Owen-Smith, J. (2017). A dynamic network measure of technological change. Management Science, 63(3), 791–817.

    Article  Google Scholar 

  • Gazni, A., & Didegah, F. (2011). Investigating different types of research collaboration and citation impact: A case study of Harvard University’s publications. Scientometrics, 87(2), 251–265.

    Article  Google Scholar 

  • Gilsing, V., Nooteboom, B., Vanhaverbeke, W., Duysters, G., & Van Den Oord, A. (2008). Network embeddedness and the exploration of novel technologies: Technological distance, betweenness centrality and density. Research Policy, 37(10), 1717–1731.

    Article  Google Scholar 

  • Glanzel, W., & Schubert, A. (2001). Double effort = Double impact? A critical view at international co-authorship in chemistry. Scientometrics, 50(2), 199–214.

    Article  Google Scholar 

  • Gonzalez-Brambila, C., Veloso, F., & Krackhardt, D. (2013). The impact of network embeddedness on research output. Research Policy, 42(9), 1555–1567.

    Article  Google Scholar 

  • Granovetter, M. (1983). The strength of weak ties: A network theory revisited. Sociological Theory, 1(6), 201–233.

    Article  Google Scholar 

  • Granovetter, M. (2003). The strength of weak ties. In Mark S. Granovetter (Ed.), Networks in the knowledge economy. Oxford University Press.

    Google Scholar 

  • Guan, J., & Liu, N. (2016). Exploitative and exploratory innovations in knowledge network and collaboration network: A patent analysis in the technological field of nano-energy. Research Policy, 45(1), 97–112.

    Article  MathSciNet  Google Scholar 

  • Guan, J., & Pang, L. (2018). Bidirectional relationship between network position and knowledge creation in Scientometrics. Scientometrics, 115(1), 201–222.

    Article  Google Scholar 

  • Guan, J., Zhang, J., & Yan, Y. (2015). The impact of multilevel networks on innovation. Research Policy, 44(3), 545–559.

    Article  Google Scholar 

  • Guimera, R., Uzzi, B., Spiro, J., & Amaral, L. A. N. (2005). Team assembly mechanisms determine collaboration network structure and team performance. Science, 308(5722), 697–702.

    Article  Google Scholar 

  • Hargadon, A., & Sutton, R. (1997). Technology brokering and innovation in a product development firm. Administrative Science Quarterly, 42, 716–749.

    Article  Google Scholar 

  • Hazr, C., Lesage, J., & Autant-Bernard, C. (2016). The role of R&D collaboration networks on regional knowledge creation: evidence from information and communication technologies. Papers in Regional Science, 97(3), 549–567.

    Article  Google Scholar 

  • Hirsch, J. (2005). An index to quantify an individual’s scientific research output. Proceedings of the National Academy of Sciences of the United States of America, 102(46), 16569–16572.

    Article  MATH  Google Scholar 

  • Holme, P., & Saramäki, J. (2012). Temporal networks. Physics Reports, 519(3), 97–125.

    Article  Google Scholar 

  • Huang, J., Gates, A., Sinatra, R., & Barabasi, A. L. (2020). Historical comparison of gender inequality in scientific careers across countries and disciplines. Proceedings of the National Academy of Sciences of the United States of America, 117(9), 4609–4616.

    Article  Google Scholar 

  • Iino, T., Inoue, H., Saito, Y., & Todo, Y. (2021). How does the global network of research collaboration affect the quality of innovation? The Japanese Economic Review, 72, 5–48.

    Article  Google Scholar 

  • Jiang, H., Gao, S., Song, Y., Sheng, K., & Amaratunga, G. A. (2019). An empirical study on the impact of collaborative R&D networks on enterprise innovation performance based on the mediating effect of technology standard setting. Sustainability, 11(24), 7249.

    Article  Google Scholar 

  • Jones, B., Wuchty, S., & Uzzi, B. (2008). Multi-university research teams: Shifting impact, geography, and stratification in science. Science, 322(5905), 1259–1262.

    Article  Google Scholar 

  • Kim, D., Cerigo, D. B., Jeong, H., & Youn, H. (2016). Technological novelty profile and invention’s future impact. Epj Data Science, 5(1), 1–15.

    Article  Google Scholar 

  • Kuhn, T. (1970). The structure of scientific revolutions. University of Chicago Press.

    Google Scholar 

  • Lariviere, V., Gingras, Y., Sugimoto, C. R., & Tsou, A. (2015). Team size matters: Collaboration and scientific impact since 1900. Journal of the Association for Information Science and Technology, 66(7), 1323–1332.

    Article  Google Scholar 

  • Leydesdorff, L., & Wagner, C. (2008). International collaboration in science and the formation of a core group. Journal of Informetrics, 2(4), 317–325.

    Article  Google Scholar 

  • Li, A., Zhou, L., Su, Q., Cornelius, S., Liu, Y., Wang, L., & Levin, S. (2020). Evolution of cooperation on temporal networks. Nature Communications, 11(1), y2259.

    Article  Google Scholar 

  • Li, D., & Agha, L. (2015). Big names or big ideas: Do peer-review panels select the best science proposals? Science, 348(6233), 434–438.

    Article  Google Scholar 

  • Li, D., Azoulay, P., & Sampat, B. (2017). The applied value of public investments in biomedical research. Science, 356(6333), 78–81.

    Article  Google Scholar 

  • Li, E., Liao, C., & Yen, H. (2013). Co-authorship networks and research impact: A social capital perspective. Research Policy, 42(9), 1515–1530.

    Article  Google Scholar 

  • Li, J., Yin, Y., Fortunato, S., & Wang, D. (2019). Nobel laureates are almost the same as us. Nature Reviews Physics, 1(5), 301–303.

    Article  Google Scholar 

  • Liao, C. (2010). How to improve research quality? Examining the impacts of collaboration intensity and member diversity in collaboration networks. Scientometrics, 86(3), 747–761.

    Article  Google Scholar 

  • Lin, Y., Evans, J., & Wu, L. (2022). New directions in science emerge from disconnection and discord. Journal of Informetrics, 16(1), 101234.

    Article  Google Scholar 

  • Liu, L., Wang, Y., Sinatra, R., Giles, C. L., Song, C., & Wang, D. (2018). Hot streaks in artistic, cultural, and scientific careers. Nature, 559(7714), 396.

    Article  Google Scholar 

  • Lyu, D., Gong, K., Ruan, X., Cheng, Y., & Li, J. (2021). Does research collaboration influence the “disruption” of articles? Evidence from Neurosciences. Scientometrics, 126(1), 287–303.

    Google Scholar 

  • Ma, A., Mondragon, R., & Latora, V. (2015). Anatomy of funded research in science. Proceedings of the National Academy of Sciences of the United States of America, 112(48), 14760–14765.

    Article  Google Scholar 

  • Merton, R. (1968). The Matthew effect in science: The reward and communication systems of science are considered. Science, 159(3810), 56–63.

    Article  Google Scholar 

  • Mirnezami, S., Beaudry, C., & Tahmooresnejad, L. (2020). The effect of collaboration with top-funded scholars on scientific production. Science and Public Policy, 47(2), 219–234.

    Article  Google Scholar 

  • Montgomery, J. (1991). Social networks and labor-market outcomes: Toward an economic analysis. The American Economic Review, 81(5), 1408–1418.

    Google Scholar 

  • Moreno, Y., & Perc, M. (2020). Focus on multilayer networks. New Journal of Physics, 22(1), 010201.

    Article  Google Scholar 

  • Newman, M. (2000). The structure of scientific collaboration networks. Proceedings of the National Academy of Sciences of the United States of America, 98(2), 404–409.

    Article  MathSciNet  MATH  Google Scholar 

  • Newman, M. (2001). Scientific collaboration networks. I: Network construction and fundamental results. Physical Review. E, 64, 016131.

    Article  Google Scholar 

  • Newman, M. (2001). Scientific collaboration networks. II: Shortest paths, weighted networks, and centrality. Physical review. E, 64(1), 016132.

    Article  Google Scholar 

  • Newman, M. (2004). Coauthorship networks and patterns of scientific collaboration. Proceedings of the National Academy of Sciences of the United States of America, 101, 5200–5205.

    Article  Google Scholar 

  • Petersen, A. M. (2015). Quantifying the impact of weak, strong, and super ties in scientific careers. Proceedings of the National Academy of Sciences of the United States of America, 112(34), E4671–E4680.

    Google Scholar 

  • Petersen, A. M., Fortunato, S., Pan, R., Kaski, K., Penner, O., Rungi, A., Riccaboni, M., Stanley, H. E., & Pammolli, F. (2014). Reputation and impact in academic careers. Proceedings of the National Academy of Sciences of the United States of America, 111(43), 15316–15321.

    Article  Google Scholar 

  • Podolny, J., & Baron, J. (1997). Resources and relationships: Social networks and mobility in the workplace. American Sociological Review, 62, 673–693.

    Article  Google Scholar 

  • Price, D. (1976). A general theory of bibliometric and other cumulative advantage processes. Journal of the American Society for Information Science, 27(5), 292–306.

    Article  Google Scholar 

  • Radicchi, F., Fortunato, S., & Castellano, C. (2008). Universality of citation distributions: Toward an objective measure of scientific impact. Proceedings of the National Academy of Sciences of the United States of America, 105(45), 17268–17272.

    Article  Google Scholar 

  • Rajkumar, K., Saint-Jacques, G., Bojinov, I., Brynjolfsson, E., & Aral, S. (2022). A causal test of the strength of weak ties. Science, 377(6612), 1304–1310.

    Article  MathSciNet  Google Scholar 

  • Reagans, R., & Zuckerman, E. (2001). Networks, diversity, and productivity: The social capital of corporate R&D teams. Organization Science, 12(4), 502–517.

    Article  Google Scholar 

  • Rodan, S., & Galunic, C. (2004). More than network structure: How knowledge heterogeneity influences managerial performance and innovativeness. Strategic Management Journal, 25(6), 541–562.

    Article  Google Scholar 

  • Rzhetsky, A., Foster, J., Foster, I., & Evans, J. (2015). Choosing experiments to accelerate collective discovery. Proceedings of the National Academy of Sciences of the United States of America, 112(47), 14569–14574.

    Article  Google Scholar 

  • Schölkopf, B., Platt, J., & Hofmann, T. (2007). Advances in neural information processing systems 19: Proceedings of the 2006 conference (Vol. 19). MIT Press.

    Book  MATH  Google Scholar 

  • Serrano, M., Boguna, M., & Vespignani, A. (2009). Extracting the multiscale backbone of complex weighted networks. Proceedings of the National Academy of Sciences of the United States of America, 106(16), 6483–6488.

    Article  Google Scholar 

  • Sinatra, R., Deville, P., Szell, M., Wang, D., & Barabási, A. (2015). A century of physics. Nature Physics, 11, 791–796.

    Article  Google Scholar 

  • Sinatra, R., Wang, D., Deville, P., Song, C., & Barabási, A. (2016). Quantifying the evolution of individual scientific impact. Science, 354(6312), aaf5239.

    Article  Google Scholar 

  • Sooho, L., & Bozeman, B. (2016). The impact of research collaboration on scientific productivity. Social Studies of Science, 35(5), 673–702.

    Google Scholar 

  • Sooryamoorthy, R. (2009). Do types of collaboration change citation? Collaboration and citation patterns of South African science publications. Scientometrics, 81(1), 177.

    Article  Google Scholar 

  • Sud, P., & Thelwall, M. (2016). Not all international collaboration is beneficial: The Mendeley readership and citation impact of biochemical research collaboration. Journal of the Association for Information Science and Technology, 67(8), 1849–1857.

    Article  Google Scholar 

  • Sun, Q., Hou, R., & Hailekiros, G. (2017). The effect of dual network embeddedness on enterprise innovation performance: An empirical study from structural perspective. International Conference on Industrial Technology & Management. https://doi.org/10.1109/ICITM.2017.7917894

    Article  Google Scholar 

  • Tahmooresnejad, L., & Beaudry, C. (2018). The importance of collaborative networks in Canadian scientific research. Industry and Innovation, 25(10), 990–1029.

    Article  Google Scholar 

  • Tahmooresnejad, L., Beaudry, C., & Mirnezami, S. R. (2021). The study of network effects on research impact in Africa. Science and Public Policy, 48(4), 462–473.

    Article  Google Scholar 

  • Tian, S., Xu, X., & Li, P. (2021). Acknowledgement network and citation count: The moderating role of collaboration network. Scientometrics, 126(9), 7837–7857.

    Article  Google Scholar 

  • Uzzi, B., Mukherjee, S., Stringer, M., & Jones, B. (2013). Atypical combinations and scientific impact. Science, 342(6157), 468–472.

    Article  Google Scholar 

  • Wagner, C., Whetsell, T., & Mukherjee, S. (2019). International research collaboration: Novelty, conventionality, and atypicality in knowledge recombination. Research Policy, 48(5), 1260–1270.

    Article  Google Scholar 

  • Wang, C., Rodan, S., Fruin, M., & Xu, X. (2014). Knowledge networks, collaboration networks, and exploratory innovation. The Academy of Management Journal, 57(2), 484–514.

    Google Scholar 

  • Wang, D., Song, C., & Barabási, A. (2013). Quantifying long-term scientific impact. Science, 342(6154), 127–132.

    Article  Google Scholar 

  • Wang, D., & Uzzi, B. (2022). Weak ties, failed tries, and success. Science, 377(6612), 1256–1258.

    Article  Google Scholar 

  • Wang, J., Veugelers, R., & Stephan, P. (2017). Bias against novelty in science: A cautionary tale for users of bibliometric indicators. Research Policy, 46(8), 1416–1436.

    Article  Google Scholar 

  • Wang, Y., Jones, B. F., & Wang, D. S. (2019). Early-career setback and future career impact. Nature Communications, 10, 4331.

    Article  Google Scholar 

  • Wu, L., Wang, D., & Evans, J. (2019). Large teams develop and small teams disrupt science and technology. Nature, 566(7744), 378.

    Article  Google Scholar 

  • Wuchty, S., Jones, B., & Uzzi, B. (2007). The increasing dominance of teams in production of knowledge. Science, 316(5827), 1036–1039.

    Article  Google Scholar 

  • Xu, F., Wu, L., & Evans, J. (2022). Flat teams drive scientific innovation. Proceedings of the National Academy of Sciences of the United States of America, 119(23), e2200927119.

    Article  Google Scholar 

  • Yan, E., & Ying, D. (2014). Applying centrality measures to impact analysis: A coauthorship network analysis. Journal of the Association for Information Science & Technology, 60(10), 2107–2118.

    Google Scholar 

  • Yan, Y., Li, J., & Zhang, J. (2021). Protecting intellectual property in foreign subsidiaries: An internal network defense perspective. Journal of International Business Studies, 53, 1924–1944.

    Article  Google Scholar 

  • Yang, Y., Chawla, N., & Uzzi, B. (2019). A network’s gender composition and communication pattern predict women’s leadership success. Proceedings of the National Academy of Sciences of the United States of America, 116(6), 2033–2038.

    Article  Google Scholar 

  • Yang, Y., Tian, T., Woodruff, T., Jones, B., & Uzzi, B. (2022). Gender-diverse teams produce more novel and higher-impact scientific ideas. Proceedings of the National Academy of Sciences of the United States of America, 119(36), e2200841119.

    Article  Google Scholar 

  • Yin, Y., Wang, Y., Evans, J., & Wang, D. (2019). Quantifying the dynamics of failure across science, startups and security. Nature, 575(7781), 190–194.

    Article  Google Scholar 

  • Zeng, A., Fan, Y., Di, Z., Wang, Y., & Havlin, S. (2021). Fresh teams are associated with original and multidisciplinary research. Nature Human Behaviour, 5(10), 1314–1322.

    Article  Google Scholar 

  • Zeng, A., Shen, Z., Zhou, J., Wu, J., Fan, Y., Wang, Y., & Stanley, H. E. (2017). The science of science: From the perspective of complex systems. Physics Reports, 714, 1–73.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, S., Zhang, N., Zhu, S., & Liu, F. (2020). A foot in two camps or your undivided attention? The impact of intra- and inter-community collaboration on firm innovation performance. Technology Analysis and Strategic Management, 32(7), 753–768.

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China under Grant nos. 72004177, L1924078, and the Key Program of National Social Science Fund of China (20ATY007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qian Huang, Jian Wu or Yang Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Li, N., Zhang, B. et al. The effect of structural holes on producing novel and disruptive research in physics. Scientometrics 128, 1801–1823 (2023). https://doi.org/10.1007/s11192-023-04635-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-023-04635-3

Keywords

Navigation