
ORI GIN AL PA PER

Toward objective software process information:
experiences from a case study

Jana Samalikova • Rob Kusters • Jos Trienekens • Ton Weijters •

Paul Siemons

Published online: 24 August 2010
� The Author(s) 2010. This article is published with open access at Springerlink.com

Abstract A critical problem in software development is the monitoring, control and

improvement in the processes of software developers. Software processes are often not

explicitly modeled, and manuals to support the development work contain abstract

guidelines and procedures. Consequently, there are huge differences between ‘actual’ and

‘official’ processes: ‘‘the actual process is what you do, with all its omissions, mistakes,

and oversights. The official process is what the book, i.e., a quality manual, says you are

supposed to do’’ (Humphrey in A discipline for software engineering. Addison-Wesley,

New York, 1995). Software developers lack support to identify, analyze and better

understand their processes. Consequently, process improvements are often not based on an

in-depth understanding of the ‘actual’ processes, but on organization-wide improvement

programs or ad hoc initiatives of individual developers. In this paper, we show that, based

on particular data from software development projects, the underlying software develop-

ment processes can be extracted and that automatically more realistic process models can

be constructed. This is called software process mining (Rubin et al. in Process mining

framework for software processes. Software process dynamics and agility. Springer Berlin,

Heidelberg, 2007). The goal of process mining is to better understand the development

processes, to compare constructed process models with the ‘official’ guidelines and

procedures in quality manuals and, subsequently, to improve development processes.

This paper reports on process mining case studies in a large industrial company in The

Netherlands. The subject of the process mining is a particular process: the change control

board (CCB) process. The results of process mining are fed back to practice in order to

subsequently improve the CCB process.

Keywords Software process mining � Configuration management data

J. Samalikova � R. Kusters � J. Trienekens (&) � T. Weijters
University of Technology Eindhoven, Den Dolech 2, 5600 MB Eindhoven, The Netherlands
e-mail: j.j.m.trienekens@tue.nl

P. Siemons
Draugronth, Dwarsweg 3C13, 3959 AC Overberg, The Netherlands
e-mail: paul.siemons@draugronth.nl

123

Software Qual J (2011) 19:101–120
DOI 10.1007/s11219-010-9105-8

1 Introduction

Software development is a discipline of increasing complexity, caused by both technology

pushes and increased market and consumer needs for innovative software applications.

Software development reflects a large variety of processes, of which many are difficult to

define and consequently difficult to improve. Over the last decades, process assessment and

improvement have become major topics in the software development domain (Humphrey

1995), (SEI 2006), and (Trienekens et al. 2009).

An important characteristic of software development is its mix of creative and routine-

based development activities. Creative activities, such as functional and technical design,

are often carried out in a flexible and unstructured way, ad hoc supported by computer-

aided software engineering (CASE) methods, techniques and tools. Routine-based

activities are carried out in a structured and repetitive way and are often supported by

structured guidelines and procedures, which are specified in quality manuals. Examples of

routine-based activities are peer reviewing, code testing and change request processing

(SEI 2006).

Documents and files that are produced during software development are collected and

stored in information systems, e.g., in software configuration management (SCM) sys-

tems. In these systems, also data on the development processes are stored, such as data on

the tasks or activities carried out by the developers, and data on the creation and the

changes on the documents and files. SCM systems act as a support for the monitoring

and control of the development processes, e.g., to plan and coordinate the various

development activities.

This paper will discuss the usage of data from SCM systems to analyze and improve a

particular routine-based and repetitive software development process. Based on sets of

well-prepared data, the underlying ‘actual’ processes will be extracted and process models

will be constructed automatically. This is called software process mining (Rubin et al.

2007). Process mining has proven to be a valuable approach that provides new and

objective insights into the way processes are actually carried out within organizations

(Weijters et al. 2006). Process mining has been developed in domains with structured and

less structured processes, as in hospitals where the data of all kinds of information systems

are used. In software development, many creative processes are less structured, but in

particular, the data of routine-based, i.e., structured and repetitive, processes are suitable

for process mining.

The process that is subject to process mining in this paper is the control flow of a CCB

in a large industrial organization in The Netherlands. This CCB is an organizational unit

that handles change requests that are identified during software development. The control

flow reflects the tasks and their dependency relations, which are carried out by the CCB.

The ‘official’ CCB process is specified in the quality manuals of the company. After

discovery and construction of the ‘actual’ process model, using process mining, this

process model will be compared with the ‘official’ process, and the differences will be

discussed with the software development teams. Based on the outcomes of these discus-

sions, concrete process improvement actions can be determined.

This paper is organized as follows. In Section 2, a brief overview is given of the

background and related research. Section 3 gives information on the software projects and

the ‘official’ CCB process, such as specified in the quality manuals of the company that

should be followed in these projects. After presenting the data available and the prepa-

ration of these data in Section 4, Section 5 will discuss the construction of ‘actual’ process

models of the CCB process. Section 6 finalizes the paper with conclusions.

102 Software Qual J (2011) 19:101–120

123

2 Background and related research

Software process improvement can currently be accomplished through various approaches,

methods and techniques. A commonly accepted mainstream in software process

improvement focuses on the assessment (Dorling 1993) and subsequent improvement in

software development processes, e.g., capability maturity model integration (CMMI) (SEI

2006). Different SPI domains are recognized, such as a project management, engineering, a

support and an organizational domain. In CMMI assessments, strengths and weaknesses of

so-called key process areas are investigated by means of interviews and document studies.

Subsequently, organization-wide improvement programs are determined (Trienekens et al.

2009). Although valuable results have been achieved in SPI, no explicit models of ‘actual’

development processes are being constructed. It is therefore questionable whether an

in-depth understanding of particular ‘actual’ software processes can be achieved.

To model software processes explicitly, process mining offers interesting opportunities.

Process mining has already been applied in different industrial domains (van der Aalst and

Weijters 2005; van Beest and Maruster 2007). In the software industry, the behavior of

development processes is being investigated from different points of view (Cook and Wolf

1998). More recent mining research has addressed the different types of process mining

approaches and techniques (van der Aalst et al. 2003) and has resulted in a process mining

framework for software processes (Rubin et al. 2007). Different aspects of processes have

been addressed, such as the control aspect (capturing the order in which activities or tasks

are executed), the information aspect (capturing the data, documents and information

needed and produced by a task) and the organization aspect that captures which persons in

which role execute a task.

Well-defined and structurally stored data about these process aspects act as a basis for

process mining. To mine the different aspects of software development processes, different

algorithms can be used. The ProM framework (van Dongen et al. 2005) offers a variety of

process mining algorithms. ProM also provides interfaces to extract information from

different sources, including SCM systems. Process mining algorithms can then be applied

to discover the underlying processes of the available data and to construct automatically

explicit process models. Depending on the mining goals, ProM offers algorithms for the

mining of different aspects, e.g., control flow, resources, performance, organization. Fur-

ther, a distinction can be made between ProM algorithms that focus on the main behavior

of processes and are robust to exceptions and noise, and algorithms that focus on particular

process details. Also, the verification of constructed process models is supported by pro-

cess mining algorithms, captured in so-called plug-ins. Examples are the conformance

checker and the performance sequence diagram plug-ins (Rozinat and van der Aalst 2008).

Table 1 is an example of a so-called event log. This event log contains information from

a SCM system about the activities that have been performed by particular software

developers in an ‘actual’ situation. Also, information on the start and the completion of

activities, i.e., the event type, is given in the Table, and for each activity a timestamp.

Until recently, the information on these event logs was rarely used to analyze and

construct ‘actual’ software processes. Originally, these data were used for e.g., the mea-

surement of project activities, e.g., the amount of produced failures, and for the detection

and prediction of changes in the code. However, in process mining, these data can be used

to discover underlying software process models, to analyze, model and subsequently

improve them. The event log in Table 1 is suitable for ‘control flow-oriented’ process

mining, i.e., to discover the underlying process model that reflects the order in which the

activities are executed. The information on the timestamp of an event and its originator

Software Qual J (2011) 19:101–120 103

123

(the person having triggered its occurrence) can be used to derive information about the

underlying process also from other perspectives (Rubin et al. 2007).

From the control-flow perspective, the event log in Table 1 contains information about

five cases. A case is a software component that follows a sequence of activities. Each

activity is executed by an originator (a resource or (a set of) person(s) involved in a

sequence of activities). This event log shows that for four cases (1, 2, 3 and 4), the

activities A, B, C and D have been executed. For the fifth case, only three activities are

executed: activities A, E and D. Each case starts with the execution of A and ends with the

execution of D. If activity B is executed, then also activity C is executed. However, for

some cases, activity C is executed before activity B.

Only for activity E, the start and complete events are registered. For all other activities,

only the start event is registered. Based on the information shown in Table 1 and assuming

that the cases are representative and a sufficiently large subset of cases is observed, process

mining techniques can be used to construct a process model such as presented in Fig. 1.

The process starts with activity A and finishes with activity D. After executing A, there

is a choice between either executing B and C in parallel or just executing activity E. Using

the timestamp and resource (i.e., originator) information, it is possible to mine other

process perspective such as performance and resources.

Different process model mining algorithms are available, and many of them are

implemented in the ProM framework (van Dongen et al. 2005). As an illustration of the

mining technique, we shortly discuss the ideas as implemented in the heuristic mining tool

(the tool used in this paper). To find a process model on the basis of an event log, the log

should be analyzed for causal dependencies, e.g., if an activity is always followed by

another activity, it is likely that there is a causal relation between both activities.

Table 1 Example of a event log
Case id Activity Event type Originator Time stamp

Case 1 Activity A Start John 9-3-2004:15.01

Case 2 Activity A Start John 9-3-2004:15.12

Case 3 Activity A Start Sue 9-3-2004:16.03

Case 3 Activity B Start Carol 9-3-2004:16.07

Case 1 Activity B Start Mike 9-3-2004:18.25

Case 1 Activity C Start John 10-3-2004:9.23

Case 2 Activity C Start Mike 10-3-2004:10.34

Case 4 Activity A Start Sue 10-3-2004:10.35

Case 2 Activity B Start John 10-3-2004:12.34

Case 2 Activity D Start Pete 10-3-2004:12.50

Case 5 Activity A Start Sue 10-3-2004:13.05

Case 4 Activity C Start Carol 11-3-2004:10.12

Case 1 Activity D Start Pete 11-3-2004:10.14

Case 3 Activity C Start Sue 11-3-2004:10.44

Case 3 Activity D Start Pete 11-3-2004:11.03

Case 4 Activity B Start Sue 11-3-2004:11.18

Case 5 Activity E Start Clare 11-3-2004:12.22

Case 5 Activity E Complete Clare 11-3-2004:13.17

Case 5 Activity D Start Clare 11-3-2004:14.34

Case 4 Activity D Start Pete 11-3-2004:15.56

104 Software Qual J (2011) 19:101–120

123

To analyze these relations, we introduce the so-called direct following frequency metric
(notation #X [Y). Consider for example the event traces of the log of Table 1: ABCD;

ACBD; ABCD; ACBD; AED. In this example, #A [B = 2 because there are 2 instances

of A directly followed by B. The dependency measurement between two events X and Y

(notation X ? Y) is defined as (#X [Y - #Y [X)/(#X [Y ? #Y [X ? 1). In other

words, the number of positive observation (#X [Y) minus the number of negative

observations (#Y [X) divided by the number of observations plus 1. That means that in

the example log A ? B = (2 - 0)/(2 ? 1) = 0.66. The intuition behind the plus 1 is to

make the measurement sensitive for the number of positive observations. That is the reason

that the dependency between A and B is relatively low (0.66). In a more realistic setting,

event logs contain much more material and dependencies will get values close to 1 (see

also the discovered CCB process model in Sect. 5.1). However, realistic event logs can also

contain some errors. In (Weijters et al. 2006), it is illustrated how the dependency mea-

surement in combination with some heuristics can be used to construct a complete process

model with Split/Join information. In Fig. 1, the mining result of the heuristic mining

algorithm for the event log of Table 1 is presented.

In many real-life development situations, event logs with process information as in the

foregoing example, see Fig. 1, are not directly available. Event logs often contain either

too many details or very specific information on different aspects of software processes

(Rubin et al. 2007). However, it often is possible to combine information from different

sources to construct useful event logs. In order to achieve a useful data set, data preparation

has to be carried out, in that the quality of the available data has to be examined and

improved (Witten and Frank 2005). After presenting some background information about

the case study and the ‘actual’ and ‘official’ CCB process in the next section, the data

preparation will be discussed in Sect. 4.

3 The case studies: software projects and their CCB process

The projects under study are middleware embedded-software projects of an industrial

company in the Netherlands. The company develops software components for consumer

electronic devices, which are going to be released in the near future. Over the past years,

the company reached level 3 of the CMMI (SEI 2006). This means that the organization is

capable of defining its software development processes and interrelated activities. On this

level of maturity, these activities can be specified, examined and measured, and data can be

collected and stored in a structured and accurate way. This kind of data offers opportunities

for the application of process mining.

A

B

C D

E

AND

XOR

Fig. 1 An ‘actual’ process
model as a result of process
mining from the control-flow
perspective

Software Qual J (2011) 19:101–120 105

123

3.1 The complexity of the ‘actual’ CCB process

The ‘actual’ CCB process in ten software projects will be discovered and analyzed. The

different types of updates of the software components, called releases and versions, make

the software development processes in the projects very complex. For instance, a previous

version of a device does not have to be necessarily completed in order to start the

development of a next version. In addition, the development activities for the different

releases and versions are often run in parallel. SCM systems are used to keep track of all

the software components and their versions. The components and versions are called

configuration items (CIs). The migration of a CI from one software version to the next one

in the software development process is based on change requests. The CCB analyzes these

change requests and tracks them in order to monitor their status, to plan necessary activities

in the project and to predict outcomes of the development processes. The product and

process complexity of the projects stresses the high importance of an efficient and effective

CCB process. To discuss the application of process mining in detail, one of the projects

(called project P) is selected. In the following section, the ‘official’ CCB process will be

presented that is used in the software development projects. This ‘official’ process is

derived from the guidelines and procedures in the quality manuals of the company.

3.2 The ‘official’ CCB process as derived from the quality manuals

The CCB coordinates changes made to the CIs. The CCB tracks and records the status of

each change request from its entry until its exit from the CCB process. The change requests

are further referred to as defects. The responsible departments for requirements engi-

neering and programming carry out the tasks in this process. The role of the CCB is to

distribute tasks related to the required change of the CIs and evaluate the outcomes of the

executed tasks with respect to the request.

The structure of the CCB process is sequential with possible rework if a task fails, see

Fig. 2. The tasks are not executed in parallel, and each task is completed before the next

task starts.

The flow of tasks of the CCB process is as follows:

Task 1. The CI’s defect is detected and submitted. The developer assigns attributes to the

defect (e.g., priority, severity). Based on the importance, the defect is either:

A. further evaluated by the CCB (Task 2).

B. or the defect will directly start with the Analysis task (Task 3).

Task 2. The CCB analyzes the defect and sends it to the required task depending on the

need (Analysis, Resolution, Evaluation or Concluded task), with the following

possibilities:

C. The defect is redirected to the Concluded task in case the defect is found

duplicated, expected to be fixed in a next release, or out of the scope of the

functionality required.

D. The defect is redirected to tasks Analysis, Resolution or Evaluation
depending on the need.

Task 3. The task, i.e., Analysis, Resolution or Evaluation, starts to handle the CIs. When

the task is completed, one of the four possibilities is chosen:

106 Software Qual J (2011) 19:101–120

123

E. If the task’s execution is successful, then an important defect is directed to

the CCB and it waits to be redirected again to the next task (it returns to

Task 2).

F. If the task’s execution is successful, then a less important defect continues

with the next logical task, for instance after Analysis it can be Resolution.

G. If the task was not successfully executed, then an important defect is

returned to the CCB for a re-evaluation (Task 2).

H. If the task was not successfully executed, then a less important defect is

handled again by the same task (Task 3).

Task 4. Once all the tasks of the CCB process have been successfully carried out, the

pattern of the defect is closed.

1.

Submit
(start)

(start)

Submit
(complete)

CCB
evaluation

CCB
evaluation

3.

Analysis

start

Analysis
(complete)

3.

Resolution

Resolution

3.

Evaluation

Evaluation

4.

Concluded

Concluded

A

B

C

D

D

D

F

F

H

H

H

F

E, G

E, G

E, G

(start)

(start)(start)

(start)

(start)

(complete)

(complete)

(complete)

(complete)

2.

Fig. 2 The ‘official’ CCB
process model

Software Qual J (2011) 19:101–120 107

123

Based on the quality manual of the company X, the tasks of the CCB process are

described as follows:

3.2.1 Submit task

The task is performed by a tester. During the task, a defect is submitted and it receives an

identification number in the CCB system.

3.2.2 CCB Evaluation task

The task is performed by the change control board (CCB). During the task, the CCB

evaluates properties of the defect (e.g., severity, priority). Based on these properties, a pre-

selection of defects is made and a decision of the next steps is taken. Also, results of the

tasks Analysis, Resolution and Evaluation are analyzed with respect to major defects.

3.2.3 Analysis task

The task is performed by an analyst assigned by the CCB. During the task, a solution for

the request submitted is identified. This includes reconstruction of the problem for a

problem report, proposed technical solution (with possible alternatives when applicable)

for the change request or problem report, estimation of the change impact on the project

and the system and identification of all components affected by the handled defect.

3.2.4 Resolution task

The task is performed by a coder or programmer. The defect is being resolved based on the

solution identified during Analysis. The programmer also ensures that all relevant docu-

mentation and code are updated accordingly.

3.2.5 Evaluation task

The task is performed by a verifier. During the task, outcomes of the Resolution task are

evaluated with respect to the change requested. Also, a decision is made whether the

handled defect needs rework (e.g., because the implementation is incomplete or incorrect)

or the handling of the defect is complete.

3.2.6 Concluded task

The task is performed by the CCB. During the task, the defect is closed and the final status

of the defect is reported to the original initiator. The changed documentation and code are

correctly archived in the repository.

The process model is shown in Fig. 2, where labels are assigned based on the foregoing

description. The numbers represent the tasks; the characters A to H represent the transitions

between the tasks.

This ‘official’ CCB process model will be compared with ‘actual’ CCB process models.

Regarding this ‘actual’ CCB process model, the data preparation will be described in

Sect. 4, and the analysis and the construction of this ‘actual’ CCB process model will be

presented in Sect. 5.

108 Software Qual J (2011) 19:101–120

123

4 The case studies: the available data and the data preparation

The development team of the project P collects data in a status database in order to be

able to control the development process and to predict its outcomes. A quality assurance

specialist creates copies of the status database content on a weekly basis. Such a copy is

called a snapshot of the CCB database. The snapshots provide the data for the creation of

an event log, which serves as input to the process mining. One of the research questions

was whether it is possible to use such data to discover and construct underlying process

models, since the quality of the data is crucial for a successful application of process

mining. In the next section, we describe the transformation and cleaning process from the

snapshots of the CCB database into an event log. Notice that this transformation and

cleaning process can take 60–80% of the time of the whole mining process (Witten and

Frank 2005).

4.1 The available data

As indicated before, information about a defect and its status during the CCB process is

stored in a database of the SCM system. The defects have been discovered during veri-

fication, and validation activities. Every database record describes the defect by its attri-

butes and timestamps. The snapshots contain the information of the SCM system on a

weekly basis. Table 2 shows three example snapshots and their changes over a period of

3 months.

The snapshots follow the evolution of the handling of the defects by the CCB. The

evolution is captured in the field CrStatus that stores the information of the current status of

a particular defect. Each snapshot contains a record for each defect that is described by four

types of data fields:

1 The History Date and Subsystem data fields provide the general reference about the

snapshot; they describe the date of the snapshot and the subsystem database from which

the snapshot was taken.

2 Problem_nr together with the Subsystem data field uniquely identifies the defect.

3 The Priority, Severity, Request_type, CrStatus and Team fields describe the attributes

of the defect.

4 The dates of start and complete are stored in the corresponding fields (e.g., the start
event of the Analysis is stored in Analysis (started) field) and the Modify time field

stores the date of the last change of the CI’s status.

4.2 Data preparation: from snapshots to event log

The snapshots capture the evolution of the defects, i.e., the changes of the defect status, in

time. This information has been used as the input for the mining of the underlying ‘actual’

process that handles the defects. The first step is the transformation of the available data

into an event log. Then, the event log is used as an input for process mining. In this section,

we describe the necessary transformation of the data fields in the snapshots into an event

log. First, we start with a description of the data structure of an event log.

Data structure of an event log:

• Case identifier. Cases (or instances) are items that are handled by a process [1]. Here, a

defect is considered as a case, and the Problem_nr is the case identifier.

Software Qual J (2011) 19:101–120 109

123

Table 2 An example of snap-
shot records of Defect nr. 2714

Data field Value

(a) August 22, 2007

History date 22-08-07

Subsystem SUB1

Problem nr 2714

Priority Medium

Severity B

Request type PR

CrStatus In_resolution

Team TEAM1

Submit (start) 04-09-06

Submit (complete) 04-09-06

Analysis (start) 18-01-07

Analysis (complete) 27-03-07

Resolution (start) 02-04-07

Resolution (complete)

Evaluation (start)

Evaluation (complete)

Modify time 02-05-07

(b) September 26, 2007

History date 26-09-07

Subsystem SUB1

Problem nr 2714

Priority Medium

Severity B

Request type PR

CrStatus In_resolution

Team TEAM1

Submit (start) 04-09-06

Submit (complete) 04-09-06

Analysis (start) 18-01-07

Analysis (complete) 27-03-07

Resolution (start) 02-04-07

Resolution (complete)

Evaluation (start)

Evaluation (complete)

Modify time 05-09-07

(c) October 22, 2007

History date 22-10-07

Subsystem SUB1

Problem nr 2714

Priority Medium

Severity B

Request type PR

CrStatus Concluded

110 Software Qual J (2011) 19:101–120

123

• Tasks are executed when they handle a case during a process. Tasks have been derived

from the CrStatus field. A change in the status of a task is an event. In the snapshots,

only the event types start and complete are used. Possible other event types such as

suspend or resume are not used in the snapshots.

• Timestamps are points in time of each event that is executed during the handling of a

case in a process. The necessary timestamps have been extracted from the fields in the

snapshots that store time information.

• Resources are persons that are involved in the execution of each task during the

handling of a case in the process. This information has been derived from the Team
field in the snapshots.

• Case-related attributes are attributes that can enrich mined process models and/or can

play a role in process mining from different perspectives. Regarding the CCB process

of project P, the defined case-related attributes are derived from the Priority, Severity
and Request_type fields.

At first sight, it seems relatively simple to transform the snapshots into a corresponding

event log. However, a number of problems occurred. The following problems were

detected: missing fields in records, incorrect event sequences and absent information about

tasks and events. Some of these problems are caused by the possibility to overwrite and/or

delete information in the SCM system. For instance, each Submit, Analysis, Evaluation and

Resolution status change has a timestamp assigned to its start and complete event, see

Table 2. Any status change is a result of an event. At each start event of such a task, the

corresponding data field in the database is filled in. When the execution of the task is

successful, also the timestamp of the complete event is recorded. In the case of a failure of

a task, the corresponding timestamp of the start event is removed. For example, if the

execution of the Analysis task was not successful, the data field Analysis (started) is set to

be empty. Depending on the moment snapshots are taken, this can for instance result in an

incomplete event pattern like Analysis (start), Analysis (start), Analysis (complete). A

possible explanation is the following snapshots collection: Analysis (start) [snapshot 1],

Analysis (complete) [missing], Analysis (start) [snapshot 2], Analysis (complete) [snapshot

3]. As indicated, the following problems were detected: missing fields in records, incorrect

event sequences and absent information about tasks and events. These three problems have

been dealt with as follows.

Table 2 continued
Data field Value

Team TEAM1

Submit (start) 04-09-06

Submit (complete) 04-09-06

Analysis (start) 18-01-07

Analysis (complete) 27-03-07

Resolution (start) 02-04-07

Resolution (complete) 17-10-07

Evaluation (start)

Evaluation (complete)

Modify time 19-10-07

Software Qual J (2011) 19:101–120 111

123

4.2.1 Problem 1: missing fields in records

The snapshots contain the cumulative defects submitted to the CCB. However, records in

snapshots have been identified, which contained these cumulative numbers, while sub-

sequent snapshots did not have these numbers. To improve the quality of the data, such

records have been excluded from the analysis, as they were apparently considered not to be

defects.

4.2.2 Problem 2: incorrect sequences of events

Table 3 lists the incorrect sequences together with the (simple) strategies, which have been

used to correct them. Missing start and complete events have been introduced to enhance

the completeness of the data. It has to be emphasized that these strategies are only possible

due to the known fact that the activities within the CCB process do not run in parallel and

that a previous task is completed before the next one starts.

When performing the resolving steps described in Table 3, also artificial timestamps

have been assigned to newly introduced events. As an event for a task is recorded, the task

was actually executed. Hence, the artificial events of such tasks do not create any new tasks

that were not performed. In this case, no start and no complete event of a task was

recorded, and the task was not executed (i.e., skipped). For the sequences described in

Table 3 Possible incorrect sequences of events and strategies for fixing these situations

Incorrect sequence Resolving strategy Number
of inserted
events

Two consecutive start events coming
from different tasks, e.g., A and B.
Example: A (start), B (start)

An artificial complete event has been introduced
between both start events. The artificial event
will belong to the task of the first start event.
Example: A (start), A (complete), B (start)

2

Two consecutive start start events
coming from the same task but
having different time stamps.
Example: A (start), A (start)

Both events have been considered as two
separate executions of the same task, and
the same strategy has been applied as in the
previous case, i.e., we introduced an artificial
complete event between them.
Example: A (start), A (complete), A (start)

12

Two consecutive complete events
coming from different tasks.
Example: A (complete), B (complete)

An artificial start event has been introduced
between the two complete events. The
artificial event will belong to the task
of the second complete event.
Example: A (complete), B (start), B (complete)

608

Two consecutive complete events
coming from equal tasks but having
different time stamps.
Example: A (complete), A (complete)

Both events are being considered as two
separate executions of the same task and
introduced an artificial start event between
the two complete events.
Example: A (complete), A (start), A (complete)

0

The start event of a task followed
by the complete event
from a different task.
Example: A (start), B (complete)

Two artificial events have been introduced: first,
the complete event of the first task and then
the start event of the second task.
Example: A (start), A (complete), B (start),
B (complete)

0

112 Software Qual J (2011) 19:101–120

123

the first four rows in Table 3, the timestamps from the timestamp of the previous event

have been calculated with plus 30 min. As for the cases described in the last row of the

table, the timestamp of the artificial complete event has been calculated from the timestamp

of the start event plus 20 min and the timestamp of the artificial start event plus 40 min.

The problems and the solutions were evaluated with the quality assurance specialist.

Although the throughput time of a case is not affected by the introduction of artificial time

stamps, the disadvantage of artificial timestamps is that a detailed performance analysis

(e.g., process bottlenecks identification, execution and waiting times, etc.) may become

unreliable. However, a detailed performance analysis is out of the scope of this paper.

4.2.3 Problem 3: absent information about tasks and events

Since the snapshots do not log processes, the data miss explicit information about per-

formed tasks and events. The change in a defect’s status is a result of an activity performed

on the defect. Hence, tasks have been derived from the current status of a particular defect

in a snapshot (i.e., from the CrStatus data field in the snapshot). The identification of the

tasks Submit, Analysis, Resolution and Evaluation is straightforward. A defect is consid-

ered to be handled by the CCB evaluation tasks when the CrStatus of the defect is one of

the following: Duplicate, On Hold, Later Release, Not reproducible or Rejected (as these

status values are only assigned during the CCB evaluation). The Concluded task is iden-

tified when the CrStatus is equal to Concluded. The Modify time field has been used for

retrieving the Concluded and CCB evaluation task’s timestamp, see Table 2. Unsuccessful

executions of the task Analysis, Resolution and Evaluation are respectively recorded as

Analysis failed, Resolution failed and Evaluation failed values of the CrStatus field.

In making these changes, and indeed in the entire process mining approach, we assume

that the activities as carried out in practice can be mapped in a reasonable fashion to the

data available. This firstly implies that no other type of activities are carried out that are

relevant for the CCB process. Given the long experience with this type of process, this

seems a reasonable assumption. A second assumption is that these activities are carried out

as specified. This is a less reasonable assumption. One can easily imagine that during

analysis, the solution is identified and found to be so obvious that the resolution task is

carried out straight away. In the data, this can then be recorded by a complete data

sequence, but it also could explain some of the missing data. For instance, a sequence ‘‘A

(start), B (complete)’’ could indicate such a case where the start of analysis and the

completion of the resolution are entered and the intermediate data are kept blank since they

are perceived to be not relevant. However, this almost never occurred in the data. Simi-

larly, the sequence ‘‘A (start), A (complete), B (complete)’’ can refer to such a situation

where the start of the resolution activity is noted, but the not so relevant information on the

completion of the analysis task is left out. In fact, in the data, we do find that the second

sequence occurred often (see Table 3). This can indicate a normal omission in data

recording, but it can also indicate a case where sequentially defined activities are carried

out jointly. The techniques we used are incapable of identifying which is true, but the

analysis of missing data does suggest that this deviation between prescribed and executed

process could occur. Validation of this suspicion requires checking with the developers. In

the remainder of the analysis, we will not focus on this potential problem and focus on

what can be learned from the cleaned data.

After correction, it was possible to identify 8,832 cases in total. After filtering out the

cases which do not start with a Submit task, and the cases which do not end with a

Software Qual J (2011) 19:101–120 113

123

Concluded task, an event log with 6,870 cases remains. This event log has been used to

mine the process model of the ‘actual’ CCB process.

5 Analyzing and constructing the ‘actual’ CCB process

For discovering the ‘actual’ CCB process model from the event log, process mining

algorithms from ProM 5.0 have been used (van Dongen et al. 2005). This ‘actual’ process

model is compared with the ‘official’ CCB process model. The differences between these

models are discussed with the development teams, and subsequently, improvement actions

are determined.

5.1 The discovered ‘actual’ CCB process model of project P

The goal of process mining in the project P was to use the event log with the 6,870

completed cases to discover the ‘actual’ way of working, i.e., the control flow, of the

software developers in the CCB process. Based on the data that have been used and the

problems identified in Sect. 4, the heuristic mining algorithm of ProM has been selected

to mine the underlying CCB process from a control-flow perspective. This heuristic

algorithm is relatively robust and has options to focus on the main behavior of a process,

instead of trying to model the full details of the behavior of a process (Weijters et al.

2006).

Figure 3 presents the discovered ‘actual’ CCB process model that has been constructed

by using the heuristic algorithm of ProM. Two numbers label each transition from one task

to another. The upper number in the figure describes the reliability of the transition. The

reliability scale goes from 0 to 1, where 1 represents the highest reliability. It has to be

noticed that the transition becomes more reliable when the transaction is support by more

cases (i.e., if only one case shows this behavior, the reliability is very low). The lower

number describes the number of cases that have passed the transition. For example, the

transition from Submit to Analysis is reliable (1), and 2,081 cases have passed this tran-

sition, see Fig. 3.

By using the default parameters of the heuristic mining algorithm, only the main

dependency relations are presented. It has to be emphasized that the information can be

incomplete because the available data, i.e., the snapshots, were taken on a weekly basis.

The following differences between the control-flow paths in the ‘actual’ CCB process

model, in comparison with the ‘official’ CCB process, have been identified. The first one is

the (illegal) direct transfer of a case from the tasks Analysis to Evaluation that was

followed by 0.74% (51) of the cases. The second one, and definitely more important, is the

(also illegal) transfer from the tasks Submit to Resolution, without passing the task

Analysis. This skipping of the task Analysis was followed by 70% (4,779) of the cases.

This was confirmed by a conformance check. The aim of conformance checking (Rozinat

and van der Aalst 2008) is to test how much of the behavior captured in the event log (see

Sect. 4; Fig. 3) is in compliance with a process model. We use this technique to compare

the event log with the ‘official’ CCB process model, see Fig. 2. In other words, the

conformance checking detects mismatches between the discovered process model and the

logged execution of the process such as expressed in the event log. The result was that only

2,035 out of the 6,870 cases (i.e., 30%) in the event log were fully compliant with the

defined ‘official’ CCB process.

114 Software Qual J (2011) 19:101–120

123

Since the Analysis task is considered as one of the most important tasks in the CCB

process, skipping this task to this extent is very surprising, and further analysis of this

phenomenon is urgently needed.

5.2 Control-flow patterns

The event log has also been analyzed using the Performance Sequence Diagram algorithm

(or ProM plug-in). This plug-in provides information about what sequences of activities,

i.e., patterns, in the process are common and what sequences are less frequent. The analysis

shows that although there are 45 different sequences, most of the behavior of the cases

(6,699 or 97.5%) can be described by two (most common) sequences. The illegal sequence

1 is described by the sequence Submit ? Resolution ? Evaluation ? Concluded and

covers 4,742 cases. Sequence 2, which is legal, describes the behavior of handling 1,957

cases in the following sequence: Submit ? Analysis ? Resolution ? Evaluation ?
Concluded.

Submit
(start)

Submit
(complete)

1
6870

CCB evaluation
(start)

CCB evaluation
(complete)

0.949
57

Analysis
(start)

Analysis
(complete)

0.973
2142

Resolution
(start)

Resolution
(complete)

0.917
6845

Evaluation
(start)

Evaluation
(complete)

0.933
6893

Concluded
(start)

Concluded
(complete)

1
2081

0.929
9

0.95
22

0.957
22

1
2018

1
6864

0.973
19

0.917
11

0.933
18

1
6799

0.974
38 1

4779

0.982
51

1
6870

Fig. 3 The ‘actual’ CCB process
model discovered with the ProM
heuristic mining algorithm

Software Qual J (2011) 19:101–120 115

123

5.3 Feedback to the development team on the results of project P

After discovering the ‘real’ process model using process mining in the previous sections,

several differences between the mined and documented model were revealed. These dif-

ferences could result from various situations. The type of the situation is not recognized

automatically; it requires involvement of a process owner. That means that process mining

results are a starting point for further analysis and must be fed back to the development

team. Hence, it is not possible to make a decision regarding the process without under-

standing circumstances that may influence its execution and cause the differences between

the documented and the mined process model. Based on such analysis, it is decided

whether the difference is a result of an exceptional or systematic behavior and which of the

models—documented or mined—is ‘wrong’. This discussion, however, requires further

research, and it is beyond the scope of this paper.

In particular, the main result of the process mining, i.e., the discovery of the skipping of the

task Analysis, has been discussed with the development team of project P. The high per-

centage (70%) of cases following the path from the task Submit directly to the task Resolution,

skipping Analysis, could indicate that this is rather common behavior not an exception.

The responsible manager of the project P explained at first that the tight schedule and

not having enough managerial commitment to follow the ‘official’ CCB process played a

role in allowing deviations from that ‘official’ process. Project P was a fixed price project,

and due to a slow start-up, it had ‘wasted’ a significant part of its budget. For that reason, it

was decided to ‘ease’ on ‘official’ CCB tasks where these would not influence the final

quality or the timely delivery (to be decided by the developers themselves). Furthermore, it

was argued that project P was transferred from a CMM level 3 organization to a joint

venture with an external development party.

A more in-depth analysis of the cases that skipped the task Analysis with the project

team showed that almost half of these cases (2,123) were so-called implementation

requests. That means that these cases were not defects in terms of errors, but implemen-

tation requests for various functional specifications. Such implementation requests may not

require analysis and may be resolved directly. However, this is not explicitly mentioned in

the ‘official’ CCB process description. Regarding the other half of the cases, it appeared

that the task Analysis was usually skipped if a defect was considered to be ‘simple’ and the

solution of it to be straightforward. This behavior appeared to be allowed for particular

circumstances and under certain conditions (also to be decided by the developers them-

selves). These particular circumstances and certain conditions were not explicitly men-

tioned in the ‘official’ CCB process.

The researchers finally suggested to the development team that it should include these

circumstances and conditions in the ‘official’ CCB process description (i.e., in the quality

manual) and as such to improve the ‘official’ process on the basis of the mined ‘actual’

CCB process model.

A possible occurrence of joint task execution has also been discussed with developers.

In case of straightforward solutions, a defect was indeed sometimes resolved without

completing the Analysis task first. That means, a number of defects followed an uniden-

tified process path. In that case, the defects were processed during a new concatenated task.

Even though concatenating Analysis and Resolution was not defined in the quality manual,

such behavior was not necessarily considered to be illegal. Non-critical defects whose

solution is considered to be simple and straightforward could be resolved immediately. The

approach was proposed to reduce bureaucracy during the development process. Never-

theless, it would be recommended to use this scenario consciously and only if certain

116 Software Qual J (2011) 19:101–120

123

conditions are met. These conditions then also need to be explicitly defined in the quality

manual.

To verify the information on the specific characteristics of project P, which had been

received from the project team, it was decided to investigate the event logs of nine other

projects in the same software development organization. In particular, the skipping of the

task Analysis in the ‘actual’ CCB processes of these projects has been investigated.

5.4 Projects P1 to P9: mining results regarding the skipping of the task Analysis

In the projects P1 to P9, the same ‘official’ CCB process from the quality manuals has been

used by the developers. For each project, the available data have been prepared similar to

the data preparation in project P, leading to nine separate event logs. Process mining was

done on these event logs for each of the projects separately and not on the data set as a

whole, as the goal was not to get insight into ‘one overall actual’ CCB process, but to

provide feedback on the differences between the ‘actual’ CCB processes to the distinct

development teams.

Also, in the nine projects, the heuristic miner plug-in of ProM has been used to discover

the ‘actual’ CCB process models. The results are similar to the main result of the mining of

the event log from project P. In each of the projects P1 to P9, it appeared that the Analysis
task was NOT executed in a considerable amount of the cases. In Table 4, this main mining

result is presented.

5.5 Feedback to the development team on the results of the nine projects

As can be seen in Table 4, the skipping of the task Analysis takes place often. In total, it

occurs in 50% of cases. Apparently, project P was not such a special project after all, and

probably, a more fundamental cause for the deviations from the ‘official’ CCB path has to

be identified. Confronting the development teams with these data resulted in an acceptance

of the seriousness of the deviation, the necessity to do further research on the mining of the

CCB processes and to subsequently improve the ‘official’ CCB process of the company.

It is interesting that it took the mining results of more than one, i.e., nine, project to achieve

an acceptance of the main mining result by the development team of project P. The mining

results from the single project P were at first, more or less, discarded without much reflection,

since the project was ‘special’, and carried out under specific circumstances. Convincing the

Table 4 Percentages of cases
that skipped Analysis in the
projects P1–P9

Project Number
of cases

Analysis
skipped (%)

P 6,870 70

P1 343 33.82

P2 40,255 49.07

P3 10 10.00

P4 2,215 4.33

P5 195 32.82

P6 1,046 69.89

P7 2,228 33.39

P8 268 76.49

P9 785 79.62

Software Qual J (2011) 19:101–120 117

123

development team with the same kind of results from nine other projects indicates that the

discovery of structural process deviations requires data from several projects.

6 Conclusions

In this paper, we presented a case study on the practical application of software process

mining in an industrial company. The subject for process mining in this case study was the

‘actual’ CCB process. Data collected and stored in ten software development projects have

been used. These data capture the changing status of defects as they are handled by a CCB.

The CCB process is ‘officially’ described in quality manuals of the company.

Process mining strongly depends on the quality of collected and stored data, and a quite

large number of process instances in the available data sets had to be filtered out due to

incompleteness. However, the paper shows that a careful data preparation can lead to

useful event logs for the mining of processes, despite the fact that the data were originally

not collected and stored to carry out process mining. Still, the efficiency and effectiveness

of process mining can substantially benefit from well-structured data definition and col-

lection guidelines and thus high-quality data sets.

The ‘actual’ CCB process models could be successfully discovered from the event logs

using process mining algorithms. A second important result of this research is that a

‘structural’ deviation could be identified in the ‘actual’ CCB process models, in compar-

ison with the ‘official’ CCB process. This deviation is the skipping, in a high number of

cases (70%), of an important task in the ‘official’ CCB process, i.e., the task Analysis.
Initially, this deviation has been identified in a case study on a project P that has been

addressed first in this paper. This deviation was then discarded by the development team

because of the exceptional project characteristics of that project. After carrying out the

same type of process mining on the (prepared) data of nine other software development

projects, it appeared that the same deviation as in project P was found. As a consequence,

the deviation was called ‘structural’ and accepted by the project management as being a

serious problem. Consequently, it has been decided to study this deviation further in order

to improve the ‘official’ CCB process in the quality manual and/or to improve the ‘actual’

way of working in the CCB process. The paper has shown that detailed and well-founded

software process improvements can be based on the results of analyzing and constructing

explicit process models, i.e., on the results of process mining.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

Beest van N. R. T., & Maruster L. (2007). A process mining approach to redesign business processes—a
case study in gas industry. Symbolic and numeric algorithms for scientific computing, 2007. In
SYNASC. international symposium on (pp. 541–548).

Cook, J. E., & Wolf, A. L. (1998). Discovering models of software processes from event-based data. ACM
Transactions on Software Engineering and Methodology, 7(3), 215–249.

Dongen van B. F., de Medeiros, A. K. A., Verbeek, H. M. W., Weijters, A. J. M. M., & van der Aalst,
W. M. P. (2005). The ProM framework: A new era in process mining tool support. Applications and
Theory of Petri Nets, 444–454. In Lecture Notes in Computer Science. Heidelberg: Springer Berlin.

Dorling, A. (1993). SPICE: Software process improvement and capability determination. Software Quality
Journal, 2(4), 209–224.

118 Software Qual J (2011) 19:101–120

123

Humphrey, W. S. (1995). A discipline for software engineering. New York: Addison-Wesley.
Rozinat, A., & van der Aalst, W. M. P. (2008). Conformance checking of processes based on monitoring real

behavior. Information Systems, 33(1), 64–95.
Rubin V, Gunther C, van der Aalst WMP, Kindler E, van Dongen BF, & Schäfer W. (2007). Process mining

framework for software processes. Software process dynamics and agility, 169–181. Heidelberg:
Springer Berlin. In Lecture notes in computer science.

SEI, CMMI Product Team. (2006). CMMI for development, version 1.2. CMU/SEI-2006-TR-008.
Trienekens, J. J. M., Kusters, R. J., Kriek, D., & Siemons, P. (2009). Entropy based software process

improvement. Software Quality Journal, 17(3), 231–243.
van der Aalst, W. M. P., van Dongen, B. F., Herbst, J., Maruster, L., Schimm, G., & Weijters, A. J. M. M.

(2003). Workflow mining: A survey of issues and approaches. Data and Knowledge Engineering,
47(2), 237–267.

van der Aalst, W. M. P., & Weijters, A. J. M. M. (2005). Process mining. In M. Dumas, W. van der Aalst, &
A. ter Hofstede (Eds.), Process-aware information systems (pp. 235–254). Hoboken, NJ: Wiley.

Weijters, A. J. M. M., van der Aalst, W. M. P., & Alves de Medeiros, A. K. (2006). Process mining with the
heuristics miner algorithm. BETA Working Paper Series, WP 166, Eindhoven University of Tech-
nology, Eindhoven.

Witten, I. H., & Frank, E. (2005). Data mining: Practical machine learning tools and techniques (2nd ed.).
San Fransisco, CA: Morgan Kaufmann Publishers.

Author Biographies

Jana Samalikova is a PhD student within at the Industrial Engineering
& Innovation Sciences department at the Eindhoven University of
Technology. She focuses her research on software process discovery
using process mining. Jana obtained her Master’s degree at the Uni-
versity of Economics in Bratislava at the Information Systems
department. After finishing her university degree, she joined the post-
master program Software Technology at the Computer Science
department at the Eindhoven University of Technology. During the
program, she worked on several industrial research and development
projects for Philips organization concentrating her work on the quality
aspect of developing embedded software.

Rob Kusters (1957) obtained his Master’s degree in econometrics at
the Catholic University of Brabant in 1982 and his PhD in operations
management at Eindhoven University of Technology in 1988. He is
professor of ‘ICT and Business Processes’ at the Dutch Open Uni-
versity in Heerlen where he is responsible for the master program
‘Business process Management and IT’. He is also an associate pro-
fessor of ‘IT Enabled Business Process Redesign’ at Eindhoven Uni-
versity of Technology where he is responsible for a section of the
program in management engineering. He published over 90 papers in
international journals and conference proceedings and coauthored six
books. Research interests include process performance, enterprise
modeling, software quality and software management.

Software Qual J (2011) 19:101–120 119

123

Jos Trienekens (1952) is an Associate Professor at TU Eindhoven
(University of Technology—Eindhoven) in the area of ICT systems
development. He is responsible for a research program on ICT-driven
business performance and is an associate member of the research
school BETA at TUE that focuses on operation management issues.
Jos Trienekens published over the last ten years various books, papers
in international journals and conference proceedings in the domains of
software quality and software process improvement. He joined several
international conferences as PC member and member of the organi-
zation committee. He is also an experienced project partner in various
European projects.

Ton Weijters is associate professor at the school of Industrial Engi-
neering of the Eindhoven University of Technology (TU/e) and
member of the BETA research group. His current research focuses on
data and process mining (i.e. to extract knowledge from event logs
recorded by an information system to analyze the underlying business
processes). He is the auteur of more than hundred scientific publica-
tions in the mentioned research field. His papers appeared in journals
such as Data Mining and Knowledge Discovering, Information
Systems, IEEE Transactions on Knowledge and Data Engineering,
Artificial Intelligence in Medicine, European Journal of Operational
Research, Computers in Industry, Knowledge-Based Systems,
AI-Review, etc.

Paul Siemons has a very broad interest in science, technology and the
arts. After studying physics, math and computer science, he started his
career in the field of technical automation in the areas of engineering,
project management and process improvement. As an improvement
consultant, he is experienced in controlling process performance, and
he has expertise in estimation, measurement and analysis. Over the
years, he switched from management to consulting and founded his
own company Metrific Management Consult in 2002. Since January 1,
2007, Paul is operating from Draugronth BV. Paul also actively par-
ticipates in scientific research performed by several university
departments and is coauthoring publications on measurement- and
improvement-related subjects.

120 Software Qual J (2011) 19:101–120

123

	Toward objective software process information: experiences from a case study
	Abstract
	Introduction
	Background and related research
	The case studies: software projects and their CCB process
	The complexity of the ‘actual’ CCB process
	The ‘official’ CCB process as derived from the quality manuals
	Submit task
	CCB Evaluation task
	Analysis task
	Resolution task
	Evaluation task
	Concluded task

	The case studies: the available data and the data preparation
	The available data
	Data preparation: from snapshots to event log
	Problem 1: missing fields in records
	Problem 2: incorrect sequences of events
	Problem 3: absent information about tasks and events

	Analyzing and constructing the ‘actual’ CCB process
	The discovered ‘actual’ CCB process model of project P
	Control-flow patterns
	Feedback to the development team on the results of project P
	Projects P1 to P9: mining results regarding the skipping of the task Analysis
	Feedback to the development team on the results of the nine projects

	Conclusions
	Open Access
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

