
Noname manuscript No.
(will be inserted by the editor)

Recovering Grammar Relationships
for the Java Language Specification

Ralf Lämmel · Vadim Zaytsev

Received: date / Accepted: date

Abstract Grammar convergence is a method that helps discovering relationships between
different grammars of the same language or different language versions. The key element of
the method is the operational, transformation-based representation of those relationships.
Given input grammars for convergence, they are transformed until they are structurally
equal. The transformations are composed from primitive operators; properties of these oper-
ators and the composed chains provide quantitative and qualitative insight into the relation-
ships between the grammars at hand.

We describe a refined method for grammar convergence, and we use it in a major study,
where we recover the relationships between all the grammars that occur in the different ver-
sions of the Java Language Specification (JLS). The relationships are represented as gram-
mar transformation chains that capture all accidental or intended differences between the
JLS grammars. This method is mechanized and driven by nominal and structural differences
between pairs of grammars that are subject to asymmetric, binary convergence steps.

We present the underlying operator suite for grammar transformation in detail, and we
illustrate the suite with many examples of transformations on the JLS grammars. We also
describe the extraction effort, which was needed to make the JLS grammars amenable to
automated processing. We include substantial metadata about the convergence process for
the JLS so that the effort becomes reproducible and transparent.

Keywords grammar convergence · grammar transformation · grammar recovery · grammar
extraction · language documentation

R. Lämmel
Software Languages Team
The University of Koblenz-Landau
Germany
E-mail: laemmel@uni-koblenz.de

V. Zaytsev
Software Languages Team
The University of Koblenz-Landau
Germany
E-mail: zaytsev@uni-koblenz.de

ar
X

iv
:1

00
8.

41
88

v1
 [

cs
.P

L
]

 2
5

A
ug

 2
01

0

2

1 Introduction

Overall, this paper is concerned with the problem of grammar consistency checking.
Many software languages (and programming languages, in particular) are described simul-
taneously by multiple grammars that are found in different software artifacts. For instance,
one grammar may reside in a language specification; another grammar may be encoded
in a parser specification; yet another grammar may be present in an XML schema for
tool-independent data exchange. Ideally, one would want to reliably establish and contin-
uously maintain that all co-existing (potentially embedded) grammars describe the same
intended language. Without such guarantee, grammar inconsistencies may go unnoticed,
and grammar-based software artifacts may get brittle. Some existing ad-hoc or brute-force
methods partially address this problem, but ultimately grammar consistency checking is an
open software engineering problem without a satisfying best practice. A good example is the
Java Language Specification (JLS; Gosling et al, 1996, 2000, 2005), which is the target of
the present paper. The JLS is a critical specification in the software industry, yet it contains
substantial inconsistencies.

Let us sketch the obstacles for grammar consistency checking. Consider the problem
of establishing or maintaining that some given BNFs (i.e., grammars) describe the same
language. An automated solution is constrained by the formal undecidability of grammar
equivalence. Such a formal limit is certainly part of the problem that there is no best practice
for grammar consistency checking. Obviously, the problem becomes even more challenging
once we consider the practical situation of grammars of many different forms: BNFs, parser
descriptions, XML schemata, software models, etc. Such variation implies impedance mis-
matches. As a result, it may be hard to mentally or automatically map one grammar to the
other. The present paper describes a method that addresses those obstacles effectively.

In essence, grammar consistency checking deals with grammar differences in a sys-
tematic manner. Grammars for the same language may be different for various, practically
viable reasons. For instance, grammars may be tailored for a certain purpose or quality
such as “readability”. (In the present paper, we deal with “more readable” vs. “more im-
plementable” grammars for the Java language.) Some grammars may have been designed
independently of one another, and hence they are likely to be vastly different in the sense of
structural equality of the grammar specifications. Other grammars may have been affected
heavily by compromises required by implementation technologies (e.g., parsing techniques),
or data models (e.g., XML Schema as opposed to BNF). To summarize, in practice, there
are many intended, accidental, idiosyncratic, superficial, and substantial differences between
co-existing grammars of a language.

In fact, we need a generalized form of grammar consistency checking that also account
for versatile grammar relationships due to software and language evolution. Both, soft-
ware languages as such (e.g., in the form of language documentation) and grammar-based
software artifacts (e.g., compilers, source code analysis tools, IDEs) are subject to possibly
independent evolution. The grammars of different versions are not even intended to describe
the same language, but one would still want to understand their relative correspondence in
terms of a delta between these versions. As a result, there are even more grammars to be
checked for consistency. Also, we are no longer restricted to plain grammar equivalence,
but language extensions, restrictions, or revisions would need to be captured and checked.

Another related challenge of language evolution is migration of data (programs, words,
etc.) across versions. We do not discuss this challenge in the present paper, even though the
underlying method may be potentially useful in such a context.

3

In Lämmel and Zaytsev (2009), we have begun to address the fundamental problem of
grammar diversity by initiating a method for grammar convergence. This method combines
grammar extraction (to obtain raw grammars from artifacts and represent them uniformly),
grammar comparison (to determine nominal and structural differences between given gram-
mars), and grammar transformation (to represent the relationships between given grammars
by transformations that make the grammars structurally equal). Grammar convergence is
another method of grammar engineering—as such, it is a companion of grammar recovery,
adaptation, and inference. The specific property of convergence is that it genuinely takes
several grammars as input—as opposed to any process that starts from a single grammar.

In the present paper, we describe the JLS study—a major study for grammar conver-
gence for the Java language. We also deliver a refined method for grammar convergence
with improved scalability and reproducibility.1 The study in this paper concerns the 3 dif-
ferent versions of the Java Language Specification (JLS; Gosling et al, 1996, 2000, 2005).
Each of the 3 JLS versions contains 2 grammars: one grammar is said to be optimized for
readability, and the other one is intended as a basis for implementation.

Let us briefly discuss the JLS situation. One would expect that the different grammars
per version are essentially equivalent in terms of the generated language. As a concession
to practicality (i.e., implementability, in particular), one grammar may be more permissive
than the other. One would also expect that the grammars for the different versions gener-
ate languages that engage in an inclusion ordering because of the backwards-compatible
evolution of the Java language. Those expected relationships of (liberal) equivalence and
inclusion ordering are significantly violated by the JLS grammars, as our study shows.

The JLS is critical to the Java platform—it is a foundation for compilers, code genera-
tors, pretty-printers, IDEs, source code analysis and manipulation tools, and other grammar-
ware for the Java language. The JLS is the authoritative specification of Java. Hence, there is
a strong incentive for an unambiguous, consistent and understandable set of JLS documents.
Still, our study discovers substantial inconsistencies with the help of grammar convergence.

Our work is in no way restricted to the JLS. We notice a broader impact on language
standardization and engineering. Based on the major JLS study of the present paper, pre-
vious work on grammar recovery, and general trends in software language engineering, we
contend that grammar convergence improves the state of the art in creation, maintenance
and evolution of language documentation. Ideally, we would hope for standardization bod-
ies and language documenters to incorporate grammar convergence into their methodology.
For instance, it would be clearly desirable for Oracle to abandon manual grammar editing in
the next version of Java and the JLS. We refer to Klusener and Zaytsev (2005) for a proposal,
in fact, an ISO document, that hints at the application of grammar engineering techniques
such as grammar convergence in the context of creating, maintaining, or evolving language
documents. Realistically, though, it will be difficult to replace current ad-hoc techniques
of dealing with multiple grammars in language documents and otherwise. We will discuss
some of the limitations of the current grammar convergence method in the conclusion. There
is the particular issue of adoption: it would take Oracle, ISO, and other such organizations
substantial effort to incorporate additional methods and tools into their processes, and to
adjust existing documents. Overall, grammar convergence is still an emerging method.

1 An earlier and abbreviated account on this work has been published in the Proceedings of Ninth IEEE
International Working Conference on Source Code Analysis and Manipulation, SCAM 2009, pp. 178–186.

4

Contributions

The motivation of our work and its significance is not limited to the mere discovery of bugs
in the Java standard or in any other set of grammars for that matter. (In fact, some JLS bugs
have been discovered, time and again, by means of informal grammar inspection or other
brute-force methods.) The significance of our work is amplified by two arguments. First, we
provide a simple and mechanized process for discovering accidental or intended differences
between grammars. Second, we are able to represent the differences in a precise, operational
and accessible manner—by means of grammar transformations.

Here is an itemized summary of the contributions of this work:

1. We have recovered nontrivial relationships between grammars of industrial size. (That
is, we show that the grammars are equivalent modulo well-defined transformations.)

2. We have designed a mechanized, measurable and reproducible process for grammar
convergence. Compared to the initial work on grammar convergence (Lämmel and Za-
ytsev, 2009), the process consists of well-defined phases and its progress can be effec-
tively tracked in terms of the numbers of nominal and structural differences between the
grammars at hand.

3. We have worked out a comprehensive operator suite for grammar transformation driven
by the scale of the present JLS study. The suite substantially improves on prior art.

4. The complete JLS effort (including all the involved sources, transformations, results,
and tools) is publicly available through SourceForge.2

Roadmap

§2 gives an overview on grammar convergence method, it prepare the application of the
method to the JLS, and it describes phases of a refined process of convergence that we
extracted from the reported JLS study. §3 describes the extraction phase of grammar conver-
gence for the JLS. §4 describes an operator suite for grammar transformation, and applies
it to the JLS. §4.3 provides a postmortem for the reported JLS study. §5 discusses related
work. §6 concludes the paper.

2 Grammar convergence

The central idea of grammar convergence (Lämmel and Zaytsev, 2009) is to extract gram-
mars from diverse software artifacts, and to discover and represent the relationships between
the grammars by chains of transformation steps that make the grammars structurally equal.
In this section, we will describe the method in detail and prepare its application to the JLS.
The method relies on the following core ingredients:

– A unified grammar format that effectively supports abstraction from specialities or id-
iosyncrasies of the grammars as they occur in software artifacts in practice.

– A grammar extractor for each kind of artifact. (In the present JLS study, we had to
extract grammars from the JLS documents, which are available in HTML and PDF.)

2 http://slps.sf.net/; see topics/java/lci in particular.

http://slps.sf.net/
http://slps.svn.sourceforge.net/viewvc/slps/topics/java/lci/

5

read2 (Gosling et al, 2000, §8.1)

ClassDeclaration:
ClassModifiers? "class" Identifier Super? Interfaces? ClassBody

read3 (Gosling et al, 2005, §8.1, §8.9)

ClassDeclaration:
NormalClassDeclaration
EnumDeclaration

NormalClassDeclaration:
ClassModifiers? "class" Identifier TypeParameters? Super? Interfaces? ClassBody

EnumDeclaration:
ClassModifiers? "enum" Identifier Interfaces? EnumBody

Fig. 1 Two similar grammar excerpts from different versions of the JLS. The second excerpt involves two
more nonterminals than the first excerpt: NormalClassDeclaration, which looks similar to the nonterminal
from the first grammar, and EnumDeclaration, which is completely new. Hence, we speak of two nominal
differences (two nonterminals in read3 that do not match read2), and of two structural differences (two
unmatched branches in ClassDeclaration).

– A grammar comparator that determines and reports grammar differences in the sense
of deviations from structural equality.

– A framework for automated grammar transformation that can be used to refactor, or to
otherwise more liberally edit grammars until they become structurally equal.

2.1 Grammar comparison

The grammar comparator is used to discover grammar differences, and thereby, to help
with drafting transformations in a stepwise manner. We distinguish nominal vs. structural
grammar differences. We face a nominal difference when a nonterminal is defined or ref-
erenced in one of the grammars but not in the other. We face a structural difference when
the definitions of a shared nonterminal differ for two given grammars. Some of the nominal
differences will be eliminated by a simple renaming, while others will disappear gradually
when dealing with structural differences that involve folding/unfolding.

In order to give better results, we assume that grammar comparison operates on a slightly
normalized grammar format. The assumed, straightforward normalization rules are pre-
sented in Appendix A.

Let us consider a simple example, without paying attention yet to the specific gram-
mar notation and transformation operators. For instance, consider the two grammar excerpts
from the “more readable” grammars of JLS2 and JLS3 (read2 and read3 from now on)
in Figure 1. Conceptually, the grammars are different in the following manner. The read3
grammar covers additional syntax for enumeration declarations; it also uses an auxiliary
nonterminal NormalClassDeclaration for the class-declaration syntax that is declared di-
rectly by ClassDeclaration in the read2 grammar. The comparator reports four differences
that are directly related to these observations:

6

– Nominal differences:
– read2: nonterminal NormalClassDeclaration missing.
– read2: nonterminal EnumDeclaration missing.

– Structural differences:
– Nonterminal ClassDeclaration: no matching alternatives

(counts as 2 because the definitions have a maximum of 2 alternatives).

Arguably, these differences should help the grammar engineer who will typically try
to find definitions for missing nonterminals by extracting their inlined counterparts. The
counterpart for NormalClassDeclaration is relatively obvious because of the combination
of a nonterminal that is entirely missing in one grammar while it occurs in a structural
different and unmatched alternative in the other grammar.

2.2 Grammar transformation

Since the goal of grammar convergence is to relate all sources to each other, the relationships
between grammars will be represented as grammar transformations. We say that grammars
g1 and g2 are f -equal, if f(g1) = g2 (where “=” refers to structural equality on grammars,
and f denotes the meaning of a grammar transformation). When f is a refactoring (i.e., a
semantics-preserving transformation), then f -equality coincides with grammar equivalence.
If f is a semantics-increasing (-decreasing) transformation, then we have shown an inclusion
ordering for the languages generated by the two grammars.

We use the terms “semantics-preserving”, “-increasing” and “-decreasing” in the for-
mal sense of the language generated by a grammar. Clearly, the composition of (sufficiently
expressive) increasing and decreasing operators allows us to relate arbitrary grammars, in
principle. Hence, more restrictions are needed for accumulating reasonable grammar rela-
tionships, as we will discuss below. We also mention that there is a rare need for operators
that are neither semantics-increasing nor -decreasing. In this case, we speak of a semantics-
revising operator. Consider, for example, an unconstrained replace operator for expressions
in grammar productions that may be needed if we face conflicting definitions of a nontermi-
nal in two given grammars.

The baseline scenario for grammar transformation in the context is convergence is as
follows. Given are two grammars: g1 and g2. The goal is to find f such that g1 and g2 are
f -equal. In this case, one has to gradually aggregate f by addressing the various differences
reported by the comparator. In our current implementation of grammar comparison, we do
not make any effort to propose any transformation operators to the user, but this is clearly
desirable and possible.

In JLS, given the differences reported by the comparator and presented in the previous
section, the grammar engineer authors an transformation to add an extra chain production
for NormalClassDeclaration. This transformation and a few subsequent ones as well as all
intermediate results are listed in Figure 2.

The idea is now that such compare/transformation steps are repeated. Hence, we com-
pare the intermediate result, as obtained above, with the grammar read3. It is clear that
the nominal difference for NormalClassDeclaration has been eliminated. The comparator
reports the three following differences:

7

Using a grammar transformation operator to introduce a chain production

chain(
ClassDeclaration:

NormalClassDeclaration);

read2’ (Intermediate grammar fragment)

ClassDeclaration:
NormalClassDeclaration

NormalClassDeclaration:
ClassModifiers? "class" Identifier Super? Interfaces? ClassBody

Using grammar transformation operators to add enumeration declarations

introduce(...);
addV(
ClassDeclaration:

EnumDeclaration);

read2’’ (Intermediate grammar fragment)

ClassDeclaration:
NormalClassDeclaration
EnumDeclaration

NormalClassDeclaration:
ClassModifiers? "class" Identifier Super? Interfaces? ClassBody

EnumDeclaration:
...

Using a grammar transformation operator to insert a nillable symbol

appear(
NormalClassDeclaration:

ClassModifiers? "class" Identifier <TypeParameters?> Super? Interfaces? ClassBody);

Fig. 2 Transforming the grammar and proving (chain ◦ introduce ◦ addV ◦ appear)-equality.

– Nominal difference:
– read2’: nonterminal EnumDeclaration missing.

– Structural difference: nonterminal NormalClassDeclaration
– read2’: ClassModifiers? "class" Identifier Super? Interfaces? ClassBody
– read3: ClassModifiers? "class" Identifier TypeParameters? Super? Interfaces? ClassBody

– Structural difference: nonterminal ClassDeclaration
– Unmatched alternatives of read2’: none
– Unmatched alternatives of read3: EnumDeclaration

8

We see that enumerations are missing entirely from read2’, and hence a definition has
to be introduced, and a corresponding alternative has to be added to ClassDeclaration. Once
we are done, the result is again compared to read3:

– Structural difference: nonterminal NormalClassDeclaration
– read2’’: ClassModifiers? "class" Identifier Super? Interfaces? ClassBody
– read3: ClassModifiers? "class" Identifier TypeParameters? Super? Interfaces? ClassBody

Again, this difference is suggestive. Obviously, the definition of NormalClassDeclara-
tion according to read2” does not cover the full generality of the construct, as it occurs
in read3. The structural position for the type parameters of a class has to be added. (This
has to do with Java generics which were added in the 3rd edition of the JLS.) There is a
designated transformation operator that makes new components appear (such as type pa-
rameters) in existing productions; the newly inserted part is marked on Figure 2 with angle
brackets. This is a downward-compatible change since type parameters are optional. Once
these small transformations have been completed, all the discussed differences are resolved,
and the comparator attests structural equality.

2.3 Convergence graphs

Grammar convergence always starts from the grammars that were extracted from the given
software artifacts, to which we refer as source grammars or sources subsequently. In the
present JLS study, we face 6 sources; we use read1–read3 to refer to the “more readable”
grammars, and impl1–impl3 to refer to the “more implementable” grammars. It is reason-
able to relate grammars through an additional grammar of which we think as the common
denominator of the original grammars. We refer to such additional grammars as targets. The
“distance” between source and target grammars may differ. In fact, it is not unusual, that
one source—modulo minor transformations only—serves as common denominator.

The idea of the common denominator can be generalized such that we actually devise a
directed acyclic graph with grammars as the nodes and transformations as the edges. In the
trivial case with each target being a result of transforming two sources or targets, we will
have a binary tree. The root of such a tree (the final target) is the common denominator of all
grammars, but there may be additional intermediate targets that already serve as common
denominators for some of the grammars. (We use arrows to express the direction of the
transformation, and hence the trees appear inverted, when compared to common sense of
drawing trees.) The source grammars are the leaves of such a tree.

Figure 3 shows the “convergence tree” for the present JLS case study. The original gram-
mars from the JLS documents are located at the top. The tree states that the two grammars
per JLS version are “converged to” a common denominator (see the nodes jls1–3 in the fig-
ure), and all three versions are further “converged” to account for inter-version differences—
the extensions to the Java language in particular (see the nodes jls12 and jls123 as well as
read12 and read123 in the figure). For the JLS we use a binary tree, which means that we
always limit the focus to two grammars, and hence a cascade is needed, if more than two
grammars need to be converged.

When deriving jls1–3, we favor the “more implementable” grammar as the target of con-
vergence, i.e., as the common denominator—except that some corrections may need to be
applied, or some minimum restructuring is applied for the sake a more favorable grammar
structure. This preference reflects the general rule that an implementation-oriented artifact

9

impl1 read1

jls1

impl2

read12

read2

jls2

impl3 read3

jls3

read123jls12

jls123

impl1 JLS1, §19
read1 JLS1, §§4.1–15.27
impl2 JLS2, §18
read2 JLS2, §§4.1–15.28
impl3 JLS3, §18
read3 JLS3, §§4.1–15.28

Fig. 3 The convergence graph for the JLS grammars consists of two binary trees with shared leaves. The
nodes in the figure are grammars where the leaves correspond to the original JLS grammars and the other
nodes are derived. The directed edges denote grammar transformation chains. We use a (cascaded) binary
tree here, i.e., each forking node is derived from two grammars. The implX leaves are “implementable”
grammars, the readX ones are “readable”.

should be derived from a design-oriented artifact—rather than the other way around. Inci-
dentally, this direction is also easier to handle by the available transformation operators.

When relating the different JLS versions, we adopt the redundant approach to relate the
common denominators jls1–3 in one cascade (see the nodes jls12 and jls123), but also the
readable grammars read1–3 in another cascade (see the nodes read12 and read123) as a sort
of sanity check. It turns out that read1–3 are structurally quite similar, and accordingly, the
additional cascade requires little effort.

2.4 Convergence process

As we were discussing grammar comparison and transformation, we already alluded to a
basic compare/transform cycle—this cycle is indeed the spline of the convergence process.
We identify phases for the convergence process in order to impose more structure and disci-
pline onto the process. These convergence phases assume asymmetric, binary convergence
trees where one of the two grammars is favored as (near-to) common denominator—as we
discussed above. There are five consecutive convergence phases: the initial extraction phase
involves a mapping from an external grammar format and is therefore implemented as a stan-
dalone tool in our infrastructure; the other four convergence phases are directly concerned
with transformation.

Extraction: A starting point for grammar extraction is always a set of real grammar arti-
facts. A mapping is required for each kind of artifact so that grammar knowledge can
be extracted and represented in a uniform grammar format. (In in the case of our infras-
tructure, we use BGF—a BNF-like Grammar Format.) Each extractor may implement
particular design decisions in terms of any normalization or abstraction to be performed
along with extraction. Once extraction is completed, a (possibly incorrect or not fully
interconnected) grammar is ready for transformation.

Convergence preparation: This convergence phase involves correcting immediately obvi-
ous or a priori known errors in the given sources. These corrections are represented as
grammar transformations so that they can be easily revisited or re-applied in the case

10

when the extractor is modified or the source changes. In the JLS case, we incorporated
an available bug list at this stage3. Some inaccuracies caused by representation anoma-
lies in the HTML input were also resolved a this stage. Further, we added some missing
definitions the lack of which was discovered through an early inspection; see the discus-
sion of bottom nonterminals in §3.5.

Nominal matching: We perform asymmetric compare/transform steps. That is, the non-
favored grammar is compared with the (prepared) favored grammar, which is the base-
line for the (intermediate) target of convergence. The objective of this convergence phase
is to align the syntactic categories of the grammars in terms of their nonterminals. The
nominal differences, as identified by comparison, guide the grammar engineer in draft-
ing transformations for renaming as well as extraction and inlining such that the transfor-
mations immediately reduce the number of nominal differences. It is important to notice
that we restrict ourselves to operators for renaming, inlining, and extraction. These op-
erators convey our intuition of (initial) nominal alignment. We make these assumptions:

– When a nonterminal occurs in both grammars, then it models the same syntactic cat-
egory (conceptually). If the assumption does not hold, then this will become evident
later through considerable structural differences, which will trigger a renaming to
resolve the name clash. Such corrective renaming may be pushed back to the phase
of convergence preparation.

– Any renaming for nonterminals serves the purpose of giving the same name to the
same syntactic category (in an conceptual sense). If a grammar engineer makes a
mistake, then this will become evident later, again, through considerable structural
differences. In this case, we assume that the grammar engineer returns to the name
matching phase to revise the incorrect match.

Structural matching: We continue with asymmetric compare/transform steps. This con-
vergence phase dominates the transformation effort; it aligns the definitions of the non-
terminals in a structural sense. The structural differences, as identified by comparison,
guide the grammar engineer in drafting transformations for refactoring such that they
immediately reduce the number of structural differences. As we continue to limit our-
selves to refactoring, the order of the individual transformations does not matter due to
its commutativity. The grammar engineer can simply pick any applicable refactoring op-
erator, but the firm requirement is that the number of structural and nominal differences
declines, which is automatically verified by our infrastructure.

Resolution: This convergence phase consists of three kinds of steps, as discussed in more
detail in §4: extension, relaxation and correction. In the case of semantics-increasing
operators, it is up to the grammar engineer to perform the classification. Semantics-
decreasing operators serve correction on the grounds of a convention. That is, we assume
a directed process of convergence where the grammars of extended (relaxed) languages
are derived from the grammars of “sublanguages”. However, if the grammars violate
such an intended sublanguage relationship, then correction must be expressed through
semantics-decreasing operators.

The correctness of the process relies on one assumption regarding the limited use of non-
semantics-preserving operators. In particular, non-semantics-preserving operators should

3 There are various accounts that have identified or fixed bugs in the JLS grammars or, in fact, in grammars
that were derived from the JLS in some manner. We refer to the work of Richard Bosworth as a particularly
operational account; it is a clear list of bugs which was also endorsed by Oracle: http://www.cmis.
brighton.ac.uk/staff/rnb/bosware/javaSyntax/syntaxV2.html. We refer to this list as
“known bugs” in our process.

http://www.cmis.brighton.ac.uk/staff/rnb/bosware/javaSyntax/syntaxV2.html
http://www.cmis.brighton.ac.uk/staff/rnb/bosware/javaSyntax/syntaxV2.html

11

Fig. 4 Difference reduction for read2 towards the convergence target jls2 in the convergence tree of Figure 3.

only be used, if the given grammars are not equivalent. Making equivalent grammars non-
equivalent is clearly not desirable. Currently, we cannot verify this assumption, and in fact,
it is generally impossible because of undecidability of grammar equivalence. However, a
heuristic approach may be feasible, and provides an interesting subject for future work. Even
when the given grammars are non-equivalent, we still need to limit the use of non-semantics-
preserving operators for correctness’ sake. That is, we should disallow zigzag transforma-
tions such that semantics-increasing and -decreasing transformations partially cancel each
other.

We use the number of nominal and structural differences as means to track progress
of grammar convergence. Each unmatched nonterminal symbol of either grammar counts
as a nominal difference. For every nominally matched nonterminal, we add the maximum
number of unmatched alternatives (of either grammar), if any, to the number of structural
differences.

The main guiding principle for grammar convergence is to consistently reduce the num-
ber of grammar differences throughout the two matching convergence phases as well as the
final resolution phase. Figure 4 illustrates this principle for one edge in the convergence
graph of the present JLS study. The figure also visualizes that nominal differences tend to
be resolved earlier than structural differences.

Our transformation infrastructure is aware of the different phases of convergence, and it
checks the incremental reduction of differences at runtime. As a concession to a simple de-
sign of the operator suite for grammar transformations, restructuring steps may also slightly
increase structural differences as long as they are explicitly grouped in “transactions” whose
completion achieves reduction.

3 Grammar extraction

The previous section decomposed grammar convergence essentially into grammar extraction
and a compare/transform cycle. The present section will focus on extraction, whereas the
next section covers grammar transformations to be used in the compare/transform cycle.

12

(Here we assume that our grammar comparison approach is currently trivial and not worth
a designated, detailed description.)

The central objective of grammar extraction is to map software artifacts of a given kind
(such as parser descriptions, language documentation, or XML schemata) to the uniform
grammar format that is used in a convergence effort. Several engineering issues arise in this
context:

Domain analysis. One needs to understand the software artifacts at hand. One dimension
of understanding may be based on metadata about the grammars at hand: version, style,
completeness. Such information can be often obtained by inspecting the given gram-
mar artifacts, e.g., language documents. Consider, for example, encountering of a left-
recursive style. Awareness of this style is beneficial for the transformations to be devised
eventually.

Source selection. There may be multiple potential candidates (think of PDF vs. HTML for
language documentation, or Java sources vs. byte code for object models). Hence, trade-
offs regarding the simplicity, robustness, correctness, and completeness of extraction
must be considered. Either one contender is chosen, or multiple options are explored in
parallel, or a fallback is considered, if the contender fails, eventually.

Extractor implementation. In our experience, most extractors are unique programs—they
require particular programming techniques, specifically parsing techniques. Seeking the
right implementation strategy is a matter of trial-and-error, but, ultimately, it is important
to be able to describe a lucid implementation strategy so that one can have trust in the
robustness, correctness, and completeness of extraction.

Metrics assessment. One should evaluate the initial quality of the extracted grammar based
on common grammar metrics for bottom nonterminals (“undefined nonterminals”) and
top nonterminals (“unused nonterminals”). Such quality properties are helpful in guid-
ing subsequent transformation efforts. Also, quality issues may indicate flaws in the
extractor logic, and hence trigger reconsideration and revision.

These issues will be addressed in the following text.

3.1 JLS domain analysis

We have already begun capturing JLS terminology, recall the notions of “more readable”
and “more implementable”. These notions are not sharply defined, but one can think of, for
example, left factoring (to help with look ahead) as being used in the more implementable
grammars but not in the more readable grammars. Let us extract related characteristics of
the grammars from the JLS documents on a per-grammar basis:

JLS1 It is stated (Gosling et al, 1996, §19) that the more implementable grammar has “been
mechanically checked to insure that it is LALR(1)”. The correspondence between read1
and impl1 is briefly described by saying (Gosling et al, 1996, §2.3) that read1 is “very
similar to” impl1 “but more readable”.

JLS2 The second edition of the JLS (Gosling et al, 2000, “Preface to the Second Edition”)
“integrates all the changes made to the Java programming language since [...] the first
edition in 1996. The bulk of these changes [...] revolve around the addition of nested type
declarations.” The JLS1/2 grammars themselves are nowhere related explicitly. Upon
cursory examination we came to conclude that read1 and read2 are strikingly similar
(modulo the extensions to be expected), whereas surprisingly, impl1 and impl2 appeared

13

Grammar class Iteration style
impl1 LALR(1) left-recursive
read1 none left-recursive
impl2 unclear EBNF metasymbols
read2 none left-recursive
impl3 “nearly” LL(k) EBNF metasymbols
read3 none left-recursive

Table 1 Basic properties of the JLS grammars.

as different developments. Also, the LALR(1) claim for impl1 is not matched by impl2
which does not list a grammar-class claim. However, impl2 is said (Gosling et al, 2000,
§18) to be “the basis for the reference implementation”.

JLS3 JLS3 extends JLS2 in numerous ways (Gosling et al, 2005, Preface): “Generics,
annotations, asserts, autoboxing and unboxing, enum types, foreach loops, variable
arity methods and static imports have all been added to the language”. Again, the
JLS2/3 grammars themselves are nowhere related explicitly, and again, cursory exam-
ination suggests that read2 and read3 are strikingly similar (modulo the extensions to
be expected). This time, impl2 and impl3 also bear strong resemblance. No definitive
grammar-class claim is made, but an approximation thereof: impl3 is said (Gosling et al,
2005, §18) to be “not an LL(1) grammar, though [...] it minimizes the necessary look
ahead.” Hence, impl3 has definitely departed from impl1 with its associated grammar
class LALR(1).

In addition to grammar class claims for the JLS grammars we have also recorded it-
eration styles during cursory examination; see Table 1. This data already clarifies that we
need to bridge the gap between different iteration styles (which is relatively simple) but also
different grammar classes (which is more involved)—if we want to recover the relationships
between the different grammars by effective transformations.

3.2 JLS source selection

A JLS document is basically a structured text document with embedded grammar sections.
In fact, the “more readable” grammar is developed throughout the document where the
“more implementable” grammar is given, en bloc, in a late section—a de facto appendix.

The JLS is available electronically in HTML and PDF format. Neither of these formats
was designed with convenient access to the grammars in mind. After some deliberation, we
have opted for the HTML format because parsing seemed relatively straightforward.

Obviously, the JLS grammars have been implemented by different parties in various
ways. For instance, there exist parser descriptions whose authors have consulted the JLS.
However, as a matter of principle, none of these options was considered appropriate in the
present JLS study because we wanted to make sure to perform consistency checking for the
primary JLS as opposed to any derived artifact. Hence, we started from the JLS (and its
HMTL documents, in particular), even if such a source selection required more effort than
a path that reuses third-party Java grammars.

14

3.3 JLS grammar notation

The extractor needs to identify grammar portions within general HTML markup. The used
grammar format slightly varies across the different JLS grammars and versions; there are
relevant formatting rules in different documents and sections—in particular from Gosling
et al (1996, §2.4), Gosling et al (2000, §2.4, §18) and Gosling et al (2005, §2.4, §18).

Grammar fragments are hosted by <pre>...</pre> blocks in the JLS documents.
According to Gosling et al (1996, 2000, 2005, §2.4): terminal symbols are shown in
fixed font (as in <code>class</code>); nonterminal symbols are shown in italic type
(as in <i>Expression</i>); a subscripted suffix “opt” indicates an optional symbol (as
in Expression_{opt}); alternatives start in a new line and they are indented;
“one of” marks a top-level choice with atomic branches. (We have also observed that non-
terminals are expected to be alphanumeric and start in upper case.) Further notation and
expressiveness is described in Gosling et al (2000, 2005, §18): [x] denotes zero or one oc-
currences of x; {x} denotes zero or more occurrences of x; x1| · · · |xn forms a choice over
the xi. The JLS documents consistently suffice with “*” lists (zero or more occurrences);
there are no uses of “+” lists. Refer to Figure 5 for a summary of the assumed source gram-
mar notation. Refer to Figure 6 for a summary of the notation we use for the examples in
this paper. All examples presented here were obtained from their XML (BGF) form in an
automated generative manner as in Kort et al (2002).

We should also mention line continuation; it allows to spread one alternative over several
lines (Gosling et al, 2005, §2.4): “A very long right-hand side may be continued on a second
line by substantially indenting this second line”. In our notation we double the indentation
for every continued line.

Example 1 A grammar fragment as of Gosling et al (2000, §4.2):

<i>NumericType:
IntegralType
FloatingPointType

IntegralType: one of</i>
<code>byte short int long char

</code>

It should be parsed as:

NumericType:
IntegralType
FloatingPointType

IntegralType:
"byte"
"short"
"int"
"long"
"char"

The fragment illustrates two different kinds of “choices”, i.e., multiplicity of vertical
alternatives, and “one of” choices. (The third form, which is based on “|”, is not illus-
trated.) The fragment also clarifies that markup tags are used rather liberally. The “non-
terminal” tag (i.e., <i>...</i>) spans more than one production. The terminal tag (i.e.,
<code>...</code>) spans several terminals and the closing tags ends up on a new line.

15

Production:
Nonterminal ":" ["one" "of"] CR Line { Line } CR

Line:
Indent Symbols CR

Symbols:
Symbol { Symbol }

Symbol:
Nonterminal
Terminal
"(" Symbols "|" Symbols { "|" Symbols } ")"
"[" Symbols "]"
"{" Symbols "}"

CR:
... carriage return ...

Indent:
... indentation ...

Fig. 5 Relevant expressiveness of the JLS grammar notation, given in a self-descriptive manner; for clarity,
terminals are enclosed in double quotes as opposed to the use of markup; the markup-based form of optional
symbols is also omitted.

grammar:
root::STRING? production?

label:
"[" STRING "]"

production:
label::label? nonterminal::STRING ":" CR right−hand−side

right−hand−side:
(INDENT symbol+ CR)+ CR

symbol:
"ε "
"EMPTY"
"ANY"
"STRING"
"INT"
terminal::(""" STRING """)
nonterminal::STRING
selectable::(selector::STRING "::" symbol)
sequence::("(" symbol+ ")")
choice::("(" (symbol ("|" symbol)?) ")")
optional::(symbol "?")
plus::(symbol "+")
star::(symbol "?")
marked::("<" symbol ">")

STRING:
... any letter sequence ...

CR:
... carriage return ...

INDENT:
... indentation ...

Fig. 6 In this paper, we show grammar fragments in a pretty-printed format (as opposed to the markup-based
source format): nonterminals are in italic type; terminals are enclosed in double quotes; operators “?”, “*”
and “+” serve for optionality and lists; elisions are shown as “...”.

16

Example 2 Not only the indentation is incorrect in the following fragment, it is also the only
place where the subscript “opt” is capitalized (Gosling et al, 2005, §4.5.1):

Wildcard:
? WildcardBounds_{Opt}

3.4 JLS extractor implementation

The tiny Example 1 is a good indication of the many irregularities that are found in the
HTML representation, such as volatile use of markup tags, liberal indentation, duplicate
definitions. We needed to design and implement a non-classic grammar parser to extract
and analyze the grammar segments of the documents and to perform recovery. Our extractor
therefore deals with the expected irregularities in several phases.

– Phase 1—Preprocessing: the tool takes an HTML formatted text and filters out all hyper-
text tags and indentation, extracting all possible information from them in the process.

– Phase 2—Error recovery: the recovery rules are applied until they are no longer applica-
ble. There are rules for transforming a terminal symbol to a nonterminal symbol or the
other way around, matching up parentheses, splitting/combining sibling symbols, etc.

– Phase 3—Removal of doubles: duplicate definitions are purged. This could not happen
during earlier extraction phases because clones could differ in markup.

– Phase 4—Precise parsing: the extracted grammar is serialized to some parseable form.
We use the XML-based interchange format called BGF, or BNF-like Grammar Format.

The extraction phases are discussed in detail in the following subsections.

Extraction phase 1—Preprocessing

The first extraction phase, which we call a preprocessing phase, has the following I/O be-
havior:

– Input: the <pre>...</pre> blocks.
– Output: a dictionary

– Keys: Left-hand side nonterminals
– Values: Arrays of top-level alternatives

The phase is subject to the following requirements:

Tag elimination. The input notation interleaves tags with proper grammar structure. In or-
der to prepare for classic parsing, we need to eliminate the tags in the process of con-
structing properly typed lexemes for terminals and nonterminals.

Indentation elimination. The input notation relies on indentation to express top-level
choices and line continuation. The output format stores top-level choices in arrays, and
fuses multi-line alternatives.

Robustness. The inner structure of top-level alternatives is parsed simply as a sequence
of tokens in the interest of robustness so that recovery rules can be applied separately,
before, finally, the precise grammar structure is parsed.

17

italic fixed default
Alphanumeric N (2341) T (173) T? (194)
| M (2) T (2) M? (29)
{,},[,],(,) M (708) T (174) T? (200)
otherwise T (198) T (165) T (205)
(T — terminal, N — nonterminal, M — metasymbol)

Table 2 Decision table of the extractor’s scanner. Classes of strings are rows, scanner states are columns.

The preprocessor relies on a stateful scanner (to meet “tag elimination”) and a robust
parser (to meet “robustness”). The parser recognizes sequences of productions, each one
essentially consisting of a sequence of alternatives; it parses alternatives as sequences of
tokens terminated by CR. The scanner uses three states:

– italic upon opening <i> tag (or)
– fixed upon opening <code> tag
– default when no tag is open

That is, we treat each tag as a special token that changes the global state of the scanner,
which in turn can be observed when creating morphemes for terminals and nonterminals. We
also deal with violations of XML and HTML well-formedness in this manner. The decision
table of the scanner is presented in section 3.4 along with the number of times each decision
is taken for all JLS documents.

Most of these decisions are inevitable, even though some of them pinpoint markup er-
rors. An example of an “error-free” decision is to map an alphanumeric string in the italic
mode to a nonterminal. An example of an “error-recovering” decision is to map a non-
alphanumeric token (that does not match any metasymbol) to a terminal—even when it is
tagged with <i>...</i>. Several decisions in the “default” column involve an element of
choice (as indicated by “?”). The shown decisions give the best results, that is, they require
the least subsequent transformations of the extracted grammar. For instance, it turned out
that bars without markup were supposed to be BNF bars, but other metasymbols were better
mapped to terminals, whenever markup was missing. Also, alphanumeric strings without
markup turned out to be mostly terminals, and hence that preference was implemented as a
decision by the scanner.

Extraction phase 2—Error recovery

We face a few syntax errors with regard to the syntax of the grammar notation. We also face a
number of “obvious” semantic errors in the sense of the language generated by the grammar.
We call them obvious errors because they can be spotted by simple, generic grammar analy-
ses that involve only very little Java knowledge, if any. We have opted for an error-recovery
approach that relies on a uniform, rule-based mechanism that performs transformations on
each sequence of tokens that corresponds to an alternative. The rules are applied until they
are no longer applicable. We describe the rules informally; they are implemented in Python
by regular expression matching.

Rule 1 (Match up parentheses) When there is a group (a bar-based choice) that misses
an opening or closing parenthesis, such as in “(a|b”, then a nearby terminal ”(” or ”)”
(if available) is to be converted to the parenthesis, as in Example 3. If there is still a clos-
ing parenthesis that cannot be matched, then it is dropped, as in Example 4. We have not

18

seen the case of an opening parenthesis to remain unmatched, but the rule is implemented
symmetrically for the sake of completeness.

Example 3 A grammar production from Gosling et al (2005, §18.1): the symbols for closing
bracket and parenthesis need to be converted to metasymbols to match the opening bracket
and parenthesis:

TypeArgument:
Type
"?" [("extends" | "super" ")" "Type" "]"

Example 4 A grammar production from Gosling et al (2000, §18.1) and Gosling et al (2005,
§18.1): a non-matching square bracket has to be removed:

Expression:
Expression1 [AssignmentOperator Expression1]]

Rule 2 (Metasymbol to terminal) (a) When “|” was scanned as a BNF metasymbol, but it
is not used in the context of a group, then it is converted to a terminal, as in Example 5.

(b) When “[” and “]” occur next to each other as BNF symbols, then they are converted
to terminals, as in Example 6.

(c) When “{” and “}” occur next to each other as BNF symbols, then they are converted
to terminals. (Not encountered so far, implemented for the sake of consistency).

(d) When an alternative makes use of the metasymbols for grouping, but there is no
occurrence of the metasymbol “|”, then the parentheses are converted to terminals, as in
Example 7.

Example 5 A grammar production from Gosling et al (2000, §15.22): there is no group, so
the bar here is not a metasymbol, but a terminal:

InclusiveOrExpression:
ExclusiveOrExpression
InclusiveOrExpression | ExclusiveOrExpression

Example 6 A grammar production from Gosling et al (2000, §8.3): there is nothing to be
made optional, so the square brackets here are not metasymbols, but terminals:

VariableDeclaratorId:
Identifier
VariableDeclaratorId []

Example 7 A grammar production from Gosling et al (2000, §14.19) and Gosling et al
(2005, §18.1): there is no choice inside the group so the parentheses here are not meta-
symbols, but terminals:

CatchClause:
"catch" (FormalParameter) Block

19

Rule 3 (Compose sibling symbols) When two alphanumeric nonterminal or terminal to-
kens are next to each other where one of the symbols is of length 1, then they are composed
as one symbol, as in Example 8 and Example 9.

Example 8 Multiple terminals to compose (Gosling et al, 1996, §19.11):

<code>continu</code><i>e

Example 9 Multiple nonterminals to compose (Gosling et al, 1996, §14.9):

S<i>witchBlockStatementGroups</i>

Rule 4 (Decompose compound terminals) When a terminal consists of an alphanumeric
prefix, followed by “.”, possibly followed by a postfix, then the terminal is taken apart into
several ones, as in Example 10.

Example 10 Consider this phrase (Gosling et al, 2000, §15.9):

Primary.new Identifier (ArgumentListopt) ClassBodyopt

The decomposition results in the following:

Primary . new Identifier (ArgumentListopt) ClassBodyopt

Rule 5 (Nonterminal to terminal) Lower-case nonterminals that are not defined by the
grammar (i.e., that do not occur as a key in the dictionary produced during extraction phase
1), and are in lower case, are converted to terminals, as in Example 11.

Example 11 A grammar production from Gosling et al (2000, §14.11): default needs to
be converted to a terminal:

SwitchLabel:
case ConstantExpression :
default :

The same error is present in the later version of the specification (Gosling et al, 2005,
§14.11):

SwitchLabel:
case ConstantExpression :
case EnumConstantName :
default :

Note the changes in JLS3: a new alternative was added and the colon was correctly
marked up as a terminal symbol. However, “default” is still incorrectly marked up as a
nonterminal.

20

Rule 6 (Terminal to nonterminal) Alphanumeric terminals that start in upper case, and
are defined by the grammar (when considered as nonterminals) are converted, as in Example
12.

Example 12 A grammar production from Gosling et al (2000, §7.5):

ImportDeclaration:
SingleTypeImportDeclaration
TypeImportOnDemandDeclaration

The decisive definitions are found in Gosling et al (2000, §7.5.1, §7.5.2):

SingleTypeImportDeclaration:
"import" TypeName ";"

TypeImportOnDemandDeclaration:
"import" PackageOrTypeName "." "?" ";"

Rule 7 (Recover optionality) When a nonterminal’s name ends on “opt”, as in “fooopt”,
and the grammar defines a nonterminal “foo”, then the nonterminal “fooopt” is replaced
by [foo]. (Hence, markup for the subscript “opt” was missing.)

Example 13 Consider again the result of Example 10:

Primary . new Identifier (ArgumentListopt) ClassBodyopt

After recovery it will be parsed as:

ClassInstanceCreationExpression:
Primary "." "new" Identifier "(" ArgumentList? ")" ClassBody?

These are all the rules that have stabilized over the project’s duration. Several other
rules where investigated but eventually abandoned because the corresponding issues could
be efficiently addressed by grammar transformations. We used experimental rules to test for
the recurrence of any issue we had spotted. We quantify the use of the rules shortly.

Extraction phase 3—Removal of doubles

The JLS documents (deliberately) repeat grammar parts. Hence, we have added a trivial
extraction phase for removal of double alternatives. That is, when a given right-hand side
nonterminal is encountered several times in a source, then extraction phase 1 accumulates all
the alternatives via one entry of the dictionary, and extraction phase 3 compares alternatives
(i.e., sequences of tokens) to remove any doubles.

Example 14 Recall the following definition from Example 6 (Gosling et al, 2000, §8.3):

VariableDeclaratorId:
Identifier
VariableDeclaratorId []

The same definition appears elsewhere in the document, even though the markup is
different, but these differences were already neutralized during extraction phase 1 (Gosling
et al, 2000, §14.4):

21

Productions Nonterminals Tops Bottoms
impl1 282 135 1 7
read1 315 148 1 9
impl2 185 80 6 11
read2 346 151 1 11
impl3 245 114 2 12
read3 435 197 3 14

Table 3 Basic metrics of the JLS grammars.

VariableDeclaratorId:
Identifier
VariableDeclaratorId []

Extraction phase 3 preserves 2 alternatives out of 4. As an aside, this particular example
also required the application of Rule 2.b because [] must be converted to terminals.

Extraction phase 4—Precise parsing

Finally, the dictionary structure of extraction phase 1, after the recovery of extraction phase
2, and double removal of extraction phase 3, is trivially parsed according to the (E)BNF
for the grammar notation, as presented on Figure 5. In fact, our implementation dumps
the extracted grammar immediately in an XML-based grammar interchange format so that
generic grammar tools for comparison and transformation can take over (Lämmel and Zayt-
sev, 2009).

3.5 JLS grammar metrics

Table 3 displays simple grammar metrics for the extracted JLS grammars. A top nonterminal
is a nonterminal that is defined but never used; a bottom nonterminal is a nonterminal that is
used but never defined (Lämmel and Verhoef, 2001b; Sellink and Verhoef, 2000). Through
continued domain analysis, we have understood that the major differences between the num-
bers of productions and nonterminals for the two grammars of any given version are mainly
implied by the different grammar classes and iteration styles. The decrease of numbers for
the step from impl1 to impl2 is explainable with the fact that an LALR(1) grammar was
replaced by a new development (which does not aim at LALR(1)). Otherwise, the trend is
that the numbers of productions and nonterminals go up with the version number.

The difference in numbers of top nonterminals is a problem indicator. There should be
only one top nonterminal: the actual start symbol of the Java grammar. The difference in
numbers of bottom nonterminals could be reasonable because a bottom nonterminal may be
a lexeme class—those classes are somewhat of a grammar design issue. However, a review
of the nonterminal symbols rapidly reveals that some of them correspond to (undefined)
categories of compound syntactic structures.

22

impl1 impl2 impl3 read1 read2 read3 Total
Arbitrary lexical decisions 2 109 60 1 90 161 423
Well-formedness violations 5 0 7 4 11 4 31
Indentation violations 1 2 7 1 4 8 23
Recovery rules 3 12 18 2 59 47 141
◦Match parentheses 0 3 6 0 0 0 9
◦Metasymbol to terminal 0 1 7 0 27 7 42
◦Merge adjacent symbols 1 0 0 1 1 0 3
◦ Split compound symbol 0 1 1 0 3 8 13
◦ Nonterminal to terminal 0 7 3 0 8 11 29
◦ Terminal to nonterminal 1 0 1 1 17 13 33
◦ Recover optionality 1 0 0 0 3 8 12

Purge duplicate definitions 0 0 0 16 17 18 51
Total 11 123 92 24 181 238 669

Table 4 Irregularities resolved by grammar extraction.

3.6 JLS extractor statistics

Consider Table 4 as an attempt to measure either the effort needed to complete extraction
(manually) or the degree of inconsistency of the input format. The table summarizes the
frequencies of using recovery rules, handling “unusual” continuation lines4, and removal of
doubles. The extractor has fixed 669 problems that otherwise would have prevented straight-
forward parsing to succeed with extraction, or implied loss of information, or triggered sub-
stantial grammar transformations.

4 Grammar transformation

In this section we provide an overview of the major language-independent operators that
are needed for the transformation of concrete syntax definitions in the context of grammar
convergence, we illustrate intended and accidental differences between the JLS grammars
and their representation as operational grammar transformations, and we summarize the
application of our operator suite to the present JLS study.

4.1 Operator suite

Just as in Lämmel and Zaytsev (2009), we distinguish here among semantics-preserving,
semantics-increasing, semantics-decreasing and semantics-editing operators. The term se-
mantics refers to the language generated by the grammar—when considered as a set of
strings.

The complete grammar of our grammar transformation language is presented on Fig-
ure 7. As we see, many operators have the form of either f(n), where f is the operator
in question, and n is the nonterminal to be affected, or f(x, y), where f is the operator in
question, x is the grammar expression to be located in the input, and y is the corresponding
replacement. There are also several operators that are parametrized with a so called “marked

4 Our initial guess was that “substantially indenting” means more spaces or tabs than the previous line, but
some cases were discovered when continuation lines were not indented at all.

2326

sequence:
(transformation | atomic)!

atomic:
transformation+

transformation:
folding−unfolding−transformation
refactoring−transformation
increasing−transformation
decreasing−transformation
concrete−revising−transformation
abstract−revising−transformation
renaming−transformation
decorative−transformation
reroot::(root::nonterminal!)
dump::ε

folding−unfolding−transformation:
unfold::(nonterminal in::scope?)
fold::(nonterminal in::scope?)
inline::nonterminal
extract::(production in::scope?)
abridge::production
detour::production
unchain::production
chain::production

refactoring−transformation:
massage::(expression expression in::scope?)
distribute::scope
factor::(expression expression in::scope?)
deyaccify::nonterminal
yaccify::(production+)
eliminate::nonterminal
introduce::(production+)
import::(production+)
vertical::scope
horizontal::nonterminal
equate::(align::nonterminal with::nonterminal)
rassoc::production
lassoc::production

increasing−transformation:
addV::production
addH::marked−production
appear::marked−production
widen::(expression expression in::scope?)
upgrade::(marked−production production)
unite::(add::nonterminal to::nonterminal)

decreasing−transformation:
removeV::production
removeH::marked−production
disappear::marked−production
narrow::(expression expression in::scope?)
downgrade::(marked−production production)

concrete−revising−transformation:
abstractize::marked−production
concretize::marked−production
permute::production

abstract−revising−transformation:
define::(production+)
undefine::(nonterminal+)
redefine::(production+)
inject::marked−production
project::marked−production
replace::(expression expression in::scope?)

renaming−transformation:
renameL::(from::label to::label)
renameN::(from::nonterminal to::nonterminal)
renameS::(in::label? from::selector to::selector)
renameT::(from::terminal to::terminal)

decorative−transformation:
designate::production
unlabel::label
deanonymize::marked−production
anonymize::marked−production

marked−production:
production

scope:
label | nonterminal

Fig. 6 The grammar of the transformation language. Metasyntax nonterminals like production and expression
are deliberately omitted for clarity.

Folding, unfolding and refactoring operators preserve semantics. Many of them are im-
plemented as conditional replacements: for instance, massage has a pre-condition that the
two expressions that parametrize it are massage-equal; if they are, then the former expres-
sion is replaced with the latter; if the condition fails, the transformation chain stops with an
error reported. The massage-equality is defined by a set of algebraic laws one can see in
Appendix B.

Below we briefly explain the operators that are needed to understand the JLS case study
(see also Table 7):

– unfold replaces all occurrences of a given nonterminal by its definition, possibly limited
by scope;

– fold replaces all occurrences of a given nonterminal’s definition by the nonterminal it-
self, possibly limited by scope.

Fig. 7 The grammar of the transformation language. Metasyntax nonterminals like production and expression
are deliberately omitted for clarity.

production”—a grammar production that has parts of it specifically marked as local trans-
formation targets.

Folding, unfolding and refactoring operators preserve the string-oriented semantics.
Many of them are implemented as conditional replacements. For instance, massage has
a pre-condition that the two expressions that parametrize it are massage-equal. If the pre-
condition is satisfied, the former expression is replaced with the latter; if it fails, the trans-
formation chain stops with an error reported. The massage-equality is defined by a set of
algebraic laws listed in Appendix B for completeness’ sake.

Below we briefly explain the operators that are needed to understand the present JLS
study; see also Table 7.

– unfold replaces all occurrences of a given nonterminal by its definition, possibly limited
by scope.

– fold replaces all occurrences of a given nonterminal’s definition by the nonterminal it-
self, possibly limited by scope.

24

– inline is the same as unfold, but it also removes the nonterminal from the grammar after
unfolding (if some recursion prevents it, the operator fails).

– extract introduces a new nonterminal to the grammar and folds its definition.
– chain introduces a chain production by performing a local extract on the whole defini-

tion of a given nonterminal (i.e., it goes from a : xyz to a : b and b : xyz).
– massage allows for rewriting grammar expressions according to the algebraic laws listed

in Appendix B.
– distribute pulls the choices that occur inside a grammar expression outwards.
– factor rewrites an expression to an equivalent but differently factored one. Its common

use is to push choices deeper since an automated distribute operator is more useful in
other cases.

– deyaccify converts a recursive definition-based style of iteration to the use of the EBNF
operators “+” and “*”. The operator name is justified by de Jonge and Monajemi (2001)
and Lämmel (2001).

– yaccify is the intended inverse of deyaccify.
– eliminate removes a production from the grammar if it is not used anywhere, otherwise

fails.
– introduce adds a free nonterminal with its definition to the grammar.
– import works as multiple introduce operators for introducing possibly interconnected

productions.
– vertical converts a “horizontal” production with top-level choices (previously called

“flat” by Lämmel and Wachsmuth (2001)) to several productions.
– horizontal converts a “vertical” nonterminal definition consisting of multiple produc-

tions (previously called “non-flat” by Lämmel and Wachsmuth (2001)) to a single pro-
duction with top-level choices.

– addV adds a production to the existing nonterminal definition.
– addH replaces any expression with a choice involving that expression and something

else (i.e., it goes from a : xyz to a : x(y|b)z).
– appear injects a nillable symbol (the one that can be evaluated to ε).
– widen replaces an expression with a more general one (e.g., x+ with x?).
– upgrade replaces an expression with a nonterminal that can possibly be evaluated to it.
– unite merges the definitions and the uses of two nonterminals.
– removeV removes a production from the existing nonterminal definition such that the

nonterminal does not become undefined.
– removeH replaces any choice with a similar choice with less alternatives.
– disappear projects a nillable symbol (the one that can be evaluated to ε).
– narrow replaces an expression with a refined one.
– downgrade replaces a nonterminal with one of its definitions.
– define adds a definition to a bottom (used but undefined) nonterminal.
– undefine removes a definition of a nonterminal, forcing it to become a bottom sort.
– redefine replaces the existing definition of a nonterminal with the given one.
– inject inserts possibly non-nillable symbols to a sequence.
– project removes possibly non-nillable symbols from a sequence.
– replace replaces any subexpression with another one.
– unlabel strips a production of its label.

25

4.2 Examples of grammar transformations

The examples that illustrate the uses of the XBGF operators are presented below in the same
order they are encountered in the transformation scripts with respect to the convergence
phases that we listed and motivated in §2.4.

4.2.1 Convergence preparation

The following two examples pinpoint “grammar bugs”: incorrect syntax. In some cases,
incorrect syntax merely arises from representation anomalies of the HTML input used for
extraction—as shown below.

impl3 (Gosling et al, 2005, §18.1)

Block:
BlockStatements?

Semantics-revising transformation

replace(
BlockStatements? ,
"{" BlockStatements "}");

Corrected syntax

Block:
"{" BlockStatements "}"

The source format defines curly brackets to express iteration. However, in the example
at hand, taken from impl3, they were meant as terminal symbols, and were not recognized
due to missing markup. The incorrect list construct is replaced accordingly.

Another activity frequently undertaken during the convergence preparation phase is ini-
tial correction. Unlike correction that happens during convergence resolution phase (see
§4.2.6), it is triggered by an external bug report and not by a grammar comparator. Such
a bug report can be produced by another tool or taken from a third party. For instance, a
misnamed nonterminal is found in impl2 when examining the list of bottom nonterminals
before the later phases of convergence process start:

impl2 (Gosling et al, 2000, §18.1)

Expression3:
"(" (Expr | Type) ")" Expression3

Semantics-revising transformation

replace(
Expr,
Expression);

Corrected syntax

Expression3:
"(" (Expression | Type) ")" Expression3

26

4.2.2 Nominal matching

In impl2, the built-in variable types are defined by a nonterminal called BasicType which
contains all the alternatives. In the more readable counterpart the same nonterminal is called
PrimitiveType, and it requires several intermediate nonterminals because types are explained
in two different language document sections.

read2 (Gosling et al, 2000, §4.1, §4.2)

PrimitiveType:
NumericType
"boolean"

NumericType:
IntegralType
FloatingPointType

IntegralType:
"byte"
"short"
"int"
"long"
"char"

FloatingPointType:
"float"
"double"

impl2 (Gosling et al, 2000, §18.1)

BasicType:
"byte"
"short"
"char"
"int"
"long"
"float"
"double"
"boolean"

Semantics-preserving transformation

renameN(PrimitiveType, BasicType);
inline(IntegralType);
inline(FloatingPointType);
inline(NumericType);
distribute(BasicType);

The last distribute transformation is needed to normalize the definition of BasicType to
a top-level choice.

4.2.3 Structural matching

In read2, there are distinct alternatives for blocks vs. static blocks. In contrast, in impl2,
these forms appear in a factored manner. Hence, the factor operator is used in the following
example to factor out the shared reference to Block. Then, the massage operator changes the
style of expressing optionality of the keyword “static”.

27

read2 (Gosling et al, 2000, §8.1.5, §8.6, §8.7)

ClassBodyDeclaration:
InstanceInitializer
StaticInitializer
...

StaticInitializer:
"static" Block

InstanceInitializer:
Block

impl2 (Gosling et al, 2000, §18.1)

ClassBodyDeclaration:
"static"? Block

Semantics-preserving transformation

inline(StaticInitializer);
inline(InstanceInitializer);
factor(

(Block | ("static" Block)) ,
((ε | "static") Block));

massage(
(ε | "static") ,
"static"?);

Like the previous transformation sample, the following one is taken from a refactoring
script that aligns read2 with impl2. The JLS case involves many hundreds of such small
refactoring steps; see §4.3.

In read2, the recursion-based style of iteration is used. For instance, there is a recursively
defined nonterminal ClassBodyDeclarations for lists of ClassBodyDeclaration. In contrast,
in impl2, the list form “*” is used. Deyaccification replaces the recursive definition of Class-
BodyDeclarations by ClassBodyDeclaration+. The nonterminal ClassBodyDeclarations is
no longer needed, and hence inlined. The list of declarations was optional, and hence “+”
and “?” can be simplified to “*”.

read2 (Gosling et al, 2000, §8.1.5)

ClassBody:
"{" ClassBodyDeclarations? "}"

ClassBodyDeclarations:
ClassBodyDeclaration
ClassBodyDeclarations ClassBodyDeclaration

impl2 (Gosling et al, 2000, §18.1)

ClassBody:
"{" ClassBodyDeclaration? "}"

28

Semantics-preserving transformation

deyaccify(ClassBodyDeclarations);
inline(ClassBodyDeclarations);
massage(

ClassBodyDeclaration+? ,
ClassBodyDeclaration?);

4.2.4 Extension

The following transformation is part of a chain that captures the difference between JLS1
and JLS2. The particular widening step enables instance initializers in class bodies where
only static initializers were admitted before.

The example also demonstrates that transformation operators may carry an extra argu-
ment to describe the scope of replacement (recall Figure 7). By default, the scope is uni-
versal: all matching expressions in the input grammar would be affected. Selective scopes
are nonterminal definitions (specified by a nonterminal—as in the following example) or
productions (specified by a production label).

jls1 after many transformation steps (Gosling et al, 1996)

ClassBodyDeclaration:
"static" Block

impl2 (Gosling et al, 2000, §9.3)

ClassBodyDeclaration:
"static"? Block

Semantics-increasing transformation

widen(
"static",
"static"?,
in ClassBodyDeclaration);

The following transformation is part of a script that captures the difference between
JLS2 and JLS3, where the latter offers Annotation as the additional option.

read2 (Gosling et al, 2000, §9.3)

ConstantModifier:
"public"
"static"
"final"

read3 (Gosling et al, 2005, §9.3)

ConstantModifier:
Annotation
"public"
"static"
"final"

29

Semantics-increasing transformation

addV(
ConstantModifier:

Annotation
);

When we seek relationships between grammars of different versions, then semantics-
increasing/-decreasing transformations are clearly to be expected. As a matter of discipline,
we prefer to describe the difference by a semantic-increasing transformation to map a ver-
sion to its successor version (as opposed to the inverse direction). We speak of grammar
extension in this case.

4.2.5 Relaxation

Increase (or decrease) may also be needed when two grammars are essentially equivalent—
except that one is more permissive than the other. This actually happens in practice: a per-
missive grammar may be needed as a concession to practicality of, say, parser implementa-
tion. We also speak of grammar relaxation in this case. In the JLS case, the different pur-
poses of the grammars (to be more or less readable or implementable respectively) imply
the need for relaxation. Similar issues arise with relationships between abstract and concrete
syntaxes (Lämmel and Zaytsev, 2009; Wile, 1997).

In impl2, there is only one category of (arbitrary) modifiers. In contrast, in read2, there
are various precise categories of modifiers for classes, fields, methods, constructors, inter-
faces, constants and abstract methods. Accordingly, the impl2 grammar is more permissive
as far as modifiers are concerned. The grammar fragments in the following example are de-
liberately pretty-printed as horizontal productions for the sake of readability. In reality the
extractor produces only vertical ones as usual.

read2 (Gosling et al, 2000, §8.1.1, §8.3.1, §8.4.3, §8.8.3, §9.1.1, §9.3, §9.4)

ClassModifier:
"public" | "protected" | "private" | "abstract" | "static"

| "final" | "strictfp"
FieldModifier:

"public" | "protected" | "private" | "static" | "final" |
"transient" | "volatile"

MethodModifier:
"public" | "protected" | "private" | "abstract" | "static"

| "final" | "synchronized" | "native" | "strictfp"
ConstructorModifier:

"public" | "protected" | "private"
InterfaceModifier:

"public" | "protected" | "private" | "abstract" | "static"
| "strictfp"

ConstantModifier:
"public" | "static" | "final"

AbstractMethodModifier:
"public" | "abstract"

30

impl2 (Gosling et al, 2000, §18.1)

Modifier:
"public" | "protected" | "private" | "static" | "abstract"

| "final" | "native" | "synchronized" | "transient"
| "volatile" | "strictfp"

Semantics-increasing transformation

renameN(ClassModifier, Modifier);
unite(FieldModifier, Modifier);
unite(MethodModifier, Modifier);
unite(ConstructorModifier, Modifier);
unite(InterfaceModifier, Modifier);
unite(ConstantModifier, Modifier);
unite(AbstractMethodModifier, Modifier);

Constructor declarations are defined very differently in impl3 and read3. The following
example shows the last steps of their convergence, where ConstructorBody must be replaced
by MethodBody. However, the definition of ConstructorBody (at this stage) is equal to the
definition of Block, while MethodBody can be Block or ";". By letting the terminal ";"
appear instead of Block, we make the grammar of the language more permissive.

read3 after many transformation steps

ConstructorDeclaratorRest:
FormalParameters Throws? ConstructorBody

ConstructorBody:
"{" BlockStatements "}"

MethodBody:
Block

MethodBody:
";"

Block:
"{" BlockStatements "}"

impl3 (Gosling et al, 2005, §18.1)

ConstructorDeclaratorRest:
FormalParameters ("throws" QualifiedIdentifierList)? MethodBody

Semantics-increasing transformation

fold(Block);
upgrade(
ConstructorBody:

<MethodBody>
MethodBody:

Block
);
inline(ConstructorBody);
inline(Throws);

We suggest that a language specification should explicitly call out relaxations so that
they are not confused with overlooked inconsistencies (to be modeled as corrections) or
evolutionary differences (to be modeled as extensions).

31

4.2.6 Correction

Finally, two grammars may differ (with regard to the generated language) in a manner that
is purely accidental (read as “incorrect”). We speak of (transformations for) grammar cor-
rection in this case.

What Oracle SDN (Sun Developer Network) Bug Database reports5 as “the master bug
for errors in the Java grammar” is the fact that §18.1 of Gosling et al (2005) does not permit
the obsolescent array syntax in a method declaration of an annotation type.

Incorrect syntax in impl3

AnnotationMethodRest:
"(" ")" DefaultValue?

Semantics-increasing transformation

appear(
AnnotationMethodRest:

"(" ")" <("[" "]")?> DefaultValue?
);

Corrected syntax

AnnotationMethodRest:
"(" ")" ("[" "]")? DefaultValue?

Not all corrections may be expressed in terms of semantics-increasing/-decreasing op-
erators. If that is not possible, we have to use less disciplined operators. For example, the
production for the break statement in impl2 lacks the semicolon which is injected accord-
ingly (left unnoticed in Bosworth’s bug list, but obvious when converging with read2).

impl2 (Gosling et al, 2000, §18.1)

Statement:
"break" Identifier?

Semantics-revising transformation

inject(
Statement:

"break" Identifier? < ";" >
);

Corrected syntax

Statement:
"break" Identifier? ";"

The impl2 and impl3 grammars define the Java expression syntax by means of layers,
i.e., there are several nonterminals Expression1, Expression2, ... for the different priorities.
We are concerned with one layer here. The second rule for Expression2Rest contains an
offending occurrence of Expression3 which needs to be projected away. This issue was
revealed by comparing the impl2 and impl3 grammars with the read2 and read3 grammars
(after some prior refactoring).

5 http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6442525

http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6442525

32

Productions Nonterminals Tops Bottoms
jls1 278 132 1 7
jls2 178 75 1 7
jls3 236 109 1 7
jls12 178 75 1 7
jls123 236 109 1 7
read12 345 152 1 7
read123 438 201 1 7

Table 5 Simple metrics for the derived JLS grammars.

Incorrect expression syntax in impl2 and impl3

Expression2:
Expression3 [Expression2Rest]

Expression2Rest:
(InfixOp Expression3)?

Expression2Rest:
Expression3 "instanceof" Type

Semantics-revising transformation

project(
Expression2Rest:
< Expression3 > "instanceof" Type

);

Corrected syntax

Expression2:
Expression3 [Expression2Rest]

Expression2Rest:
(InfixOp Expression3)?

Expression2Rest:
"instanceof" Type

4.3 Postmortem of the JLS case

We recall that Table 3 lists simple metrics for the leaves of JLS’ convergence tree. The new
Table 5 shows the same data for the derived grammars. It is easily seen that top- and bottom-
nonterminals are consolidated now. In the case of the “common denominators” jls1–3, the
numbers of nonterminals and productions reflect that these grammars were derived to be
similar to impl1–3. Similar correlations hold for the “inter-version” grammars in the rest of
the table.

Table 6 measures the extraction effort and the involved grammar transformations.
Matching phases (§4.2.2 and §4.2.3) consist of semantics-preserving transformations, the
measurement for other phases is presented in the table directly. This information was ob-
tained in an automated manner but it relies on some amount of semantic annotation of the
transformations for the classifications and convergence phases.

The number of transformations directly refers to the number of applications of transfor-
mation operators. As one can infer from Table 7, 33 different operators are used in the JLS

33

jls1 jls12 jls123 jls2 jls3 read12 read123 Total
Number of lines 682 5114 2847 6774 10721 1639 3082 30859
Number of transformations 67 290 111 387 544 77 135 1611
◦ Semantics-preserving 45 231 80 275 381 31 78 1121
◦ Semantics-increasing/-decreasing 22 58 31 102 150 39 53 455
◦ Semantics-revising — 1 — 10 13 7 4 35

Convergence preparation
phase (§4.2.1) 1 — — 15 24 11 14 65
◦ Known bugs — — — 1 11 — 4 16
◦ Post-extraction — — — 7 8 7 5 27
◦ Initial correction 1 — — 7 5 4 5 22

Resolution phase 21 59 31 97 139 35 43 425
◦ Extension (§4.2.4) — 17 26 — — 31 38 112
◦ Relaxation (§4.2.5) 18 39 5 75 112 — 2 251
◦ Correction (§4.2.6) 3 3 — 22 27 4 3 62

Table 6 Transformation of the JLS grammars—effort metrics and categorization.

case; most of them were introduced in §4. About three quarters of the transformations are
semantics-preserving. The remaining quarter is mainly dedicated to semantics-increasing or
-decreasing transformations with only 2% left for semantics-revising transformations.

In Table 6, one can observe that relaxation transformations indeed occur when a more
readable and a more implementable grammar are converged. Further, one can observe that
the overall transformation effort is particularly high for jls12—which signifies the fact (al-
ready mentioned above) that impl1 and impl2 appear to be different developments. Finally,
we have made an effort to incorporate Oracle’s bug list into the picture (see “Known bugs”).
We note that some of the known bugs equally occur in both the more readable and the more
implementable grammar, in which case we cannot even discover them by grammar conver-
gence.

5 Related work

We organize the related work discussion in the following manner:

– grammar recovery (including grammar inference);
– programmable grammar transformations;
– other grammar engineering work;
– coupled transformations of grammar- or schema- or metamodel-like artifacts and

grammar- or schema- or metamodel-dependent artifacts;
– comparison (including matching) of schemas or metamodels.

5.1 Grammar recovery

The main objective of the present JLS study is to discover grammar relationships, but an
“important byproduct” of the study is a consolidated Java grammar6. Hence, this particu-
lar instance of grammar convergence (perhaps more than grammar convergence in general)
relates strongly to other efforts on grammar recovery. This topic has seen substantial inter-
est over the last decade because of the need for grammars in various software engineering
scenarios. We categorize this work in the following.

6 See also Software Language Processing Suite Grammar Zoo at http://slps.sf.net/zoo.

http://slps.sf.net/zoo

34

jls1 jls12 jls123 jls2 jls3 read12 read123 Total
◦ rename 9 4 2 9 10 — 2 36
◦ reroot 2 — — 2 2 2 1 9
◦ unfold 1 10 8 11 13 2 3 48
◦ fold 4 11 4 11 13 2 5 50
◦ inline 3 67 8 71 100 — 1 250
◦ extract — 17 5 18 30 — 5 75
◦ chain 1 — 2 — — 1 4 8
◦ massage 2 13 — 15 32 5 3 70
◦ distribute 3 4 2 3 6 — — 18
◦ factor 1 7 3 5 24 3 1 44
◦ deyaccify 2 20 — 25 33 4 3 87
◦ yaccify — — — — 1 — 1 2
◦ eliminate 1 8 1 14 22 — — 46
◦ introduce — 1 30 4 13 3 34 85
◦ import — — 2 — — — 1 3
◦ vertical 5 7 7 8 22 5 8 62
◦ horizontal 4 19 5 17 31 4 4 84
◦ add 1 14 13 7 20 28 20 103
◦ appear — 8 11 8 25 2 17 71
◦ widen 1 3 — 1 8 1 3 17
◦ upgrade — 8 — 14 20 2 2 46
◦ unite 18 2 — 18 21 5 4 68
◦ remove — 10 1 11 18 — 1 41
◦ disappear — 7 4 11 11 — — 33
◦ narrow — — 1 — 4 — — 5
◦ downgrade — 2 — 8 3 — — 13
◦ define — 6 — 4 9 1 6 26
◦ undefine — 3 — 5 3 — — 11
◦ redefine — 3 — 8 7 6 2 26
◦ inject — — — 2 4 — 1 7
◦ project — 1 — 1 2 — — 4
◦ replace 3 1 2 3 6 1 1 17
◦ unlabel — — — — — — 2 2

Table 7 XBGF operators usage for JLS convergence.

Recovery option 1: Parser-based testing and improvement cycle

A by now classical approach to grammar recovery is to start from some sort of documen-
tation that contains a raw grammar, which can be extracted, and then to improve the raw
grammar through parser-based testing until all sources of interest can be parsed (such as test
programs, or entire software projects): Sellink and Verhoef (2000); Lämmel and Verhoef
(2001a,b); de Jonge and Monajemi (2001); Alves and Visser (2009). The actual improve-
ment steps may be carried out manually (Sellink and Verhoef, 2000; de Jonge and Mona-
jemi, 2001; Alves and Visser, 2009) or by means of programmable grammar transformations
(Lämmel and Verhoef, 2001a,b), as discussed in more detail in §5.2.

The present JLS study, in particular, and the basic paradigm of grammar convergence,
in general, do not involve parser-based testing. Instead, the similarity between two or more
given grammars is used as the criterion for possibly improving correctness. Of course, it
would be a viable scenario to actually try deriving a useful parser description from the con-
verged Java grammar, and if additional problems were found, then the parser-based testing
and improvement cycle of grammar recovery may be applied.

35

Recovery option 2: Grammar recovery from ASTs

Generally, raw grammars (as discussed above) may also be extracted from compilers. This is
relatively straightforward, if the compiler uses a parser description to implement the parser.
Duffy and Malloy (2007); Kraft et al (2009) present another option, which relies on access to
the parse trees or ASTs of a compiler. A grammar can be extracted from the ASTs for given
sample programs. This approach is specifically meant to help with the recovery of language
dialects for which precise grammars are often missing. In order to derive the grammar for the
concrete syntax, one must discover the mapping between AST schema and concrete syntax.
To this end, the approach also involves some verification infrastructure. If we assume that a
baseline grammar is available (as opposed to a grammar for the specific dialect at hand), then
grammar convergence may also be useful in providing the mapping between AST schema
and concrete syntax.

Recovery option 3: Grammar inference

Different authors have approached grammar recovery for software languages through gram-
mar inference techniques: Mernik et al (2003); Črepinšek et al (2005); Dubey et al (2005);
Di Penta and Taneja (2005); Dubey et al (2006a,b); Di Penta et al (2008); Dubey et al (2008).
Inference relies on language samples, typically on both positive and negative examples. Dif-
ferent inference scenarios have been addressed. Mernik et al (2003); Črepinšek et al (2005)
infer more or less complete grammars, which is a very difficult problem. The approach ap-
plies to small languages, e.g., small domain-specific languages. Di Penta and Taneja (2005);
Di Penta et al (2008) start from a baseline grammar, and infer modifications to the grammar
so that all sources of interest can be parsed. This search-based inference approach addresses
the dialect problem in software engineering, where a grammar for the language of interest
may be available, but not for the specific dialect at hand. Both of the approaches use genetic
algorithms. Dubey et al (2005, 2006a,b, 2008) use a mix of advanced parsing and inference
techniques instead.

Just as in the case of Option 1, the approach uses parser-based testing as the correctness
criterion, whereas grammar convergence leverages the similarity between two or more given
grammars as the criterion for possibly improving correctness. It is quite conceivable and in-
teresting to combine grammar inference and grammar convergence. For instance, grammar
inference techniques could be used to inform a semi-automatic grammar transformation
approach. Also, it is interesting to understand whether transformation operators for conver-
gence can usefully represent the modifications of the inference approach of Di Penta and
Taneja (2005); Di Penta et al (2008).

Recovery option 4: Special-purpose grammars

Rather than trying to recover the (full) grammar for a given language, one may also limit
the recovery effort to specific samples, and more potently, to the specific purpose of the
grammar. For instance, when the grammar is needed for a simple fact extractor, then there
is no need to parse the full language, or to be fully aware of the dialect at hand. Moonen
(2001, 2002) suggests so-called island grammars to only define as much syntactical struc-
ture as needed for the purpose and to liberally consume all other structure essentially as a
token stream. Synytskyy et al (2003) also pursue this approach specifically in the context of
multilingual parsing. Nierstrasz et al (2007) also pursue a variant of special-purpose gram-
mars, where sample programs are essentially modeled, and a grammar is computed from the

36

samples. A disciplined and productivity-tuned, iterative approach is used to rapidly parse all
the samples of interest. The approach also produces the right metamodel (object model) to
represent parse trees tailored to the specific purpose at hand.

5.2 Programmable grammar transformations

Grammar convergence, and some forms of grammar recovery, but also some other software
engineering problems rely on grammar transformations. In fact, we would like to limit the
focus here to programmable grammar transformations. We are not interested in “hidden”
transformations as they may be performed implicitly by some software tools such as a parser
generator which removes left recursion automatically.

Cordy, Dean and collaborators have invented the notion of agile parsing (Dean et al,
2003; Cordy, 2003; Dean and Synytskyy, 2005) and the paradigm of grammar program-
ming (Dean et al, 2002) in this context. Both concepts rely on language embedding of a
grammar formalism into a programming language (TXL, in their case). Agile parsing ba-
sically suggests the customization of a baseline grammar for a specific use case (such as
components for reverse engineering or re-engineering). The simpler programmable gram-
mar transformations, which are sufficient for some scenarios, are redefine (to redefine a
nonterminal), and define with the ability to extend the previous definition.

In Dean et al (2002), a range of additional grammar programming techniques is dis-
cussed, where some of these techniques can be naturally modeled as grammar transforma-
tions (or more generally, as program transformations). These are the techniques: rule ab-
straction (so that grammar rules may be parametrized), grammar specialization (so that the
semantics of specific uses cases can be incorporated into the grammar), grammar categoriza-
tion (so that the resulting parser can effectively deal with context-free ambiguities), union
grammars (so that one can have multiple grammars in the same namespace, perhaps even
with a non-empty intersection), and markup (i.e., the use of markup syntax in combination
with regular textual syntax).

In our own work (the one reported here, as well as in Lämmel (2001); Lämmel and
Wachsmuth (2001); Lämmel (2005)), we have been interested in operator suites for (pro-
grammable) grammar transformations. The idea is basically to view the possible evolution
of a grammar (along recovery or convergence) as a disciplined editing process such that
each editing step is described in terms of an appropriate transformation operator. The use
of an operator immediately documents a certain intention, and is subject to precondition
checking—just like in other domains of program transformation. Wile (1997) has also sug-
gested a small set of operators to specifically address the problem of computing abstract
from concrete syntax.

The Amsterdam/Koblenz school of grammar transformation

To better understand the design space of programmable grammar transformations based on
operator suites, we would like to compare several efforts in which at least one of the authors
has been involved; see Table 8 for an overview. The figure summarizes known grammar
transformation operators, and compares operator suites for grammar transformations:

VSC2 (Lämmel, 2001; Lämmel and Verhoef, 2001b)
The suite used for recovery of a Cobol grammar.7

7 http://homepages.cwi.nl/˜ralf/fme01

http://homepages.cwi.nl/~ralf/fme01

37

VSC2 FST GDK GRK XBGF

add a definition for a bottom nonterminal

add a new definition

add a new definition & fold it

add a production to any nonterminal definition

add a production to the grammar

add alternatives to a choice

change the order in a sequence

do nothing

give a production a label

give a subexpression a selectable name

inject a nillable symbol

inject a terminal symbol

inject symbols to a sequence

inline a chain production

introduce a chain production

introduce a reflexive chain production

introduce several possibly interconnected definitions

merge two nonterminals

merge two nonterminals if their definitions are equal

merge two nonterminals, one of which is bottom

move a production across modules/sections

perform factoring transformation

perform folding transformation

perform massaging transformation

perform narrowing transformation (as in x? to x)

perform specialized automated factoring transformation

perform unfolding transformation

perform widening transformation (as in x+ to x*)

project a nillable symbol

project a terminal symbol

project symbols from a sequence

remove a definition of a possibly used nonterminal

remove a label from a production

remove a production from the grammar

remove a reflexive chain production

remove a selector in a subexpression

remove alternatives from a choice

remove any part of a grammar

remove unused definition

removes one production of a nonterminal (not the last one)

rename a label

rename a nonterminal

rename a nonterminal in a limited scope

rename a selector

replace a nonterminal with one of its definitions

replace a nonterminal with !

replace a terminal with another terminal

replace an expression by a nonterminal that can be evaluated to it

replace any expression with another expression

replace iteration with left-associative equivalent

replace iteration with recursion

replace iteration with right-associative equivalent

replace recursion with iteration

replace the current definition by a new one

separate one nonterminal into several (reverse of merge)

terminate transformation sequence

transpose a multi-production definition to the one with top-level choices

transpose top-level choices to multiple productions

unfold & eliminate

resolve resolve resolve define

introduce introduce introduce introduce

extract extract extract

include include include addV

add add add

addH

permute permute permute

id id

designate

deanonymize

appear

concretize

inject

unchain

chain

detour

import

unite

equate equate

unify unify unify unite*

move

preserve* factor

fold fold fold fold fold

preserve simplify preserve massage

restrict* restrict* restrict* narrow

distribute

unfold unfold unfold unfold unfold

generalise generalise generalize widen

restrict* restrict* restrict* disappear

abstractize

project

reject reject reject undefine

unlabel

sub sub

abridge

anonymize

removeH

reset reset

eliminate eliminate eliminate reject eliminate

exclude exclude exclude removeV

renameL

rename rename rename renameN

substitute substitute replace*

renameS

downgrade

delete delete replace*

renameT

upgrade

replace replace replace replace

lassoc

preserve* yaccify

rassoc

preserve* deyaccify

redefine redefine

separate seperate separate

fail fail write dump

horizontal

vertical

inline

Table 8 Systematic comparison of grammar transformation operators provided by different frameworks

38

FST (Lämmel and Wachsmuth, 2001)
A design experiment to define a comprehensive suite for SDF (Visser, 1997).8

GDK (Kort et al, 2002)
A suite that is part of a grammar-deployment infrastructure.9

GRK (Lämmel, 2005)
A suite that is part of an effort to reproduce our Cobol recovery case.10

XBGF
The suite of the present paper; see §4.1.11

A starred name in the figure (as in “restrict*”) means that the given operator covers the
function at hand, but it is more general.

XBGF, the transformation language of the present paper, provides clearly the most
comprehensive suite. There are a few empty cells in the XBGF column. Reasons for non-
inclusion differ; either the operator is considered too low-level for the XBGF surface syntax
(e.g., substitute, reset), or it is too low-level in the sense that all major application sce-
narios are covered by more specialized operators (e.g., add, sub), or it is not currently
implementable (e.g., move—modules are not fully supported in our infrastructure), or it
was simply not needed and perhaps debated so far (e.g., delete, id, separate, also known as
FST’s seperate; see the table for the typo).

There is generally a tension between the number of transformation operators vs. the
achievable precision of a transformational program in terms of expressing intentions, and
thereby enabling extra sanity checks by the transformation engine. Consider, for example,
the line “add a production to the grammar”. This low-level idiom may be used to include
another production into an existing definition, or to add one or more productions in an effort
to resolve a missing definition, or to introduce a definition for a so-far fresh nonterminal. In
GRK, all these idioms are modeled by add, and hence no intentions are documented, and no
extra checks can be performed automatically. In the case of XBGF, we have indeed tried to
separate idioms aggressively. This approach also helps us with predicting the formal proper-
ties of each application of transformation operators (i.e., semantics-preserving, -increasing,
-decreasing, -revising), and chains thereof.

5.3 Grammar engineering

Let us also discuss some additional related work on grammar engineering (Klint et al, 2005)
in a broader sense. We begin with metrics which are used by various recovery approaches
and other work on grammar engineering. We want to highlight Alves and Visser (2009);
Malloy et al (2002); Duffy and Malloy (2007); Julien et al (2009); Kraft et al (2009). Our
work leverages simple grammar metrics (numbers of bottom and top nonterminals) and
grammar-comparison metrics (numbers of nominal and structural differences) for providing
guidance in a grammar convergence context.

An interesting blend of recovery and convergence (or consistency checking) is described
in (Bouwers et al, 2008) where precedence rules are recovered from multiple grammars
and checked for consistency. At this point, grammar convergence (in our sense) does not
cover such sophisticated convergence issues. In fact, our approach is, as yet, oblivious to

8 http://www.cs.vu.nl/grammarware/fst
9 http://gdk.sf.net

10 http://slps.sf.net/grk
11 http://slps.sf.net/xbgf

http://www.cs.vu.nl/grammarware/fst
http://gdk.sf.net
http://slps.sf.net/grk
http://slps.sf.net/xbgf

39

technology-specific representations of priority rules (as used in, say YACC or SDF). We
could potentially detect priority layers in plain grammars, though.

An alternative to grammar recovery is the use of a flexible parsing scheme based on
advanced error handling (Barnard, 1981; Barnard and Holt, 1982; Klusener and Lämmel,
2003), subject to a baseline grammar. Because of flexible parsing, the grammar could also
be used to parse a dialect; no precise grammar is needed. Also, code with syntax errors can
be handled, which is important in some application areas such as reverse or re-engineering
of legacy code.

There are approaches to connect the technical spaces of grammarware and modelware
in a manner that can be viewed as a form of grammar convergence. That is, the parser may
be obtained from the (meta)model based on appropriate metadata and mapping rules, using
a generative approach (Jouault et al, 2006; Nierstrasz et al, 2007). We also use the term
model-driven parser development for these approaches. The point of grammar convergence
is that it provides a very flexible means to represent relationships between grammar-like ar-
tifacts from different technical spaces—without enforcing a particular scheme of designing
grammar-based artifacts or mappings.

5.4 Schema/metamodel comparison

Grammar comparison, as it is part of grammar convergence, can be loosely compared with
schema matching in ER/relational modeling (Do and Rahm, 2007; Rahm and Bernstein,
2001) as well as model and metamodel matching or comparison in model-driven engineer-
ing (Falleri et al, 2008; Wenzel and Kelter, 2008; Xing and Stroulia, 2006) (specifically in
the context of model/metamodel evolution). However, our current approach to comparison
(as of §2.1) is relatively trivial, and does not make any contribution to this subject, not even
remotely. A simple comparison approach was sufficient so far for two reasons. First, the
metamodel of grammars is relatively simple. Second, we only require to determine nom-
inal differences (subject to the comparison of defined nonterminal names) and structural
differences (subject to matching alternatives). We will need a more advanced comparison
machinery once we aim at the partial inference of grammar transformations. In this case,
grammar convergence should benefit from previous work on schema matching and meta-
model comparison.

5.5 Coupled transformations

Grammar convergence relates to mappings in data processing (Thomas, 2003; Lämmel and
Meijer, 2006), specifically to the underlying theory of data refinement, and applications
thereof (Hoare, 1972; Morgan, 1990; Alves et al, 2005; Oliveira, 2008; Cunha et al, 2008).
In data refinement, one also considers certain well-defined operators for transforming data
models. These operators must be defined immediately in a way that they can be also inter-
preted as mappings at the data level so that instance data can be converted back and forth
between the data models that are related by the transformation.

Inspired by data refinement, all semantics-preserving and -decreasing operators for
grammar transformation can also be interpreted at the AST level, and we experiment with
such an interpretation, which opens up new applications for grammar convergence. For in-
stance, one could replace the parser of a given program with another parser, even when their

40

AST types are different. That is, the convergence transformations would be executed at the
AST-level as a conversion.

Data refinement is actually a specific and highly disciplined instance of so-called cou-
pled transformations, which are characterized to involve multiple kinds of software artifacts
(such as types vs. instance data vs. programs over those types) that depend on each other in
the sense that the transformation of one entity (of one kind) necessitates a transformation
of another entity (of another kind, potentially) (Lämmel, 2004). For instance, Hainaut et al
(1994); Lämmel and Lohmann (2001); Wachsmuth (2007); Vermolen and Visser (2008);
Cicchetti et al (2008); Berdaguer et al (2007) are concerned with coupling for data mod-
els or metamodels vs. instance data or models; Cleve and Hainaut (2006) are concerned
with coupling for data models and programs over these data models. Again, we suggest that
grammar convergence should be generalized to cover coupled transformations. As a result,
the convergence method will find new application areas.

6 Concluding remarks

We have provided the first published record of recovering and representing the relationships
between given grammars of industrial size that serve different audiences (language users and
implementers) and that capture different versions of the language. Our results indicate that
consistency among the different grammars and versions—even for a language as complex
as Java—is achievable.

The recovery and representation of grammar relationships is based on a systematic and
mechanized process that leverages a priori known grammar bugs, grammar metrics (e.g., for
problem indication), grammar comparison for nominal and structural differences, and most
notably, grammar transformations. We carefully distinguish transformations for grammar
refactoring, extension, correction and relaxation.

While the JLS situation required the recovery of grammar relationships, the ultimate best
practice for grammar convergence should require continuous maintenance of relationships.
That is, the relationships should be continuously checked and updated whenever necessary
along dependent or independent evolution of the involved artifacts.

The approach, as it stands, faces a productivity problem. The transformation part of
grammar convergence requires substantial effort by the grammar engineer to actually map
any given grammar difference into a (short) sequence of applications of operators for gram-
mar transformation. For instance, the JLS transformations required several weeks of just
coding and debugging work. Such costs may be prohibitive for widespread adoption of
grammar convergence.

Notable productivity gains can be expected from advanced tool support. We currently
rely on basic batch execution of the transformations. Instead, the transformations could be
done interactively and incrementally with good integration for grammar comparison, trans-
formation and error diagnosis. Other productivity gains are known to be achievable by means
of normalization schemes (e.g., de-/yaccification in de Jonge and Monajemi (2001); Lämmel
(2001)).

However, ultimately, we need to provide inference of relationships (in fact, transforma-
tions). Such inference is a challenging problem because the convergence process involves
elements of choice that we need to better understand before we can promise reasonable re-
sults. For instance, when two syntactic categories are equivalent under fold/unfold modula-
tions, then the grammar engineer is likely to favor one of the two forms—this calls for either

41

an interactive approach or appropriate notions of normal forms or rule-based normalization
(i.e., heuristics).

Perhaps the most exciting remaining problem is to provide a proper formal argument
for the “minimality” of the non-semantics-preserving transformations that are involved in a
convergence. Currently, we use the pragmatic approach to first align nonterminals, then to
align alternatives (by structure) as much as possible, and finally to break out of refactoring
and allow ourselves presumably local non-semantics-preserving transformations. However,
there is no formal guarantee currently for not facing a false positive (“a presumed language
difference that is none”). That is, one may accidentally engage in semantics-revising trans-
formations even though the relevant syntactic categories are equivalent, but nonterminal
symbols or alternatives are confused by the grammar engineer. Formally, the desired notion
of minimality is limited by the undecidability of grammar equivalence, but we are confident
that a practical strategy can be devised based on appropriate static analyses of the transfor-
mations and the involved grammars.

Finally, a more strategic goal shall be to reconnect to standardization bodies, and to ex-
amine potential for industrial deployment of the method of grammar convergence. An early
attempt, preceding the development of grammar convergence, is documented in Klusener
and Zaytsev (2005). The challenge is here to understand what sort of tools and refined meth-
ods would be acceptable for those users in practice. This is an entirely non-trivial problem,
but its solution is critical to the value proposition of grammar convergence. Oracle, ISO, and
other stakeholders will not adopt grammar convergence tools and methodology, unless they
can measure the added value in terms of productivity and correctness, and they do not need
to engage with uncomfortable dependencies on tool providers. For instance, they may not
like to completely overhaul their current methodology; they will not use an experimental,
academic, open-source project; neither will they invest into major development of grammar-
convergence tools; nor will they hire a designated computer scientist with a PhD on grammar
engineering.

Acknowledgements The first author is grateful for opportunities to present and discuss some of this work
on several occasions: University of Waterloo, IEEE Kitchener-Waterloo, August 6, 2008; Dagstuhl Seminar
08331, “Perspectives Workshop: Model Engineering of Complex Systems (MECS)”, August 12, 2008; École
des Mines de Nantes, November 7, 2009; METRIK Workshop, in Berlin, November 21, 2008; the BENEVOL
Workshop (invited talk), Eindhoven, December 12, 2008; BX-Grace Meeting near Tokyo, December 15,
2008; DAIMI, University of Aarhus; February 24.

References

Alves TL, Visser J (2009) A Case Study in Grammar Engineering. In: Software Language
Engineering, First International Conference, SLE 2008, Toulouse, France, September 29-
30, 2008. Revised Selected Papers, Springer, LNCS, vol 5452, pp 285–304

Alves TL, Silva PF, Visser J, Oliveira JN (2005) Strategic Term Rewriting and Its Appli-
cation to a VDMSL to SQL Conversion. In: FM 2005: Formal Methods, International
Symposium of Formal Methods Europe, Newcastle, UK, July 18-22, 2005, Proceedings,
Springer, LNCS, vol 3582, pp 399–414

Barnard D (1981) Syntax Error Handling Techniques. Tech. Rep. Technical Report 81-125,
Queen’s University, Department of Computing and Information Science, 23 pages

Barnard D, Holt R (1982) Hierarchic Syntax Error Repair for LR Grammars. International
Journal of Computer and Information Sciences 11(4):231–258

42

Berdaguer P, Cunha A, Pacheco H, Visser J (2007) Coupled Schema Transformation and
Data Conversion for XML and SQL. In: Practical Aspects of Declarative Languages,
9th International Symposium, PADL 2007, Nice, France, January 14-15, 2007, Springer,
LNCS, vol 4354, pp 290–304

Bouwers E, Bravenboer M, Visser E (2008) Grammar Engineering Support for Precedence
Rule Recovery and Compatibility Checking. ENTCS 203(2):85–101

Cicchetti A, Ruscio DD, Eramo R, Pierantonio A (2008) Automating Co-evolution in
Model-Driven Engineering. In: 12th International IEEE Enterprise Distributed Object
Computing Conference, ECOC 2008, IEEE Computer Society, pp 222–231

Cleve A, Hainaut JL (2006) Co-transformations in Database Applications Evolution. In:
Generative and Transformational Techniques in Software Engineering, International Sum-
mer School, GTTSE 2005, Braga, Portugal, July 4-8, 2005. Revised Papers, Springer,
LNCS, vol 4143, pp 409–421

Cordy JR (2003) Generalized Selective XML Markup of Source Code Using Agile Parsing.
In: Proceedings of the 11th IEEE International Workshop on Program Comprehension
(IWPC), Portland, Oregon, pp 144–153

Cunha J, Saraiva J, Visser J (2008) From Spreadsheets to Relational Databases and Back.
In: PEPM ’09: Proceedings of the 2009 ACM SIGPLAN workshop on Partial evaluation
and program manipulation, ACM, New York, NY, USA, pp 179–188

Dean T, Synytskyy M (2005) Agile Parsing Techniques for Web Applications. In: Proceed-
ings of the International Summer School on Generative and Transformational Techniques
in Software Engineering, Part II, Technology Presentations, Braga, Portugal, pp 29–38

Dean T, Cordy J, Malton A, Schneider K (2002) Grammar Programming in TXL. In: Pro-
ceedings, Source Code Analysis and Manipulation (SCAM’02), IEEE

Dean T, Cordy J, Malton A, Schneider K (2003) Agile Parsing in TXL. Journal of Auto-
mated Software Engineering 10(4):311–336

Di Penta M, Taneja K (2005) Towards the Automatic Evolution of Reengineering Tools. In:
Proceedings of the 9th European Conference on Software Maintenance and Reengineer-
ing (CSMR ’05), IEEE, pp 241–244

Di Penta M, Lombardi P, Taneja K, Troiano L (2008) Search-based Inference of Dialect
Grammars. Soft Computing — A Fusion of Foundations, Methodologies and Applications
12(1):51–66

Do HH, Rahm E (2007) Matching Large Schemas: Approaches and Evaluation. Information
Systems 32(6):857–885

Dubey A, Aggarwal SK, Jalote P (2005) A Technique for Extracting Keyword Based Rules
from a Set of Programs. In: 9th European Conference on Software Maintenance and
Reengineering (CSMR 2005), Proceedings, IEEE, pp 217–225

Dubey A, Jalote P, Aggarwal SK (2006a) A Deterministic Technique for Extracting Key-
word Based Grammar Rules from Programs. In: SAC ’06: Proceedings of the 2006 ACM
symposium on Applied computing, ACM, pp 1631–1632, DOI http://doi.acm.org/10.
1145/1141277.1141659

Dubey A, Jalote P, Aggarwal SK (2006b) Inferring Grammar Rules of Programming Lan-
guage Dialects. In: Grammatical Inference: Algorithms and Applications, 8th Interna-
tional Colloquium, ICGI 2006, Tokyo, Japan, September 20-22, 2006, Proceedings,
Springer, Lecture Notes in Computer Science, vol 4201, pp 201–213

Dubey A, Jalote P, Aggarwal SK (2008) Learning Context-Free Grammar Rules from a Set
of Program. IET Software 2(3):223–240

Duffy EB, Malloy BA (2007) An Automated Approach to Grammar Recovery for a Dialect
of the C++ Language. In: Proceedings, 14th Working Conference on Reverse Engineering

43

(WCRE 2007), IEEE, pp 11–20
Falleri JR, Huchard M, Lafourcade M, Nebut C (2008) Metamodel Matching for Automatic

Model Transformation Generation. In: Proceedings of Model Driven Engineering Lan-
guages and Systems (MoDELS 2008), Springer, LNCS, vol 5301, pp 326–340

Gosling J, Joy B, Steele GL (1996) The Java Language Specification. Addison-Wesley,
available at java.sun.com/docs/books/jls

Gosling J, Joy B, Steele GL, Bracha G (2000) The Java Language Specification, 2nd edn.
Addison-Wesley, available at java.sun.com/docs/books/jls

Gosling J, Joy B, Steele GL, Bracha G (2005) The Java Language Specification, 3rd edn.
Addison-Wesley, available at java.sun.com/docs/books/jls

Hainaut JL, Tonneau C, Joris M, Chandelon M (1994) Schema Transformation Techniques
for Database Reverse Engineering. In: Entity-Relationship Approach - ER’93, 12th Inter-
national Conference on the Entity-Relationship Approach, Arlington, Texas, USA, De-
cember 15-17, 1993, Proceedings, Springer, LNCS, vol 823, pp 364–375

Hoare CAR (1972) Proof of Correctness of Data Representations. Acta Informatica
1(4):271–281

de Jonge M, Monajemi R (2001) Cost-Effective Maintenance Tools for Proprietary Lan-
guages. In: Proceedings, International Conference on Software Maintenance (ICSM’01),
IEEE, pp 240–249

Jouault F, Bézivin J, Kurtev I (2006) TCS:: a DSL for the Specification of Textual Con-
crete Syntaxes in Model Engineering. In: GPCE ’06: Proceedings of the 5th International
Conference on Generative Programming and Component Engineering, ACM, pp 249–254

Julien C, Črepinšek M, Forax R, Kosar T, Mernik M, Roussel G (2009) On Defining Quality
Based Grammar Metrics. In: Proceedings of the International Multiconference on Com-
puter Science and Information Technology, IMCSIT 2009, pp 651–658

Klint P, Lämmel R, Verhoef C (2005) Toward an Engineering Discipline for Grammarware.
ACM Transactions on Software Engineering Methodology (TOSEM) 14(3):331–380

Klusener A, Lämmel R (2003) Deriving Tolerant Grammars from a Base-line Grammar. In:
Proceedings, International Conference on Software Maintenance (ICSM’03), IEEE, pp
179–189

Klusener S, Zaytsev V (2005) ISO/IEC JTC1/SC22 Document N3977—Language
Standardization Needs Grammarware. Available at http://www.open-std.org/
jtc1/sc22/open/n3977.pdf

Kort J, Lämmel R, Verhoef C (2002) The Grammar Deployment Kit. In: Proceedings,
Language Descriptions, Tools, and Applications (LDTA’02), Elsevier Science, ENTCS,
vol 65, 7 pages

Kraft NA, Duffy EB, Malloy BA (2009) Grammar Recovery from Parse Trees and Metrics-
Guided Grammar Refactoring. IEEE Trans Software Eng 35(6):780–794

Lämmel R (2001) Grammar Adaptation. In: Proceedings, Formal Methods Europe (FME)
2001, Springer, LNCS, vol 2021, pp 550–570

Lämmel R (2004) Coupled Software Transformations (Extended Abstract). In: First Inter-
national Workshop on Software Evolution Transformations

Lämmel R (2005) The Amsterdam Toolkit for Language Archaeology. In: Post-proceedings
of the 2nd International Workshop on Meta-Models, Schemas and Grammars for Reverse
Engineering (ATEM 2004), Elsevier Science, ENTCS

Lämmel R, Lohmann W (2001) Format Evolution. In: Kouloumdjian J, Mayr H, Erkol-
lar A (eds) Proceedings, Re-Technologies for Information Systems (RETIS’01), OCG,
books@ocg.at, vol 155, pp 113–134

java.sun.com/docs/books/jls
java.sun.com/docs/books/jls
java.sun.com/docs/books/jls
http://www.open-std.org/jtc1/sc22/open/n3977.pdf
http://www.open-std.org/jtc1/sc22/open/n3977.pdf

44

Lämmel R, Meijer E (2006) Mappings Make Data Processing Go ’round. In: Lämmel R,
Saraiva J, Visser J (eds) Generative and Transformational Techniques in Software En-
gineering, International Summer School, GTTSE 2005, Braga, Portugal, July 4-8, 2005.
Revised Papers, Springer, LNCS, vol 4143, pp 169–218

Lämmel R, Verhoef C (2001a) Cracking the 500-Language Problem. IEEE Software pp
78–88

Lämmel R, Verhoef C (2001b) Semi-automatic Grammar Recovery. Software—Practice &
Experience 31(15):1395–1438

Lämmel R, Wachsmuth G (2001) Transformation of SDF Syntax Definitions in the
ASF+SDF Meta-Environment. In: Proceedings, Language Descriptions, Tools and Ap-
plications (LDTA’01), Elsevier Science, ENTCS, vol 44

Lämmel R, Zaytsev V (2009) An Introduction to Grammar Convergence. In: Integrated
Formal Methods, 7th International Conference, IFM 2009, Proceedings, Springer, LNCS,
vol 5423, pp 246–260

Malloy B, Power J, Waldron J (2002) Applying Software Engineering Techniques to Parser
Design: the Development of a C# Parser. In: Proceedings, Conference of the South
African Institute of Computer Scientists and Information Technologists, pp 75–82, in co-
operation with ACM Press

Mernik M, Gerlic G, Zumer V, Bryant BR (2003) Can a Parser be Generated from Ex-
amples? In: Proceedings of the 2003 ACM Symposium on Applied Computing (SAC),
March 9-12, 2003, Melbourne, FL, USA, ACM, pp 1063–1067

Moonen L (2001) Generating Robust Parsers Using Island Grammars. In: Proceedings,
Working Conference on Reverse Engineering (WCRE’01), IEEE, pp 13–22

Moonen L (2002) Lightweight Impact Analysis Using Island Grammars. In: Proceedings,
International Workshop on Program Comprehension (IWPC’02), IEEE

Morgan C (1990) Programming from Specifications. Prentice Hall International
Nierstrasz O, Kobel M, Girba T, Lanza M, Bunke H (2007) Example-Driven Reconstruction

of Software Models. In: CSMR ’07: Proceedings of the 11th European Conference on
Software Maintenance and Reengineering, IEEE, pp 275–286

Oliveira J (2008) Transforming Data By Calculation. In: Generative and Transformational
Techniques in Software Engineering II, International Summer School, GTTSE 2007,
Braga, Portugal, July 2007, Revised Papers, Springer, LNCS, vol 5235, pp 134–195

Rahm E, Bernstein PA (2001) A Survey of Approaches to Automatic Schema Matching.
VLDB Journal 10(4):334–350

Sellink M, Verhoef C (2000) Development, Assessment, and Reengineering of Language
Descriptions. In: Proceedings, Conference on Software Maintenance and Reengineering
(CSMR’00), IEEE, pp 151–160

Synytskyy N, Cordy J, Dean T (2003) Robust Multilingual Parsing using Island Gram-
mars. In: Proceedings CASCON’03, 13th IBM Centres for Advanced Studies Conference,
Toronto, pp 149–161

Thomas DA (2003) The Impedance Imperative — Tuples + Objects + Infosets = Too Much
Stuff! Journal of Object Technology 2(5):7–12

Črepinšek M, Mernik M, Javed F, Bryant BR, Sprague A (2005) Extracting Grammar from
Programs: Evolutionary Approach. SIGPLAN Notices 40(4):39–46

Vermolen S, Visser E (2008) Heterogeneous Coupled Evolution of Software Languages. In:
Model Driven Engineering Languages and Systems, 11th International Conference, MoD-
ELS 2008, Toulouse, France, September 28 - October 3, 2008. Proceedings, Springer,
LNCS, vol 5301, pp 630–644

45

Visser E (1997) Syntax Definition for Language Prototyping. PhD thesis, University of Am-
sterdam

Wachsmuth G (2007) Metamodel Adaptation and Model Co-adaptation. In: Ernst E (ed)
ECOOP’07, Springer, LNCS, vol 4609, pp 600–624

Wenzel S, Kelter U (2008) Analyzing Model Evolution. In: ICSE ’08: Proceedings of the
30th international conference on Software engineering, ACM, pp 831–834

Wile D (1997) Abstract Syntax From Concrete Syntax. In: Proceedings, International Con-
ference on Software Engineering (ICSE’97), ACM Press, pp 472–480

Xing Z, Stroulia E (2006) Refactoring Detection based on UMLDiff Change-Facts Queries.
In: WCRE ’06: Proceedings of the 13th Working Conference on Reverse Engineering,
IEEE, pp 263–274

46

A Grammar normalization

If (x, y) represents sequential composition of symbols x and y, and (x; y) represents a choice with x and y
as alternatives, then the following formulæ are used for normalizing grammars within our framework:

(,)⇒ ε (;)⇒ fail

(. . . , (x, . . . , z), . . .)⇒ (. . . , x, . . . , z, . . .) (x,)⇒ x

(. . . , x, ε, z, . . .)⇒ (. . . , x, z, . . .) (x;)⇒ x

(. . . ; (x; . . . ; z); . . .)⇒ (. . . ;x; . . . ; z; . . .) ε+ ⇒ ε

(. . . ;x; fail; z; . . .)⇒ (. . . ;x; z; . . .) ε? ⇒ ε

(. . . ;x; . . . ;x; z; . . .)⇒ (. . . ;x; . . . ; z; . . .) ε?⇒ ε

B Massage-equality

The massage-equality relation is defined by these algebraic laws:

x? = (x; ε) (x?)? = x? (x, x?) = x+

x? = (x?; ε) (x?)+ = x? (x?, x) = x+

x? = (x+; ε) (x?)? = x? (x?, x?) = x?

x? = (x?; ε) (x+)? = x? (x?, x?) = x?

x? = (x?;x) (x+)+ = x+ (x+, x?) = x+

x+ = (x+;x) (x+)? = x? (x?, x+) = x+

x? = (x?;x) (x?)? = x? (x+, x?) = x+

x? = (x?;x+) (x?)+ = x? (x?, x+) = x+

x? = (x?;x?) (x?)? = x? (x?, x?) = x?

x? = (x+;x?)

x = (s1 :: x; s2 :: x)

The infix operator “::” in the last formula denotes selectors (named addressable subexpressions). They
are needed because a choice between two unnamed x will always be normalized as x, as explained in Ap-
pendix A.

	1 Introduction
	2 Grammar convergence
	3 Grammar extraction
	4 Grammar transformation
	5 Related work
	6 Concluding remarks
	A Grammar normalization
	B Massage-equality

