
Software Quality Journal manuscript No.
(will be inserted by the editor)

Quality-aware analysis in product line engineering with the
orthogonal variability model

Fabricia Roos-Frantz · David Benavides · Antonio
Ruiz-Cort és · Andr é Heuer · Kim Lauenroth

the date of receipt and acceptance should be inserted later

Abstract Software product line engineering (SPLE) is about producing a set of similar
products in a certain domain. A variability model documentsthe variability amongst prod-
ucts in a product line. The specification of variability can be extended with quality informa-
tion, such as measurable quality attributes (e.g., CPU and memory consumption) and con-
straints on these attributes (e.g., memory consumption should be in a range of values). How-
ever, the wrong use of constraints may cause anomalies in thespecification which must be
detected (e.g., the model could represent no products). Furthermore, based on such quality
information it is possible to carry out quality-aware analyses, i.e., the product line engineer
may want to verify whether it is possible to build a product that satisfies a desired quality.
The challenge for quality-aware specification and analysisis three-fold. First, there should
be a way to specify quality information in variability models. Second, it should be possi-
ble to detect anomalies in the variability specification associated with quality information.
Third, there should be mechanisms to verify the variabilitymodel to extract useful informa-
tion, such as the possibility to build a product that fulfils certain quality conditions (e.g., is
there any product that requires less than 512MB of memory?).In this article, we present an
approach for quality-aware analysis in software product lines using the orthogonal variabil-
ity model (OVM) to represent variability. We propose to map variability represented in the
OVM associated with quality information to a constraint satisfaction problem and to use an
off-the-shelf constraint programming solver to automatically perform the verification task.
To illustrate our approach, we use a product line in the automotive domain which is an ex-
ample that was created in a national project by a leading car company. We have developed
a prototype tool named FaMa-OVM, which works as a proof of concepts. We were able to
identify void models, dead and false optional elements, andcheck whether the product line
example satisfies quality conditions.

Fabricia Roos-Frantz· David Benavides· Antonio Ruiz-Cort́es
Dept. Computer Languages and Systems, University of Seville,
Avda. Reina Mercedes s/n, 41012, Seville, Spain
E-mail:{fabriciaroos, benavides, aruiz}@us.es

André Heuer· Kim Lauenroth
Paluno - The Ruhr Institute for Software Technology, University of Duisburg-Essen,
Gerlingstr. 16, 45127 Essen, Germany
E-mail:{andre.heuer, kim.lauenroth}@paluno.uni-due.de

Fabricia
Caixa de texto
Published at Software Quality Journal
Volume 20, Issue 3-4, September 2012, pp 519-565.

The final publication is available at:
http://dx.doi.org/10.1007/s11219-011-9156-5

2

Keywords Quality modelling·Software product lines·Quality-aware analysis·Automated
analysis· Orthogonal variability model

1 Introduction

Software product line engineering (SPLE) is a paradigm for producing a family of products
that share more commonalities than variabilities. This paradigm usually consists of two de-
velopment processes, namely:domain engineeringandapplication engineering(Pohl et al,
2005). In domain engineering, the common software artefacts are designed and developed
for reuse. In application engineering, the specific products are derived by reusing a set of
the aforementioned domain artefacts.

Variability models are central artefacts in all activitiesof the SPLE. A variability model
documents the variability amongst products in the product line, i.e., rules that constrain the
possible configurations of artefacts in a product (Chen et al, 2009; Sinnema and Deelstra,
2007; Kang et al, 1990). The configuration of an individual product is done by selecting
options in the variability model. Over the past years, several variability modelling techniques
have been developed in order to document and manage variability, such as feature modelling,
decision modelling and orthogonal variability modelling (Sinnema and Deelstra, 2007; Chen
et al, 2009). Theanalysis of variability modelsdeals with the computer-aided extraction of
valuable information from variability models (Benavides et al, 2010).

The specification of variability can be extended with measurable quality attributes (e.g.,
CPU and memory consumption) and constraints on these attributes, in order to express qual-
ity information about different products (Benavides et al,2010). For example, in cases where
there are limitations of resources such as memory capacity and CPU time, the derivation of
products that does not satisfy those conditions must be avoided. When quality informa-
tion is added to a variability model aquality-aware analysiscan be performed. In SPLE,
quality-aware analysis is an essential activity to guarantee that the derived software prod-
ucts reach the desired quality. In SPLE, early quality analysis is particularly important, since
any anomaly should be identified before the derivation of specific products. The wrong use
of constraints may cause anomalies in the specification, leading to contradictory or to mis-
leading information about the scope of the product line. Such anomalies should be detected
and avoided to assure that desired products can be configured. If any anomaly is not detected
early, all products that were developed based on the anomalous domain artefacts have to be
corrected. This can lead to high cost and effort (Pohl et al, 2005).

Currently, there are some approaches that extend feature models with quantitative at-
tributes and constraints (Benavides et al, 2005, 2010). However, quality information associ-
ated with the orthogonal variability model (OVM) (Pohl et al, 2005; Metzger et al, 2007) has
not been explored in the literature before. The challenge ofquality-aware analysis in SPLE
using OVM is three-fold. First, a way of expressing quality information has to be provided.
Second, possible anomalies in the model should be detected.Third, the variability model
should be verified to extract useful information, such as, the possibility to build a product
that fulfils certain quality conditions (e.g., is there any product that requires less than 512MB
of memory?).

Our main contributions are as follows:

1. To address the first challenge, we present a way to relate the OVM and quality infor-
mation, which we refer to as OVM+ϕ. In our approach, quality information consists
of quality attributes and constraints on these attributes.Therefore, the approach allows

3

P1

P2

P3

P4

P5

P7
P10

P9

P8

P6

P11

P12

P13

P16

P14

P15

P17

Subset satisfying

quality conditions

Subset satisfying

OVM+φ
Product

OVM Quality information

+

Quality-aware

analysis

OVM+φ

quality conditions

Fig. 1 The approach

modelers to specify levels of quantitative quality attributes for products in SPLE with
OVM. These quality attributes are related to the elements that represent variability in
the OVM.

2. To address the second challenge, we provide an automated way to detect anomalies in
OVM+ϕ, which is made up of the relationship between OVM and qualityinformation.
We support three kinds of anomalies: void model, dead elements, and false optionals.
To automate anomaly detection, we present a mapping from OVM+ϕ to a constraint
satisfaction problem. Then, we use an off-the-shelf constraint solver to implement the
detection.

3. To address the third challenge, we provide an automated way to carry out analysis oper-
ations on SPLE using OVM. We provide analysis operations that can be used to verify
quality conditions, ask for an optimal product or the most representative one. A quality
condition is any constraint that restricts the value of quality attributes.

4. We have developed a prototype tool named FaMa-OVM, which works as a proof of
concepts of our approach. The approach was able to identifyvoid models, as well asdead
and false optionalelements for our product line example, which is a non-trivial example.
It was also possible to identify whether this product line satisfies quality conditions.
Furthermore, we discuss the limitations of our approach.

In this article, we motivate the quality-aware analysis of software product lines by using
an example of a Radio Frequency Warner (RFW) product line in the automotive domain.
This example was created in a national project by a leading car company. In the example,
we use the OVM for variability modelling.

In Figure 1, we show an overview of our approach. An OVM represents a set of possible
products. When an OVM is associated with quality information (i.e., quality attributes and
constraint on these attributes) which we refer to as OVM+ϕ, the set of products can be

4

reduced since not all of them satisfy the required quality1. Based on this new set of products
which takes quality information into account, the engineers of the product line can carry
out quality-aware analysis. On the one hand, the OVM+ϕ specification can be analysed
in order to verify possible anomalies. On the other hand, engineers can execute analysis
operations to analyse OVM+ϕ. These operations can use as input a quality condition defined
by the engineers, i.e., restrictions on the set of products of OVM+ϕ. These quality conditions
restrict the set of products even more.

The remainder of this article is organized as follows: Section 2 gives an overview of vari-
ability modelling techniques, particularly feature models and OVM. Section 3 presents our
RFW motivating example. Section 4 discusses how we specify quality information in SPLE
using OVM. Section 5 introduces analysis operations that can be performed on OVM+ϕ,
describes the process we use for the automated analysis of OVM+ϕ, and reports on the map-
pings from the OVM+ϕ to a constraint satisfaction problem. Section 6 defines and discusses
analysis that extracts information from OVM+ϕ. Section 7 comments on our tool support,
FaMa-OVM, and discusses the obtained analysis results. Therelated work is discussed in
Section 8 and, finally, we discuss limitations and draw our conclusions in Section 9.

2 Background

In SPLE, variability models document the variability of a product line. They provide a set of
options that must be selected during derivation of a specificproduct. Besides, they provide
a mechanism to specify rules that constrain the combinationof such options. These con-
straints may come from technical restrictions or any domaindecisions. The configuration
of products is done by selecting desired and valid options inthe variability model during
application engineering.

Among the most popular variability modelling techniques isfeature modelling, which
captures the set of possible products of a product line in a feature model. The first feature
model was proposed in 1990 by Kang et al (1990) as part of the Feature-Oriented Domain
Analysis (FODA) method. Since then, several extensions of FODA have been proposed.

2.1 Feature Models

Besides documenting variability, feature models also express the commonalities of the prod-
uct line, i.e., the features that are common to all products.A feature is an increment in pro-
gram functionality (Batory et al, 2006). Feature models areused to represent product lines
by means of a hierarchical decomposition of features, whichyields a feature tree. A feature
model is composed of two main elements: features and relationships between them, with
one of these features being the root. Constraints of the typerequiresandexcludesbetween
features can be added, leading to additional complexity, thus resulting in a directed acyclic
graph.

A common graphical notation is depicted in Figure 2. This feature model example de-
fines a product line, in which every product contains two mandatory features,A andG. Fur-
thermore, the product line has:(i) one optional feature,D, which can be selected or left out
at will; (ii) the grouped featuresE andF that are possible choices of their parent feature (D),
in which thealternativerelationship defines that one and only one of these grouped features

1 In some cases the number of products could increase, we discussthis in Section 9

5

Root

 A D

E FB C Excludes

Requires

Mandatory

Optional

Alternative

G
Or

Fig. 2 A feature model example

Root

A D

E FB C

G

Name: cost

Domain: Real

Value: 30

Name: memory

Domain: Integer

Value: 254

Name: cost

Domain: Real

Value: 250 Name: cost

Domain: Real

Value: 250

Name: cost

Domain: Real

Value: 75.5

Name: memory

Domain: Integer

Value: 32

Name: memory

Domain: Integer

Value: 32

Name: memory

Domain: Integer

Value: 512

Constraint: B and C implies E.memory > 64

Fig. 3 A sample of a feature model with attributes

can be selected, and(iii) the grouped featuresB andC that are possible choices of their
parent feature (A) with theOr relationship defining that one or more features of the group
must be selected. In addition, the constraintsrequiresandexcludesimpose limitations on the
possible combinations of features. In this case, therequiresrelationship defines that, when
C is selected,E must be selected as well. The area limited by the grey colour illustrates the
features that are common to all products of the product line.

2.2 Extended Feature Models

Some authors have identified the need to extend feature models with extra-functional infor-
mation such as memory consumption, binary size and development cost (Benavides et al,
2005; Kang et al, 1998; Czarnecki et al, 2005). The purpose ofthis extension is to add mea-
surable information about the features, which is done by introducingattributesto features.
By means of these attributes, it is possible to specify quantitative information required to
support the feature. As stated by Benavides et al (2010), there is no consensus on a nota-
tion to define attributes. However, most proposals agree that an attribute should consist of a
name, a domain and a value. Figure 3 shows an example of an extended feature model using
the notation proposed by Benavides et al (2005).

This extension enables the inclusion of more complex constraints among features and
attributes. For example, it is possible to specify constraints like:“If feature B and feature C
are selected, then memory of feature E must be higher than 64”.

6

Base Models

Requirements Architecture Components Test artefacts

OVM

Fig. 4 Orthogonality of OVM (based on (Metzger and Pohl, 2007))

Mandatory Variation Point
(it must always be bound)

Optional Variation Point
(It may or may not be bound)

[min..max]

Alternative variability dependency
(the cardinality determines
how many variants of the group
can be bound)

Mandatory variability dependency
(the variant must be bound whenever
 its parent VP is bound)

Optional variability dependency
(the variant may or may not be bound
 whenever its parent VP is bound)

Requires constraint dependency

Excludes constraint dependency

V
Variant

VP

VP2

VP

VP1

1..2

V2
V

V3
V

V1
V

V4
V

V5

V

VP

VP

Fig. 5 OVM notation

2.3 Orthogonal Variability Model

OVM is a modelling language to define the variability of a software product line in an
orthogonal way, in other words, it provides a cross-sectional view of the variability across
all product line artefacts (Pohl et al, 2005, p.75). OVM interrelates the variability in base
models such as requirement models, design models, component models, and test models
(see Figure 4). The traceability between OVM and the different types of base models is
established through artefact dependencies (dashed lines in Figure 4). In the following, we
provide an overview of the OVM. For a complete formal definition of the OVM, we refer
the reader to (Metzger et al, 2007).

An OVM is composed of two main elements:variation points (VP)andvariants (V). In
this article, we refer to these OVM elements as variable elements. A variation point docu-
ments the aspects that can vary in a product line and are chosen by the customer or engineer
of the software product line. A variant is related to a variation point and documents how this
variation point can vary. We refer to the variation point andvariant relationship as parent-
child relationship.

Figure 5 shows an example of an OVM. The variation points haveat least one child
and each variant has at most one parent. Furthermore, two types of variation points are
distinguished, e.g.,VP1 andVP2 in Figure 5.

7

Although feature models are similar to OVMs, they differ mostly in two aspects: in
their structure and in the way they relate to quality information. A feature model is only
composed of features organised in a single tree and have a single root feature, whilst an
OVM is composed of variation points and variants organised in one or more two-level trees.
In feature models, the root feature is always mandatory, i.e., it is part of all products and
therefore, there is no empty product. On the other hand, in OVMs, variation points can be
optional. This allows configuring a product without any variant or variation point. Regarding
the second aspect, feature models provide possibility to annotate quality information in the
same model, while in OVMs it should be external to the model. We elaborate on this topic
in Section 4.

3 Radio Frequency Warner system: motivating example

The RFW product line is used as the motivating example in thisarticle. The aim of systems
derived from the RFW product line is to give hints of relevanttraffic signs to a driver of a
car or truck. The motivation for developing such a product line is the increasing complexity
of today’s traffic.

The product line is based on the fictional assumption that alltraffic signs are equipped
with a Radio-Frequency Identification (RFID) tag. This allows the identification of traffic
signs when approaching a sign. The transmitted data includes the type of sign (maximum
speed, no overtaking, etc.) and the direction of the sign. The functionality of the RFW is
realised by a control unit in the car that interacts with other components in the car such as
the display and sound system.

An illustration of the functionality of the RFW system can befound in Figure 6: the car
is arriving from the east heading to west. Four different signs are in the area: a stop sign, a
do-not-enter sign, a no-trucks sign, and a no-parking sign.All these signs are equipped with
an active RFID transmitter and each sign knows its direction:

– the stop sign is relevant for all vehicles approaching from the east;
– the do-not-enter sign is relevant for all vehicles approaching from the east and west;
– the no-parking sign is relevant for all vehicles approaching from the west;
– the no-trucks sign is relevant for all trucks approaching from the west and the east.

The information about the direction is encoded in the signalof the traffic signs. If the car,
for example, heads to the west, it will receive the signals ofall signs. The RFW processes
the signals and dismisses the no-parking sign, because it isonly relevant for the opposite
direction. It signals the stop sign to the driver, since thisis the nearest sign to the car that
is relevant. During the trip, the RFW system will also show the do-not-enter sign. The no-
trucks sign is dismissed for the car. The truck, for example,that is approaching from the
west receives the same signals including the no-parking sign in the opposite order, but the
RFW does not dismiss the no-trucks sign, because it is relevant for the truck driver.

3.1 System components

An overview of the system can be found in Figure 7. Roughly speaking, the system consists
of three components: the RFW display, RF-receiver unit and the RFW control unit. They
communicate via a Controller Area Network (CAN) which is a standard interface in the au-
tomotive area, standardised by ISO (ISO 11898). However, the CAN is used as a transparent
transport gateway. The components can be characterised as follows:

8

N

EW

S

Fig. 6 Functionality of the radio-frequency warner

Antenna

(receive only)

RF‐Receiver

unit
RFW control unit CAN

On/Off

switch

Discard

switch

RFW display

...

Fig. 7 Radio frequency warner system overview

– RFW control unit: the control unit is the main part of the system. It receives the signals of
the RF receiver and reacts specifically based on a set of rules.

– Discard switch: the discard switch marks the current signal to be discarded. When the
user presses the button, the actual symbol in the display is discarded and the actual
warning sound is stopped, and all upcoming signs with the same RFID are dismissed
for the next 60 seconds

– On/Off switch: the On/Off switch activates and deactivates the RFW system.
– RFW display: the RFW display shows the output of the RFW control unit.
– RF receiver unit: the RF receiver unit receives the signals and sends them to the RFW

control unit.
– Antenna: the antenna of the RF-receiver unit receives the signals ofthe active RFID

transmitters and decodes them.

9

V26:No vehicles

V

VP

VP8:Prohibition
signs

V27:No cars

V

VP

VP6:Behaviour in
hazardous situations

V
V16:Display and
sound indication

V15:Show on
 display

V
V17:Emergency

brake

V

1..1

VP

VP1:Type of
vehicle

V1:Medium-
class car

V

1..1

V2:Upper-
class car

V
V3:Small

truck (3,5t)

V
V4:Big

truck (7,5t)

V

VP

VP2:Activation

1..1

V5:Switchable

V

V6:Durable

V

VP

VP3:Comfort
functions

V7:No stopping
warning

V

V8:Overspeed
warning

V

V9:Sound at
warning signs

V

V10:Hazardous
situation alarm

V

VP

VP4:Behaviour
at warning signs

1..1

V11:Show
warning sign

V
V12:Display and
sound indication

V

VP

VP5:Behaviour
at no stopping signs

1..1

V13:Warn for
no stopping sign

V

V14:No warning

V

V18:Road w/right
of way start

V

VP

VP7:Other
signs

V19:City limit

V

V34:Danger

V

VP9:Warning
signs

V35:Side winds

V

V40:Stop and
give way

V

VP10:Signs
giving orders

V41:No overtaking

V

VP

VP

VP

Fig. 8 Excerpt of the RFW orthogonal variability model

3.2 RFW product line

In order to provide a RFW system to customers with different needs, the RFW product line
has been created. Figure 8 shows an excerpt of the OVM corresponding to the RFW prod-
uct line. In this figure, the variation pointsVP7:Other signs, VP8:Prohibition signs,
VP9:Warning signs, andVP10:Signs giving orders subsume the different categories
of signs that can be detected. For simplification, we show only two signs for each category.
The complete OVM diagram with all variation points and variants can be found in Appendix
A, Figure 19. Note that in this figure we are omitting several requires and excludes depen-
dencies since it would be too confusing to show all of them. Wepresent the list of these
constraints in Appendix A, Table 8.

The main differentiation of the RFW system is made in variation pointVP1:Type of

vehicle. There, one of four different vehicle types has to be chosen.The variation point
VP2:Activation determines whether the RFW is switchable (i.e., whether it has a switch
to turn it on or off) or whether it is turned on instantly and continuously. The variation
point VP3:comfort functions determines the additional functionality of the RFW. The
following comfort functions are available:

– V7:No stopping warning: warns the driver if there is an active no stopping sign at the
current position and therefore stopping is forbidden.

10

– V8:Overspeed warning: warns the driver if there is a speed limit is in effect and thecar
is too fast. This requires additional information about thecurrent speed that needs to be
received via CAN.

– V9:Sound at warning sign: if the car passes a warning sign, the RFW system warns
the driver acoustically.

– V10:Hazardous situation alarm: warns the driver in a hazardous situation and may
take over control, e.g., by initiating an emergency brake. This detection requires much
external information, e.g., the actual speed, lateral acceleration, status of the wheels (i.e.,
blocking, slippage etc.).

The variation pointVP4:Behaviour at warning signs determines the behaviour, if a
relevant warning sign is passed. The system can show the warning sign in the display and it
can additionally sound an acoustic warning. The behaviour of the RFW system at a relevant
stopping sign is determined by the variation pointVP5:Behaviour at no stopping sign.
The system may warn the driver or not.

The behaviour in a hazardous situation is defined by the variation pointVP6:Behaviour
in hazardous situations. The RFW can show a warning in the display and it can ad-
ditionally warn the driver with an acoustic signal. Additionally, the system can initiate an
emergency brake.

Although the above specification of RFW variability is quiteimportant to guarantee that
different customer needs are satisfied by the product line, it does not provide extra-functional
information, which is also relevant when developing software products. To satisfy quality
conditions regarding, for instance, development cost, memory consumption, or any other
quality, this is not enough. Extra-functional informationmust be specified and related to the
RFW variability. Based on this specification, a quality-aware verification can be performed
to ensure that all products fulfill the stakeholders needs. In order to specify quality informa-
tion for the RFW product line, to relate it to the variability, and to verify that its products
satisfy the quality conditions, some challenges arise. These are described in the next section.

4 Expressing quality information

In the RFW product line, we have identified many variation points regarding functionalities
of the product line systems, but no quality information. Quality information such as the
specification of the development cost of the comfort function or the power of the sensor
required by different signals, cannot be expressed directly in the OVM.

In feature models, the attributes annotate features with quality information (see Fig-
ure 3). In the OVM, this is different, since OVM documents thevariability of base models.
There are two different possibilities when relating quality information with the OVM which
represent two different problems:(i) the OVM is directly related to a quality model includ-
ing quality information, considering this model as a base model in the OVM terminology,
see Figure 9 (a);(ii) the quality information refers to a base model (e.g., architecture, re-
quirements or configuration models) so the OVM is not directly related to a quality model,
see Figure 9 (b). In this article we address the second problem.

In the following, we consider the case that the base model would be a configuration
model and this model is related to quality information. Roughly speaking, a configuration
model is made up of a set of components (e.g., features or variants) and rules that constrain
the possible combinations of these components. We assume that rules can be represented
in an OVM, and that the relationship between elements in bothmodels (OVM and configu-
ration model) is one-to-one (see discussion in Section 9). The specific configuration model

11

(a)

(b)

Quality Model

(base model)

OVM

Attribute 1

Quality Information

Attribute 2

Attribute 4

Attribute 5

Attribute 6

Attribute 3

Constraint 1

Constraint 2

Configuration Model

(base model)
OVM

Fig. 9 (a) OVM documenting variability of a quality model; (b) OVM documenting variability of a configu-
ration model that has quality information

depends on the language used to model the configuration problem (Finkel and O’Sullivan,
2011; Felfernig et al, 2000). As our approach is independentof the configuration model used
and for the sake of simplicity, we omit the configuration model from the subsequent figures
and text. We relate the OVM directly to quality information,hereafter called OVM+ϕ (see
Figure 10), still considering the second problem describedin the previous paragraph, i.e.,
we are still not documenting the variability of a quality model.

Although it is out of the scope of this article to provide a rigorous syntax and seman-
tics of a language to define quality information in OVMs (thiswould require a parallel
research), we assume that such information can be mapped into a constraint satisfaction
problem (CSP), thus enabling the automation of our approach. A CSP is defined as a set of
variables, a set of domains for those variables, and a set of constraints restricting the values
of those variables (Tsang, 1993). For example, supposex1,x2,x3 are variables of a CSP, all
with domains in[1,2,3], and(x1= x2),(x2< x3) being the constraints. A solution to this
CSP is an assignment to every variable of some value in its domain such that it does not
violate any of the constraints. Therefore, a possible solution to this CSP is ((x1 = 1), (x2 =
1), (x3 = 2)).

In Figure 11, we provide a high-level conceptual model for describing the main elements
of a quality information language such as the one we use in ourapproach. A quality infor-
mation language is represented by a set of attributes with their respective domains, and/or a
set of constraints on these attributes. In the following, wedescribe these elements and how
they are related to the OVM.

12

V1
V

VP

VP1

V2

VP

VP2

1..1

V

V5
V

V3
V

V4
V

Quality

information

OVM+φ

Fig. 10 OVM+ϕ: relationship between OVM and quality information

Qlanguage

unit

nullValue

value

domain

name

Attribute
1..*

DomainConstraint

0..*

1..*

BasicAttribute DerivedAttribute

1..*

VariableElement

0..* 0..*

is related to

Fig. 11 Conceptual model for describing quality information

4.1 Quality attributes

In our approach, we define a quality attribute as a measurableproperty of an artefact. We
consider only those properties that can be quantified and technically defined. For example,
the memory consumption or the accuracy of an antenna. As stated by Benavides et al (2010),
most proposals agree that an attribute should consist of a name, a domain and a value. We
have relied on this statement to specify the attributes usedin our approach. An attribute has
a name, a domain, a value, a nullValue, andunit. name denotes the name of the attribute
which does not need to be unique since different artefacts can have different attributes with
the same name.domain denotes the range of values that the attribute may hold such as Reals,
Integers, and any range (e.g., [1..512]);value denotes the attribute value which will depend
on the concrete type of attribute (we elaborate more on it later).nullValue denotes the value
that must be taken by the attribute when the variant with which the attribute is related is

13

Quality informationOVM

V

VP

V

V

VP

VV

V53:GPS

VP12:Positioning
System

V54:Galileo

[1,2]

V55:Small

VP13:Antenna

V57:Big

[1,1]

V56:Medium

*

name = TotalAccuracy
domain = Real [0..20]
value = PositioningSystem.Accuracy Antena:AccuracyFactor
unit = Factor

excludes

name = Accuracy
domain = Integer [1..10]
value = min(GPS.Accuracy, Galileo.Accuracy)
nullValue = +
unit = Meter

∞

name = Accuracy
domain = Integer [1..10]
value = 4
nullValue = +
unit = Meter

∞

name = Accuracy
domain = Integer [1..10]
value = 8
nullValue = +
unit = Meter

∞

name = AccuracyFactor
domain = Real [0..2]
value = max(Small, Medium, Big)
nullValue = -
unit = Factor

∞

name = AccuracyFactor
domain = Real [0..2]
value = 0.25
nullValue = -
unit = Factor

∞

name = AccuracyFactor
domain = Real [0..2]
value = 1
nullValue = -
unit = Factor

∞

name = AccuracyFactor
domain = Real [0..2]
value = 1.5
nullValue = -
unit = Factor

∞

Fig. 12 Example of basic, derived, and global attribute

not selected.unit denotes a determinate quantity such as meters, seconds, currency, and
kilobytes, adopted as a standard for measurement.

We distinguish two kinds of attributes depending on how their values are calculated:

– Basic attribute. The value of a basic attribute is abase measure(Garcia et al, 2006), i.e.,
a measure that does not depend upon any other measure.

– Derived attribute. The value of a derived attribute is determined by a functionover other
attribute values.

An attribute can be related to zero or morevariable element in the OVM. In the same
manner, a variable element can be related to zero or more attributes. We refer to an attribute
as aglobal attributewhen it is not related to a variable element in the OVM; it is a com-
position of any other attributes. We refer to a relationshipbetween a variable element and
an attribute asvariable-element.attribute, wherevariable-element denotes the name of the
variable element which must be unique andattribute denotes the name of the attribute. For
example,V53:GPS.Accuracy defines the relationship betweenV53:GPS andAccuracy.

To illustrate quality attributes, we use the example in Figure 12. In this example, we can
see that the RFW product line offers two different types of positioning systems:V53:GPS
and/or V54:Galileo. The positioning systems have different accuracies, thus we define a
basic attribute to express their accuracy. The GPS system has an accuracy of 8 meters, while
Galileo has 4 meters of accuracy.

In Figure 12, there are two derived attributes:Accuracy andAccuracyFactor, related
to VP12:PositioningSystem, andVP13:Antenna, respectively. The former expresses the
system accuracy regarding the type of positioning system selected, and it is the minimum

14

value betweenV53:GPS.Accuracy and V54:Galileo.Accuracy; the latter expresses the
accuracy factor of the selected antenna which is obtained bythe maximum value between
Small.AccuracyFactor, Medium.AccuracyFactor andBig.AccuracyFactor. Finally, the
TotalAccuracy is a global attribute because it is not connected to any variable element. The
global attribute represents a quality property of the product line as a whole. Thus, in the case
of TotalAccuracy, it represents the resulting accuracy of the system, which is the product of
the selected positioning system accuracy and the selected quantifier. With this specification,
it would, for example, be possible to get the same overall accuracy with a bigger antenna
and GPS and a medium size antenna and Galileo.

The function used to calculate the values of derived attributes depends on the solver
used to automate the approach; furthermore, it is domain dependent. The resulting value of
a function depends on whether the variable element related to it is selected or not. Therefore,
when an attribute is involved in a function itsnullValue must be neutral to such a function.
Each function must be handled specifically and suitable neutral values must be defined. Let
us observe, for example, the function defined in theVP12:PositioningSystem.Accuracy

attribute. In the case where both positioning systems,V54:Galileo andV53:GPS, are se-
lected, the function will return the minimum value between their accuracy, resulting in
value 4. However, if one of the variants is not selected, for exampleV53:GPS, the value
of V53:GPS.Accuracy must have a neutral value with regard to themin function. In this
case, we can use the+∞ as a neutral value because it is bigger than any real number. In the
RFW example, we use aggregate functions such assum, min andmaxand also functions
with the operators+ and∗.

The list of attributes identified for the RFW product line andtheir descriptions can be
found in Table 1. Their values are not shown in this table because they depend on the asso-
ciation with the variable elements in the OVM. The values areshown in Table 2, Table 3,
and Table 4; they were defined by the engineers of the RFW product line. Table 2 shows the
values taken by the basic attributes. The variants are listed in the first column of the table,
and the attribute names are listed along the first row. The cells indicate the values taken
by each attribute when related to the corresponding variant. They are shown in the form
value|neutral-value. Cells marked with “–” indicate that the attribute is not related to the
variant.

In the RFW example, all derived attributes are related to variation points. Their values
are shown in Table 3. The variation points are listed in the first column, and the attribute
names are listed along the first row. The cells indicate whichfunction is used to calculate
each attribute value when related to the corresponding variation point. Those cells marked
with “–” indicate that the attribute is not related to the variation point. Values are shown
in the formvalue|neutral-value. As these attributes are involved in the values of the global
attributes (see Table 4), their null values are defined as+∞, −∞ or 0. In the case that the
variation point is selected, the attributes can take as values the functionsmin, maxor sum.
They are defined as follows:

– min(v1.attribute, ...,vn.attribute), where{v1, ...,vn} ⊆ childrenO f(vp)
– max(v1.attribute, ...,vn.attribute), where{v1, ...,vn} ⊆ childrenO f(vp)

–
n

∑
i=1

vi .attribute, where{v1, ...,vn} ⊆ childrenO f(vp)

Consider thatchildrenO f(vp), with vp belonging to the set of variation points returns
the set of children ofvp, andn≤ |childrenO f(vp)|. Next, we provide some examples.

VP12:PositioningSystem.Accuracy = min(GPS.Accuracy,

15

Table 1 Quality attributes in the RFW product line

Name Description Domain Unit

1. Accuracy
Specifies the accuracy of the positioning
system to locate the position of the car

Integer [1..10] meters

2. AccuracyFactor Specifies a quantifier for the antenna Real [0..2] meters

3. TotalAccuracy
Specifies the accuracy offered by the sys-
tem. It is calculated by relating the accuracy
and the accuracyFactor attributes

Real[0..20] meters

4. Memory
Specifies the memory size of the control
unit that is needed to process the traffic sign

Integer [1..512] kilobytes

5. TotalMemory
Specifies the total of memory required by a
system. It is calculated by aggregating the
memory attributes

Integer[1..512] kilobytes

6. ROM
Specifies the ROM size of the control unit
utilised by a specific variant

Integer [1..512] kilobytes

7. TotalROM

Specifies the ROM size of the control unit.
The more traffic signs are recognisable, the
bigger the ROM size has to be to save the
different types of signs and the required ac-
tion for the traffic sign. It is calculated by
aggregating the ROM attributes

Integer [1..512] kilobytes

8. Range

It concerns the power of a sensor and spec-
ifies the distance from which the sensor is
capable to detect a traffic sign. The higher
the value is, the earlier a traffic sign can be
detected

Integer meters

9. Latency

Specifies the latency required by a variant.
Latency means the elapsed time between
the firing of an event and the feedback given
to the user.

Integer [200..800] milliseconds

10. TotalLatency
Specifies the latency that has to be guaran-
teed by the system. It is calculated by ag-
gregating the latency attributes

Integer [200..800] milliseconds

11. Cost Cost of the specific variant Real [1..500]
monetary
unit

12. TotalCost
Specifies the total cost of a system. It is cal-
culated by aggregating the cost attributes

Real [1..500]
monetary
unit

13. Cycle
Specifies the maximum recognition time re-
quired by a variant.

Integer[10..500] milliseconds

14. RecognitionTime
Specifies the maximum recognition time
that the system has to ensure. It is calcu-
lated by aggregating the cycle attributes

Integer [10..500] milliseconds

Galileo.Accuracy)

VP13:Antenna.AccuracyFactor = max(Small.AccuracyFactor,

Medium.AccuracyFactor,

Big.AccuracyFactor)

VP2:Activation.Memory = V5:Switchable.Memory + V6:Continuously.Memory

The equations for the values of global attributes are shown in Table 4. Except for the
TotalAccuracy, the other global attributes are calculated using an aggregate function in the
set of variation points. In the following we elaborate on their meaning:

– TotalAccuracy: represents the overall accuracy of a given product which is computed by
multiplying the accuracy of the positioning system by the antenna accuracy factor. For

16

Table 2 Values of basic attributes when associated with variants

Accuracy Accuracy Memory ROM Range Latency Cost Cycle
Factor

V5:Switchable – – 2 | 0 2 | 0 – – 2 | 0 –
V6:Continously – – 2 | 0 2 | 0 – – 0.2 | 0 –
V7:No stopping warn-
ing

– – – 8 | 0 – – 0.5 | 0 –

V8:Overspeed warn-
ing

– – – 16 | 0 – – 0.5 | 0 –

V9:Sound at warning
signs

– – – 4 | 0 – – 1 | 0 –

V10:Hazardous situa-
tion alarm

– – – 16 | 0 – – 1 | 0 –

V11:Show warning
sign

– – 2 | 0 4 | 0 – 400|+∞ 1 | 0 –

V12:Display and
sound indication

– – 2 | 0 4 | 0 – 400|+∞ 1 | 0 –

V13:Warn for no stop-
ping sign

– – 2 | 0 4 | 0 – 500|+∞ 0.5| 0 –

V14:No warning – – 2 | 0 0 | 0 – 500|+∞ 0.2 | 0 –
V15:Show on display – – 8 | 0 8 | 0 – 350|+∞ 1 | 0 –
V16:Display and
sound indication

– – 8 | 0 8 | 0 – 350|+∞ 1 | 0 –

V17:Emergency brake – – 16 | 0 32 | 0 – 350|+∞ 3 | 0 –
V18:Road w/ right of
way start

– – 4 | 0 4 | 0 – – 0.2 | 0 100|+∞

V19:City limit – – 2 | 0 4 | 0 – – 0.2 | 0 50 |+∞
V20:Crossroads – – 2 | 0 4 | 0 – – 0.2 | 0 100|+∞
V21:Home zone entry – – 4 | 0 4 | 0 – – 0.2 | 0 100|+∞
V22:Road w/ right of
way end

– – 4 | 0 4 | 0 – – 0.2 | 0 100|+∞

V23:End of city limit – – 4 | 0 4 | 0 – – 0.2 | 0 50 |+∞
V24:Traffic has prior-
ity

– – 2 | 0 4 | 0 – – 0.2 | 0 75 |+∞

V25:Home zone end – – 4 | 0 4 | 0 – – 0.2 | 0 100|+∞
V26:No vehicles – – 2 | 0 4 | 0 – – 0.2 | 0 50 |+∞
V27:No cars – – 2 | 0 4 | 0 – – 0.2 | 0 100|+∞
V28:No vehicles over
max width> Xm

– – 8 | 0 8 | 0 – – 0.2 | 0 200|+∞

V29:No vehicles w/
weight> 3.5t

– – 2 | 0 4 | 0 – – 0.2 | 0 100|+∞

V30:No vehicles over
max gross weight g>
Xt

– – 8 | 0 8 | 0 – – 0.2 | 0 200|+∞

V31:Do not enter – – 2 | 0 4 | 0 – – 0.2 | 0 100|+∞
V32:No vehicles over
max height h> Xm

– – 8 | 0 8 | 0 – – 0.2 | 0 200|+∞

V33:No stopping – – 2 | 0 4 | 0 – – 0.2 | 0 100|+∞
V34:Danger – – 2 | 0 4 | 0 – – 0.5 | 0 100|+∞
V35:Side winds – – 2 | 0 4 | 0 – – 0.5 | 0 100|+∞
V36:Slippery road – – 2 | 0 4 | 0 – – 0.5 | 0 100|+∞
V37:Risk of ice – – 2 | 0 4 | 0 – – 0.5 | 0 100|+∞
V38:Bend – – 2 | 0 4 | 0 – – 0.5 | 0 100|+∞
V39:Traffic queues – – 2 | 0 4 | 0 – – 0.5 | 0 100|+∞
V40:Stop and give
way

– – 2 | 0 4 | 0 – – 0.2 | 0 50 |+∞

V41:No overtaking – – 4 | 0 4 | 0 – – 0.2 | 0 50 |+∞
V42:No overtaking
end

– – 4 | 0 4 | 0 – – 0.2 | 0 50 |+∞

V43:No overtaking
vehicles> 3.5t

– – 4 | 0 4 | 0 – – 0.2 | 0 50 |+∞

V44:End of prohibi-
tions

– – 4 | 0 4 | 0 – – 0.2 | 0 50 |+∞

V45:Yield – – 2 | 0 4 | 0 – – 0.2 | 0 50 |+∞
V46:Maximum speed
X Km/h

– – 8 | 0 8 | 0 – – 0.2 | 0 200|+∞

V47:One way – – 2 | 0 4 | 0 – – 0.2 | 0 50 |+∞
V48:Maximum speed
of X Km/h end

– – 8 | 0 8 | 0 – – 0.2 | 0 200|+∞

V49:No overtaking
vehicles>3.5t end

– – 4 | 0 4 | 0 – – 0.2 | 0 50 |+∞

V50:Low – – – – 20 |−∞ – 10 | 0 –
V51:Medium – – – – 45 |−∞ – 35 | 0 –
V52:High – – – – 70 |−∞ – 50 | 0 –
V53:GPS 8 |+∞ – – – – – – –
V54:Galileo 4 |+∞ – – – – – – –
V55:Small – 1.5 |−∞ – – – – 15 | 0 –
V56:Medium – 1 |−∞ – – – – 0.5| 0 –
V57:Big – 0.25|−∞ – – – – 50 | 0 –

17

Table 3 Values of derived attributes when associated with variation points

Accuracy Accuracy Memory ROM Range Latency Cost Cycle
Factor

VP2:Activation – – sum|0 sum|0 – – sum|0 –
VP3:Comfort func-
tions

– – – sum|0 – – sum|0 –

VP4:Behaviour at
warning signs

– – sum|0 sum|0 – min |+∞ sum|0 –

VP5:Behaviour at
no stopping signs

– – sum|0 sum|0 – min |+∞ sum|0 –

VP6:Behaviour in
hazardous situations

– – sum|0 sum|0 – min |+∞ sum|0 –

VP7:Other signs – – sum|0 sum|0 – – sum|0 min |+∞
VP8:Prohibition
signs

– – sum|0 sum|0 – – sum|0 min |+∞

VP9:Warning signs – – sum|0 sum|0 – – sum|0 min |+∞
VP10:Signs given
orders

– – sum|0 sum|0 – – sum|0 min |+∞

VP11:Sensor power – – – – max|−∞ – sum|0 –
VP12:Positioning
system

min |+∞ – – – – – – –

VP13:Antenna – max |−∞ – – – – sum|0 –

Table 4 Equations for the values of global attributes

Name Value
TotalAccuracy PositioningSystem.Accuracy∗Antenna.AccuracyFactor

TotalMemory
k

∑
j=1

vpj .Memory, wherevpj .Memory∈ OVM+ϕ

TotalROM
k

∑
j=1

vpj .ROM, wherevpj .ROM∈ OVM+ϕ

TotalLatency min(vp1.Latency, ...,vpk.Latency), wherevp1.Latency, ...,vpk.Latency∈ OVM+ϕ

TotalCost
k

∑
j=1

vpj .Cost, wherevpj .Cost∈ OVM+ϕ

RecognitionTime min(vp1.Cycle, ...,vpk.Cycle), wherevp1.Cycle, ...,vpk.Cycle∈ OVM+ϕ
k≤ number of variation points∈ OVM+ϕ

example, a product of the RFW product line that hasGPS and amedium antenna offers
an overall accuracy of 8, since V53:GPS.Accuracy = 8 and V56:Medium = 1.

– TotalMemory: represents the total memory required by a given product, which is com-
puted by the sum of all attributesMemory related to variation points.

– TotalROM: represents the total ROM required by a given product, which is computed
by the sum of all attributesROM related to variation points.

– TotalLatency: represents the maximum time that a given product takes to provide feed-
back, which corresponds to the minimum value amongst the attributesLatency related
to variation points. For example, the minimum value betweenVP1.Latency = 350 and
VP2.Latency = 500 is 350. Then, the maximum time this productshould take to provide
feedback to the user is 350 milliseconds.

– TotalCost: represents the cost of a given product, which is computed by the sum of all
attributesCost related to variation points.

– RecognitionTime: represents the maximum time that a given product takes to recognize
a signal, which corresponds to the minimum value amongst theattributesCycle re-
lated to variation points. For example, the minimum value between VP1.Cycle = 50 and
VP2.Cycle = 100 is 50. Then, the maximum time this product should take to recognize
a signal is 50 milliseconds.

18

OVM

VP

V VV

If (V41:No overtaking) then
 VP11:Sensor power.Range >= 50

If (V44:End of prohibitions) then
 VP11:Sensor power.Range >= 25

VP11:Sensor
power

V50:Low V52:High

[1,1]

V51:Medium

VP10:Signs
giving orders

V41:No overtaking

V44:End of prohibitions

...

VPVP

V

V

V

Quality Information

name = Range
domain = Integer
value = max(Low.Range, Medium.Range, High.Range)
nullValue = -
unit = Meter

∞

name = Range
domain = Integer
value = 70
nullValue = -
unit = Meter

∞

name = Range
domain = Integer
value = 20
nullValue = -
unit = Meter

∞

name = Range
domain = Integer
value = 45
nullValue = -
unit = Meter

∞

Fig. 13 An example with constraints on attributes

4.2 Domain constraints

Domain constraints are constraints on attributes that limit the possible configuration of prod-
ucts. These constraints may come from resource limitations(e.g., the maximum memory
consumption allowed) or any domain relevant restriction, e.g., all products derived from the
RFW product line must provide feedback to the user before passing the signals, otherwise
the system is useless. Therefore, domain constraints can bedefined on quality attributes to
avoid building unsuitable products.

In the case of the RFW product line, for example, the traffic signs must be detected
by the sensor from a given distance before passing the trafficsign. This distance must be
reasonable to allow the product to provide feedback to the user within an expected time.
Therefore, some constraints on the attributeVP11:Sensor power.range must be defined.
To guarantee that a RFW product can successfully detect theV44:End of prohibitions

sign, the sensor has to have a range of at least 25 meters. However, to detect theV41:No
overtaking sign, the sensor must be able to detect the signal at least 50 meters before
passing the sign. Thus, the constraints on attributes represented within ellipses in Figure 13
are specified to prevent the configuration of unsatisfactoryproducts.

The syntax of domain constraints depends on the solver used to automate the analysis.
Domain constraints are predicates over attributes that canbe evaluated to true or false de-
pending on the attribute values. The neutral values for attributes must also be considered in
constraint definitions. In the RFW product line, we have identified some required domain
constraints. A complete list of these constraints can be found in Appendix A, Figure 20.

5 Detecting anomalies in OVM+ϕ by means of CSP

A typical problem that comes to light when specifying OVM is the wrong use of constraints.
A wrong constraint modelling can cause anomalies in the specification, which are difficult
to detect in practice. In addition to requires and excludes constraints, domain constraints

19

VP

VP6:Behaviour in
hazardous situations

V16:Display and
sound indication

V15:Show on
 display

V17:Emergency
brake

1..1

V V V

excludes

dead

element

wrong constraint

specification

a)

VP

VP4:Behaviour
at warning signs

1..1

V11:Show
warning sign

V12:Display and
sound indication

VV

VP

VP6:Behaviour in
hazardous situations

V16:Display and
sound indication

V15:Show on
 display

V17:Emergency
brake

1..1

V V V

includes

false optional

element

wrong constraint

specification

b)

VP

VP4:Behaviour
at warning signs

1..1

V11:Show
warning sign

V12:Display and
sound indication

VV

excludes
includes

Fig. 14 Anomalies in OVM: a) Dead element, b) False optional element

can also cause anomalies. Therefore, before analysing quality conditions, we have to detect
possible anomalies in the OVM+ϕ. For example, anomalies such as “the model does not
allow the derivation of any product that respects all the specified dependencies amongst
variants”, should be detected.

The RFW product line has 13 variations points, 4 out of which are optional, and 57
variants. Consequently, there are 57 variability dependencies between variation points and
variants, 65% of them are optional and 35% are alternative. Furthermore, the product line has
34 requires and 4 excludes relationships between variable elements, 225 attributes (18 out
of them are derived), and 72 quality domain constraints. Consequently, in order to manually
detect anomalies in this model is a tedious and error-prone task. This task is even more
complicated if we consider that the products should respectdomain constraints.

There are three kinds of anomalies we intend to check in the specification of OVM+ϕ;
namelyvoid model, dead variable element, andfalse optional. These anomalies were already
identified and supported by other approaches when using feature models (Benavides et al,
2010; Trinidad et al, 2008a). In this article we propagate those results to the OVM context.

– Void model.A model is void when it is not possible to derive any valid product, i.e., a
product that respects the rules specified in the OVM+ϕ.

– Dead variable element.Using constraints wrongly can generate a dead variable element,
i.e., it never appears in any valid product. Figure 14. a shows a false constraint between
variantV12:Display and sound indication and variantV17:Emergency brake. The
V17:Emergency brake behaviour will not be part of a product regardless of whether
V11:Show warning signs or V12:Display and sound indication is selected. This
situation gives a false view of the product line scope, sincethat the optional dependency
betweenVP6:Behaviour at hazardous situation andV17:Emergency brake deter-
mines that it should be possible to configure products with and withoutV17:Emergency
brake. When the false constraint on thisV17:Emergency brake is specified, this func-
tionality will never appear in a product of the RFW product line, and thus will lead to a
dead variant.

– False optional.Verifies whether a variable element is false optional or not.A variable
element is false optional if it is modelled as optional, yet appears in all valid products.

20

Mapping Solver

Analysis
Results

Analysis
Operation

Logical
 Representationlink1

link2

V1
V

VP

VP1

V2

VP

VP2

1..1

V

V5
V

V3
V

V4
V

link3

link4

link6

Quality Model

link5

link7

CSPovm+φ

Fig. 15 Process for the automated analysis of OVM+ϕ using CSP

This anomaly also gives a false view of the product line scope. Figure 14.b shows how
the variantV17:Emergency brake can become a false optional.

The purpose of automated analysis of feature models is extracting information from
feature models using automated mechanisms (Batory et al, 2006). Benavides et al (2010)
define a conceptual framework, in which they propose a process for the automated analysis
of feature models. Based on this framework, we define the process presented in Figure 15
as the whole process to automate the analysis of OVM+ϕ. The process starts by mapping
the OVM+ϕ to a CSP, which is the logical representation we use to automate the analysis
(hereinafter, this mapping is referred to asψovm+ϕ). Afterwards, we define analysis opera-
tions, which observe the properties of theψovm+ϕ model without modifying it; they take a
ψovm+ϕ model and/or a configuration as input and provide a response.An off-the-shelf CSP
solver is used to automatically analyse the input data and provide the analysis results. CSP
solvers search for a valid set of variable values that simultaneously satisfies all constraints.
For example,A+B> 1 is a CSP involving the integer variablesA andB, both with a domain
∈ [1..10]. In this case, the solver would find (A= 2, B= 2) as a valid solution for the CSP.

5.1 Mapping OVM+ϕ to CSP

The mapping of an OVM+ϕ into CSP can differ depending on the concrete solver that is
used later to solve the problem. In general, the mapping process goes through two main
steps. First, the 3-tupleψovm= (Vovm, Dovm, Covm) is built, where the variable elements in the
OVM become variables inVovm with their respective domains inDovm, and the variability
and constraint dependencies in the OVM become constraints in theCovm. Second, the final
mapping from an OVM+ϕ to a CSP is carried out by adding variables and constraints to
theψovm, where the quality attributes become variables and the domain constraints become
constraints, resulting in the 3-tupleψovm+ϕ = (Vovm+ϕ , Dovm+ϕ , Covm+ϕ). Next, we detail the
complete mapping process.

5.1.1 Building theψovm

Concrete rules for mapping an OVM into a CSP are listed in Table 5. Also, the mapping of
our RFW example of Figure 13 is presented. In this table we show the mapping of an OVM
into a general CSP, which is independent of the solver to be used later to analyse the model.
The mapping is very similar to the one used for feature models(Benavides et al, 2005), with
the following differences:

21

Table 5 Mapping OVM into Constraint Satisfaction Problem

M
A
N
D
A
T
O
R
Y

O
P
T
IO
N
A
L

A
L
T
E
R
N
A
T
IV
EV

a
ri

a
b

il
it

y
 D

e
p

e
n

d
e
n

c
y

vp = v

if (vp = 0)

 v = 0

R
E
Q
U
IR
E
S

E
X
C
L
U
D
E
S

if (v1 > 0)

 v2 = 0

if (v > 0)

 vp = 0

if (vp1 > 0)

 vp2 = 0

if (v1 > 0)

 v2 > 0

if (v > 0)

 vp > 0

if (vp1 > 0)

 vp2 > 0

C
o

n
s

tr
a

in
t

D
e
p

e
n

d
e

n
c
y

V
a
ri

a
ti

o
n

 P
o

in
t

CSP mapping

M
A
N
D
A
T
O
R
Y

vp
vp = 1

if (vp > 0)

 sum (v1, v2, ..., vn) in {i..j}

else

 v1 = 0, v2 = 0, ..., vn = 0

vp

vp

[i..j]

OVM Mapping example

V50:Low ∈ [0,1] ∧ V51:Medium ∈ [0,1] ∧

V52:High ∈ [0,1] ∧ V41:No overtaking ∈ [0,1] ∧

V44:End of Prohibitions ∈ [0,1]

V
a
ri

a
ti

o
n

P

o
in

t

vp1
vp2

vp1 ∈ [0,1] ∧ vp2 ∈ [0,1]

VP11:Sensor power = 1

if (VP10:Signs giving orders = 0)

V41:No overtaking = 0

if (VP10:Signs giving orders = 0)

V44:End of Prohibitions = 0

if (VP11:Sensor power > 0)

 sum (V50:Low ,V51:Medium,

 V52:High)∈ {1..1}

else

 V50:Low = 0 ,V51:Medium = 0,

 V52:High = 0

V
a
ri

a
n

t

v ∈ [0,1]

VP11:Sensor power ∈[0,1] ∧

VP10:Signs giving orders ∈ [0,1]

1. In the OVM model, there are two types of nodes, namely variation points and variants.
These nodes differ from each other. Variation points are mandatory or optional. In fea-
ture models, all nodes in the diagram are features.

2. There is no constraint for a root node, since there is no root node in the OVM.
3. For each mandatory variation point, we add a constraint assigning value 1 to the corre-

spondent variable.
4. Each alternative relationship is mapped to a constraint “i f (vp> 0) sum(v1, v2,. . . ,vn) in

{m..m′} else v1 = 0∧v2 = 0∧vn = 0”, wherevp is the variation point,vi | i ∈ [1. . . n] the

22

Table 6 Mapping OVM+ϕ into Constraint Satisfaction Problem

OVM+φ mapping exampleΨovm+φ

A
tt

ri
b

u
te

s
 r

e
la

te
d

 t
o

 v
a
ri

a
ti

o
n

 p
o

in
t

A
tt

ri
b

u
te

s
 r

e
la

te
d

 t
o

 v
a
ri

a
n

ts

name = Aname
domain = Adomain
value = x
nullValue = y
unit = Aunit

name = Aname
domain = Adomain
value = x
nullValue = y
unit = Aunit

∪vp.Aname ∈ {Adomain}

v.Aname ∈ {Adomain} {y}

{y}

∪

name = Aname
domain = Adomain
value = x
nullValue = y
unit = Aunit

G
lo

b
a
l
a
tt

ri
b

u
te

Aname ∈ {Adomain}

D
o

m
a
in

c
o

n
s

tr
a

in
t

domain constraint constraint

VP11:Sensor power.Range ∈ Integer ∪{- } ∞

V50:Low.Range ∈ Integer ∪{- } ∧ ∞

V51:Medium.Range ∈ Integer ∪{- } ∧ ∞

V52:High.Range ∈ Integer ∪{- } ∞

D
o

m
a
in

C
o

n
s

tr
a

in
t

If vp = 1 then

 vp.Aname = x

else vp.Aname = y

∞

If VP11:Sensor power = 1 then

 VP11:Sensor power.Range = max(

 V50:Low.Range,

 V51:Medium.Range,

 V52:High.Range)

else VP11:Sensor power.Range = -

D
o

m
a
in

C
o

n
s

tr
a

in
t If v = 1 then

 v.Aname = x

else v.Aname = y

∞

(If V50:Low = 1 then

 V50:Low.Range = 70

else V50:Low.Range = -) ∧

∞

If VP11:Sensor power = 1 then

 VP11:Sensor power.Range = max(

 V50:Low.Range,

 V51:Medium.Range,

 V52:High.Range)

else VP11:Sensor power.Range = -

∞

(If V51:Medium = 1 then

 V51:Medium.Range = 45

else V51:Medium.Range = -) ∧

∞

(If V52:High = 1 then

 V52:High.Range = 20

else V52:High.Range = -)

(If V41:No over taking = 1 then

 VP11:Sensor power.Range >= 50) ∧

(If V44:End of prohibitions = 1 then

 VP11:Sensor power.Range >= 25)

set of optional variants in the relationship, and[m. . .m′] | 0≤m≤m′ ≤ n the cardinality.
This mapping is similar to cardinality-based feature models.

5.1.2 Building theψovm+ϕ

After we have built theψovm, we add the variables corresponding to each attribute in the
OVM+ϕ and the needed constraints, thus resulting in theψovm+ϕ . The general mapping
rules and the mapping for the RFW example of Figure 13 are presented in Table 6. These
mappings created following these steps:

1. Each attribute in the OVM+ϕ becomes a variable inψovm+ϕ . The domain of these vari-
ables are defined by the union of the domain interval specifiedto the corresponding
attribute and itsnullValue. Note that, when an attribute is global it is part of all products,
therefore it does not need a neutral value.

2. The values of each attribute in the OVM+ϕ become constraints on a variable inψovm+ϕ .
3. The domain constraints in the OVM+ϕ become constraints inψovm+ϕ .

23

5.2 Defining operations for detecting anomalies as CSP primitives

The analysis method we propose is characterised by analysisoperations that are applied
to an OVM+ϕ. In this section, we define the three analysis operations we need to detect
anomalies in the OVM+ϕ as CSP primitives.

Operation 1 (Void Model). Let ovm+q be an OVM+ϕ specification, andψovm+ϕ its equiv-
alent CSP. Then, ovm+q is void if there is no solution toψovm+ϕ .

void(ψovm+ϕ)⇔ |sol(ψovm+ϕ)|= 0

wheresol(ψovm+ϕ) is the set of solutions ofψovm+ϕ .

Operation 2 (Dead Variable Element). Let ovm+ q be an OVM+ϕ specification and let
ψovm+ϕ be its equivalent CSP of the form (Vovm+q, Dovm+q, Covm+q). The variable element
ve∈ Vovm+q is dead if it does not belong to any solution ofψovm+ϕ . It follows:

isDead(ψovm+ϕ ,ve)⇔∀s : sol(ψovm+ϕ) ·ve /∈ s

A variable element is false optional if it is modelled as optional, but it appears in all
valid products. A variable element can be a variant or a variation point. A variation point
vp is false optional if it is optional and is part of all solutions of ψovm+ϕ . A variant v is
false optional when it is part of all solutions ofψovm+ϕ and i) its parent relationship is
optional or alternative, orii) its parent is optional. Consider thatparent(v) returns the parent
of v, relationship() returns the type of relationship between a variantv and its parent, and
vptype() returns whether the variation point is mandatory or optional. The false optional
operation is defined as follows:

Operation 3 (False Optional (FO)). Let ovm+q be an OVM+ϕ specification,ψovm+ϕ be its
equivalent CSP of the form (Vovm+ϕ , Dovm+ϕ , Covm+ϕ), and v,vp∈Vovm+ϕ . Then, vp is false
optional if isFalseOpt(ψovm+ϕ ,vp)= true and v is false optional if isFalseOpt(ψovm+ϕ ,v)=
true. It follows:

isFalseOpt(ψovm+ϕ ,vp)⇔∀s : sol(ψovm+ϕ) ·vp∈ s∧vptype(vp) = optional

isFalseOpt(ψovm+ϕ ,v)⇔∀s : sol(ψovm+ϕ)·

(v∈ s∧ (relationship(parent(v)) = optional∨alternative))∨ (v∈ s∧ (vptype(parent(v)) = optional))

6 Analysing OVM+ϕ

Apart from analysis operations to detect anomalies in OVM+ϕ, we propose other analysis
operations. Quality-aware analysis operations allow verifying whether a product or a set of
products in a product line specification fulfil a given quality condition, at the same time
that satisfy functional variability and domain constraints. This analysis aims at supporting
the engineer decisions, but it can be performed by any stakeholder that wants to obtain
information from the product line. Therefore, if an engineer of a product line has at his/her
disposal an OVM+ϕ specification, he/she can make use of quality-aware analysis.

The analysis process introduced in Figure 15 is extended in order to consider quality
conditions (see Figure 16). In this process, an operation has as input a target OVM+ϕ, may
or may not have a partial configuration (a set of variants thatmust be in the products and

24

Solver

Analysis
Operation

CSPovm+q

Quality

condition
+

Fig. 16 Process for the automated analysis of OVM+ϕ with quality conditions

a set of variants that cannot be), and a quality condition. Wedefine a quality condition as
a statement of what is required as part of a product or a set of products regarding quality
attributes. For example, the engineer of the RFW product line may want to analyse if it is
possible to derive a particular product with development cost no higher than the assigned
budget. The restrictions imposed by the engineer when expressed as quality conditions can
be used to get the answer from the OVM+ϕ specification. For example, the quality condition
defined by the engineer can be expressed asTotalAccuracy< 10 ∧ TotalCost< 30. As
previously mentioned, our approach is automated by means ofCSP. Therefore, our basic
assumption is that quality conditions can be specified as a constraint on quality attributes, as
shown in the following:

Definition 1 (Quality condition). Let ovm+ q be an OVM+ϕ specification,ψovm+ϕ be its
equivalent CSP of the form (Vovm+q, Dovm+q, Covm+q). A quality condition q is a constraint
on one or more attributes∈ Vovm+q.

6.1 Satisfiability

As previously mentioned, the engineer of the RFW product line may want to verify if it
is possible to configure a product that satisfies a given quality condition. We propose an
analysis operation, namely satisfiability, to verify whether a product or a set of products in
OVM+ϕ fulfil a given quality condition, at the same time that satisfy functional variability
and domain constraints. A product line satisfies a quality condition if there is at least one
product that satisfies all constraints defined in both, OVM+ϕ and quality condition. Let
us, for example, consider the quality condition previouslydefinedTotalAccuracy< 10 ∧
TotalCost< 30. Then, the product line satisfies this quality condition if there is at least one
solution toψovm+ϕ ∧ TotalAccuracy< 10∧ TotalCost< 30, as follows:

Satis f ies(ψovm+ϕ ,TotalAccuracy< 10∧TotalCost< 30)⇔

|sol(ψovm+ϕ ∧TotalAccuracy< 10∧TotalCost< 30)|> 0

Additionally, taking into account the needs of the stakeholders, the engineers can verify
whether some partial configuration (i.e., a set of variants)satisfies the variability expressed
by the OVM+ϕ and a quality condition, as well. Therefore, if necessary, the engineer can try
to achieve the required configuration by relaxing or removing relationships in the variability
model.

A partial configuration is of the form{Se,Re}, whereSe is the set of variants to be
selected, andReis the set of variants to be removed from the configuration, such as∀ vi ∈
Se→ vi = 1 and∀ vi ∈ Re→ vi = 0. For example, the RFW engineer wants to verify if it
is possible to derive a product by combining the most powerful sensor, the GPS positioning

25

system, and the medium-class car. Thus, this partial configuration is expressed by the set
{{V53:GPS, V52:High, V1:Medium-class car}{}}. Therefore, the OVM+ϕ satisfies the
engineers quality condition and simultaneously offer the desired partial configuration if and
only if there is at least one solution toψovm+ϕ ∧ TotalAccuracy< 10∧ TotalCost< 30∧
{V53:GPS, V52:High, V1:Medium-class car}{}, as shown in the following:

Satis f ies(ψovm+ϕ ,TotalAccuracy< 10∧TotalCost< 30,

{{V53 :GPS,V52 :High,V1 : Medium−classcar}{}})⇔

|sol(ψovm+ϕ ∧TotalAccuracy< 10∧TotalCost< 30)∧

({{V53 :GPS,V52 :High,V1 : Medium−classcar}{}})|> 0

6.2 Optimal product

We refer to optimal product as the product that satisfies OVM+ϕ, and also minimises or
maximises a given objective function. When relating quality information to OVM we are
able to ask for an optimal product, since the objective function takes into account values of
attributes. The product line engineer may want to verify, for example, which product of the
set of products consumes less memory, or even to find the product with the lowest devel-
opment cost. Therefore, finding the optimal solution, as opposed to any possible solution,
would be helpful for making quality-aware decisions. Hence, to find the optimal solution,
we can associate an objective function with the CSP. Then, the solver has to find solutions
that maximise or minimise the specified objective function that satisfies all the constraints.
A possible objective function would beO = TotalCost, such that the sought solution is
rendered by minimisingO, as follows:

Cheapest product(s) = min(CSPovm+q,TotalCost)

6.2.1 Optimal product with quality condition

The engineer of a product line may want to verify which is the optimal product that satis-
fies some quality condition and a desired partial configuration. For example, which is the
cheapest product that offersTotalAccuracy< 10 ∧ TotalCost< 30 and has the variants
V53:GPS, V52:High, andV1:Medium-class car? To find this optimal solution, we first fil-
ter the model by adding a quality condition (Φ) and a partial configuration (PC), which
were introduced in Section 6.1. Afterwards, we define the objective function. In this case,
the objective function is the global attributeTotalCost, which has been defined as follows
(see Table 4 for a complete definition):

k

∑
j=1

vpj .Cost

Finally, we define that the optimal products (Popt) minimise theTotalCost, as shown in
the following:

26

Φ = TotalAccuracy< 10∧TotalCost< 30

PC= {{V53 :GPS,V52 :High,V1 : Medium−classcar}{}}

f ilter =CSPovm+q∧Φ ∧PC

O= TotalCost

Popt = min(f ilter,O)

6.2.2 Most representative product

The optimization operation can be used to find the most representative product(s) of a prod-
uct line, which could be used to support evaluation strategies. Assessing all possible products
of the product line is impracticable due to the usually very large number of products in a
product line. Therefore, strategies to decide which products should be checked are needed.

There may be different ways of implementing theMost Representative Products (MRP)
operation. In this article, we consider the MRP those that have variants involved in a larger
number of products, however there are other possibilities (e.g., the most expensive ones or
those that have the largest number of variants). Therefore,the MRP operation is defined
as the product(s) of the software product line that maximise(s) the commonality degree.
The commonality degree of a product is determined by the sum of the commonality of its
variants and variation points. This commonality represents the percentage of products where
the variable element appears, e.g., if there are 10 possibleproducts and a variantv appears
in 5 products, the commonality ofv is 50%. After the most representative product has been
found, any evaluation technique employed in single-systems can be applied to evaluate its
quality. This operation is defined as follows:

Operation 4 (Most Representative Products (MRP)). Let ovm+q be an OVM+ϕ specifica-
tion and v∈ Vovm+ϕ . Commonality Degree of v is the percentage of products (solutions) in
which v is included. O is the summation of commonality degreeof variants, and MRP is the
product(s) that maximise(s) O.

CommonalityDegree(v) =
|sol(ψovm+q∧v)|

|sol(ψovm+q)|

O=
k

∑
i=1

CommonalityDegree(vi),where k= |Vovm+q|

MRP(ψovm+ϕ) = max(ψovm+ϕ ,O)

Note that, the MRP operation is defined based on an optimisation function represented
by O. This function can be defined according to the user needs and is is quality-aware. For
example,O could be defined as thesumof the attributesCost and therefore MRP would
return the most expensive product(s).

7 Implementing the approach

7.1 FaMa-OVM

We have developed FaMa-OVM, which is a prototype tool to implement our approach.
FaMa-OVM receives as input an OVM+ϕ specification and provides support to quality-
aware analysis process. It allows detecting anomalies in anOVM+ϕ specification, as well

27

Fig. 17 FaMa-OVM, an extension of FaMa-FW

as verifying quality conditions, optimal products, and themost representative product(s).
The tool was implemented based on FaMa-Framework (FaMa-FW)(Trinidad et al, 2008b),
which is an open source Java framework designed to facilitate the development of analysis
tools for diverse variability modelling languages. FaMa-FW provides a number of exten-
sion points to plug in new components, such as metamodels, readers/writers and reasoners.
Figure 17 shows an overview of FaMa-OVM components. The darkcomponents are the
extensions of the original framework. In the following, we report on those components we
have implemented:

TheOVM+ϕ metamodelimplements the description of the different variable elements,
and the rules that constraint the combination of these elements. Furthermore, it describes
the attributes and their relationship with variable elements, as well as the constraints on
attributes.

TheOVM+ϕ readerimplements a reader to an OVM+ϕ textual format, which we have
defined for representing an OVM+ϕ specification. Figure 18 shows a single textual for-
mat for the examples in Figures 12 and 13. This textual formatconsists of four main parts,
namely:Relationships, Attributes, Global AttributesandConstraints. Relationshipsspeci-
fies the variability dependencies between variation pointsand variants.Attributesspecifies
basic and derived attributes.Global Attributesspecifies global attributes.Constraintsspeci-
fies excludes and requires relationships, and quality conditions.

Attributes are defined as follows:

< name> : < domain>,< value>,< nullValue>;

The terms are separated by commas, and lines are finished withsemicolon. When the
value of an attribute is a function, a semicolon after< value> is used.

TheOVM+Q reasonerimplements the solver by using Choco (Laburthe et al, accessed
November 2010). A CSP solver was used because it offers the possibility to work with nu-
merical values, such as integer, which allows dealing with attributes, enabling it to maximise
or minimise values.

28

1

2 %Relationships

3 VP12PositioningSystem : [1,2]{ V53GPS V54Galileo };

4 VP13Antenna : [1,1]{ V55Small V56Medium V57Big };

5 VP11SensorPower : [1,1]{ V50Low V51Medium V52High };

6 [VP10SignsGivingOrders] : [V41NoOvertaking] [V44EndOfProhibitions];

7

8 %Attributes

9 V53GPS.Accuracy: Integer [1 to 10], 8, INF;

10 V54Galileo.Accuracy: Integer [1 to 10], 4, INF;

11 VP12PositioningSystem .Accuracy: Integer [1 to 10], min(V53GPS.

Accuracy ,V54Galileo.Accuracy);,INF;

12

13 V55Small.AccuracyFactor: Integer [1 to 4], 4, MINF;

14 V56Medium.AccuracyFactor: Integer [1 to 4], 3, MINF;

15 V57Big.AccuracyFactor: Integer [1 to 4], 1, MINF;

16 VP13Antenna.AccuracyFactor: Integer [1 to 4], max(V55Small.

AccuracyFactor , V56Medium.AccuracyFactor ,V57Big.AccuracyFactor)

;,MINF;

17

18 V50Low.Range: Integer [20 to 30], 20, MINF;

19 V51Medium.Range: Integer [45 to 60], 45, MINF;

20 V52High.Range: Integer [70 to 100], 70, MINF;

21 VP11SensorPower .Range: Integer [1 to 100], max(V50Low.Range ,

V51Medium.Range ,V52High.Range);,MINF;

22

23 %GlobalAttributes

24 TotalAccuracy : Integer [1 to 40], VP12PositioningSystem .Accuracy *

VP13Antenna.AccuracyFactor;, 0;

25

26 %Constraints

27 V53GPS EXCLUDES V55Small;

28 V41NoOvertaking IMPLIES VP11SensorPower .Range >= 50;

29 V44EndOfProhibitions IMPLIES VP11SensorPower .Range >= 25;

Fig. 18 FaMa-OVM textual format

As we have used Choco solver, all variables in the CSP must belong to a finite domain,
which implies that attributes must have a finite domain. Due to this limitation, functions
can only involve integer values. Consequently, we were unable to use real numbers as we
intended. Subsequently, real numbers were mapped to integers. The values of the attributes
V55Small.AccuracyFactor, V56Medium.AccuracyFactor, V57Big.AccuracyFactorwere
mapped from [1.5,1,0.25] to [4,3,1], respectively.

7.2 Analysis results

In this section, we present the analysis results we have obtained with FaMa-OVM. Our tool
provides support to quality-aware analysis of OVM+ϕ. It is worth mentioning that we have
no intention of providing an industrial tool support for such quality-aware analysis, but offer
a proof of concepts of our approach.

The analysis of variability models with attributes is a complex problem. When spec-
ifying quality attributes we have defined a certain domain for them. The domain sets the
limits of the attribute values. We address the analysis problem as a CSP, then the higher

29

RFW model†± Excerpt of RFW ‡ ∓

D
et

ec
ta

no
m

al
ie

s

Void False False

Dead

V38Bend

None

V39Traffic queues
V45Yield
V50Low
V51Medium
V55Small
V56Medium

False Optional

VP7Other signs

None

VP8Prohibition signs
VP9Warning signs
VP10Signs given orders
V41No overtaking
V57Big

S
at

is
fia

bi
lit

y

Satisfies(QC) False True

Satisfies(QC+PC) False True

† QC= TotalAccuracy< 10∧TotalCosts< 30
‡ QC= TotalAccuracy< 10
± PC= {{V53 :GPS,V52 :High,V1 : Medium−ClassCar},{}}
∓ PC= {{V53 :GPS,V52 :High,{}}

Table 7 Results for some of the analysis operations

the range of the domain is, the more complex the problem becomes. In our implementa-
tion, when mapping the RFW example to a CSP, we have replaced the domain range of
attributes as much as possible in order to reduce the problemcomplexity. For example, in
the case ofV11.Latency, we have replaced the rangeInteger[200..800]by [400], and in the
case ofVP4Behavior at warning signs.Latency, we have replacedInteger[200..800]
by [350,400,500]. An effort was made to preserve consistency amongst the assigned values.

We have employed FaMa-OVM to execute all the operations defined in this article. We
have analysed two models:(i) the RFW model, which represents the RFW product line
with all attributes and domain constraints that were definedthrough this article, and(ii) the
Excerpt of RFWmodel, which is depicted in Figure 8. The textual OVM for the RFW model
can be found in the complementary material provided at the end of this article.

We were able to find solutions for five operations when appliedto both models, as can
be seen in Table 7. We have verified that none of the models is void, but other anomalies
where detected. The excerpt model does not have any anomaly,however the RFW model has
seven dead elements and six false optional. These anomalieswere caused by the wrong use
of constraints by the product line engineer. We were able to determine that the constraints
that involvesTotalAccuracy<= 10 are causing some of the dead elements as well as the
false optional.

Furthermore, we were able to verify that the RFW product linedoes not satisfy the
quality conditionTotalAcurancy< 10∧ TotalCost< 30. When we have relaxed this quality
condition, by changing values toTotalAccuracy< 30∧ TotalCost<= 50, we have found
that there are products which satisfy the relaxed quality condition. As can be seen in Table 7,
we have also analysed the excerpt model and seen that it satisfies another quality condition,
namelyTotalAcurancy< 10. The number of products found in the excerpt model when
no quality conditions were defined is 70, but when analysing it using the quality condition
TotalAcurancy< 10, this number was reduced to 30.

30

In addition, we have analysed whether the RFW product line satisfies the quality con-
dition TotalAcurancy< 10 ∧ TotalCost< 30 associated with the partial configuration
{{V53GPS,V52High,V1Medium−ClassCar},{}}. As shown in Table 7, we have found
that there are no products which haveV53GPS, V52High, andV1Medium-ClassCar, and sat-
isfy such quality condition. In the case of the excerpt model, we have verified that there are
products which haveV53GPS andV52High, and satisfy the quality conditionTotalAcurancy<
10. When we have associated the partial configuration with the quality condition and verified
satisfiability, the number of products found in the excerpt model was reduced to 10.

There are operations that need to compute all possible solutions beforehand to be able
to find a solution, such as the optimal product and the MRP. Therefore the problem to be
solved is more complex. We have observed that for the RFW model these two operations
have taken much more time. The Choco solver was not able to findthe most representative
and the optimal products in a reasonable time; however, it found a solution to these two
operations when analysing the excerpt model. In this model we were able to find the most
accurate products. For this purpose we have defined that the optimal products minimise the
TotalAccuracyglobal attribute. Thus, we have found that 20 products are able to provide the
minimum accuracy, which is 4. In the following, we present the 20 most accurate products.

Optimal product 1 = {VP12PositioningSystem,V54Galileo,VP13Antenna,V57Big,

VP11SensorPower,V52High}

Optimal product 2 = {VP12PositioningSystem,V54Galileo,VP13Antenna,V57Big,

VP11SensorPower,V52High,VP10SignsGivingOrders}

Optimal product 3 = {VP12PositioningSystem,V54Galileo,VP13Antenna,V57Big,

VP11SensorPower,V52High,VP10SignsGivingOrders,

V44EndOfProhibitions}

Optimal product 4 = {VP12PositioningSystem,V54Galileo,VP13Antenna,V57Big,

VP11SensorPower,V52High,VP10SignsGivingOrders,

V41NoOvertaking}

Optimal product 5 = {VP12PositioningSystem,V54Galileo,VP13Antenna,V57Big,

VP11SensorPower,V52High,VP10SignsGivingOrders,

V41NoOvertaking,V44EndOfProhibitions}

Optimal product 6 = {VP12PositioningSystem,V54Galileo,VP13Antenna,V57Big,

VP11SensorPower,V51Medium}

Optimal product 7 = {VP12PositioningSystem,V54Galileo,VP13Antenna,V57Big,

VP11SensorPower,V51Medium,VP10SignsGivingOrders}

Optimal product 8 = {VP12PositioningSystem,V54Galileo,VP13Antenna,V57Big,

VP11SensorPower,V51Medium,VP10SignsGivingOrders,

V44EndOfProhibitions}

Optimal product 9 = {VP12PositioningSystem,V54Galileo,VP13Antenna,V57Big,

VP11SensorPower,V50Low}

Optimal product 10 = {VP12PositioningSystem,V54Galileo,VP13Antenna,V57Big,

VP11SensorPower,V50Low,VP10SignsGivingOrders}

Optimal product 11 = {VP12PositioningSystem,V53GPS,V54Galileo,VP13Antenna,

V57Big,VP11SensorPower,V52High}

Optimal product 12 = {VP12PositioningSystem,V53GPS,V54Galileo,VP13Antenna,

V57Big,VP11SensorPower,V52High,VP10SignsGivingOrders}

31

Optimal product 13 = {VP12PositioningSystem,V53GPS,V54Galileo,VP13Antenna,

V57Big,VP11SensorPower,V52High,VP10SignsGivingOrders,

V44EndOfProhibitions}

Optimal product 14 = {VP12PositioningSystem,V53GPS,V54Galileo,VP13Antenna,

V57Big,VP11SensorPower,V52High,VP10SignsGivingOrders,

V41NoOvertaking}

Optimal product 15 = {VP12PositioningSystem,V53GPS,V54Galileo,VP13Antenna,

V57Big,VP11SensorPower,V52High,VP10SignsGivingOrders,

V41NoOvertaking,V44EndOfProhibitions}

Optimal product 16 = {VP12PositioningSystem,V53GPS,V54Galileo,VP13Antenna,

V57Big,VP11SensorPower,V51Medium}

Optimal product 17 = {VP12PositioningSystem,V53GPS,V54Galileo,VP13Antenna,

V57Big,VP11SensorPower,V51Medium,VP10SignsGivingOrders}

Optimal product 18 = {VP12PositioningSystem,V53GPS,V54Galileo,VP13Antenna,

V57Big,VP11SensorPower,V51Medium,VP10SignsGivingOrders,

V44EndOfProhibitions}

Optimal product 19 = {VP12PositioningSystem,V53GPS,V54Galileo,VP13Antenna,

V57Big,VP11SensorPower,V50Low}

Optimal product 20 = {VP12PositioningSystem,V53GPS,V54Galileo,VP13Antenna,

V57Big,VP11SensorPower,V50Low,VP10SignsGivingOrders}

Furthermore, we have analysed the excerpt model by executing the optimal operation
associated with the quality conditionTotalAcurancy< 10 and the partial configuration
{{V53GPS,V52High},{}}, and still usingTotalAccuracyas the objective function. In this
case, five products were found as the most accurate products,namely:

Optimal product 1 = {VP12PositioningSystem,V53GPS,V54Galileo,VP13Antenna,V57Big,

VP11SensorPower,V52High}

Optimal product 2 = {VP12PositioningSystem,V53GPS,V54Galileo,VP13Antenna,V57Big,

VP11SensorPower,V52High,VP10SignsGivingOrders}

Optimal product 3 = {VP12PositioningSystem,V53GPS,V54Galileo,VP13Antenna,V57Big,

VP11SensorPower, V52High,VP10SignsGivingOrders,

V44EndOfProhibitions}

Optimal product 4 = {VP12PositioningSystem,V53GPS,V54Galileo,VP13Antenna,V57Big,

VP11SensorPower,V52High,VP10SignsGivingOrders,V41NoOvertaking}

Optimal product 5 = {VP12PositioningSystem,V53GPS,V54Galileo,VP13Antenna,V57Big,

VP11SensorPower,V52High,VP10SignsGivingOrders,V41NoOvertaking,

V44EndOfProhibitions}

In addition, we present the two most representative products we have obtained with our
tool.

Most representative product 1 = {VP12PositioningSystem,V53GPS,V54Galileo,

VP13Antenna,V56Medium,VP11SensorPower,

V52High,VP10SignsGivingOrders,

V41NoOvertaking,V44EndOfProhibitions}

32

Most representative product 2 = {VP12PositioningSystem,V53GPS,V54Galileo,

VP13Antenna,V57Big,VP11SensorPower,

V52High,VP10SignsGivingOrders,

V41NoOvertaking,V44EndOfProhibitions}

We ran the experiments on a computer that is equipped with a Dual core AMD Opteron
1218 processor running at 2.6GHz, 2GB of RAM, Ubuntu 10.10 with Kernel 2.6.35.28, and
the 1.6.0 version of the Java Runtime Environment.

8 Related work

A number of research efforts have been made to capture quality attributes and their rela-
tionship with functional features (Montagud and Abrahão, 2009). The addition of quality
information to variability models has mostly been proposedfor feature model approaches,
however, in the context of OVM, it has not been explored in theliterature before. The re-
lationship between feature models and some additional information was already suggested
by (Kang et al, 1990) in the seminal feature model proposal called FODA. In this work,
the authors contemplate the addition of feature attributeswith quantified values. They also
introduce the need to define relationships between featuresand attributes. Later, (Kang et al,
1998) make an explicit reference to non-functional features, which they define as a kind of
feature that characterises functional features. Other authors have also proposed the exten-
sion of feature models with so-called feature attributes (Batory, 2005; Batory et al, 2006;
Benavides et al, 2005; Czarnecki et al, 2005). Feature models and OVMs differ in the way
they relate to quality information. Feature models can be directly annotated with features,
whereas in OVM, the quality information must be in a separatemodel. As OVM documents
variability realised in the base models and this variability is orthogonal to all base models,
it cannot be annotated with attributes.

There are several proposals providing automated analysis of basic or cardinality-based
feature models (Benavides et al, 2010). Several analysis operations on feature models and
also automated support for them were proposed. These approaches can be classified in four
different groups, according to the logic paradigm or methodused to provide automated sup-
port: propositional logic, constraint programming, description logic, and ad-hoc algorithms.
Most of the approaches that deal with quality information propose the use of constraint pro-
gramming for automating, since it allows dealing with integer variables. However, feature
models extended with attributes, where numerical values are included, have not received
much attention (Benavides et al, 2010).

Benavides et al (2005) proposeextended feature modelsand the automated analysis of
such models by using CSP. Although in this approach the authors provide a way to add at-
tributes to features, they do not provide much detail about the values of the attributes, as
acknowledged in Benavides et al (2010). In this work they only present a simple and high-
level example were they illustrate a possible mapping from feature attributes to CSP. The
values of the attributes are ranges and the only function used to calculate derived attributes
is theaddition. There is no global attribute and relationships between attributes are hier-
archically organised in the feature tree, in other words, the relationship between attributes
exists only between a parent and a child, and they do not provide support to constraint on
attributes. In addition, the authors propose a number of analysis operations on the extended
feature model, however, they do not provide quality-aware analysis.

Karataş et al (2010) propose a quality language to express extended feature model. They
address feature-attribute and attribute-attribute constraints. In addition, they provide a map-

33

ping from an extended feature model to a CSP. We were inspiredby their ideas to define
a quality information language. It is to note that is would beeasy to introduce their results
in our proposal. Although they offer a detailed quality language, they neither cover derived
and nor global attributes. In addition, functions as valuesfor the attributes are not allowed.
Furthermore, the proposed mapping is different from ours. In their proposal, they also do
not have null values for the attributes, so, to map each constraint into a CSP, they need to
add a constraint indicating that the features involved in the constraint must be selected. In
other words, in their approach, the value of an attribute is relevant to a constraint only if the
feature it belongs to is included in the product.

White et al (2009) present a method called Filtered Cartesian Flattening to solve the
problem of optimally selecting a set of features that simultaneously satisfy a number of re-
source constraints. They apply several existing algorithms to this problem, which perform
much faster and offer an approximate solution. We consider this work complementary to
ours, and their research results could be applied to our problem of finding an optimal prod-
uct.

Other authors Tun et al (2009); Bagheri et al (2010) have looked at more qualitative
means of evaluating quality constraints based on goal-oriented analysis. In (Tun et al, 2009),
the authors separate feature descriptions into feature models relating to the requirements, the
problem world context, and the specifications. Once requirements are selected for a desired
product, one or more products that satisfy the requirementsand the quantitative quality con-
straints are generated. This article resembles our research regarding the analysis of quality
information in variability models. They use quality attributes and quality constraints to ex-
press technically known properties of the system. However,both approaches differ with
regard to the way, quality attributes are defined. In contrast to our approach, they define
the value of derived attributes as a hierarchical function,which means that the value of the
attribute of a parent feature is calculated as a function of the child feature’s values. This
hierarchy limits the relationship between attributes. In addition, they provide a way to con-
figure, from a feature model, solutions that satisfy qualityrequirements as well as quality
constraints. In our work, on the other hand, we propose a number of quality-aware analysis
operations to analyse OVM. Bagheri et al (2010) take into consideration the stakeholders’
desired quality attributes (calledsoft constraints) during a feature model configuration, and
use a fuzzy propositional language for the analysis. They provide an interactive feature
model configuration process, where they annotate features with high-level abstract objec-
tives. By using fuzzy form, they express how features contribute to satisfy these objectives.
This work focuses on related feature models with strategic objective of the stakeholders to
find the solution that best fits stakeholders’ desire.

There is also research that is based on other variability model techniques. Sinnema et al
(2004) propose COVAMOF, which is a variability modelling framework for modelling vari-
abilities and constraints on quality properties. In COVAMOF quality attributes are expressed
as dependencies related to variation points. These dependencies have, among other things,
a function that determines their values, depending on the selected variants, and a constraint
on these values. The value of the dependencies can representformal or informal knowledge.
The former is represented using algebraic expressions, andthe latter can contain or refer
to documented knowledge (e.g., HTML documents). Dhungana et al (2010) propose the
decision-oriented variability modelling language DOPLERVML as part of the DOPLER tool
suite (Dhungana et al, 2007). In this language, the decisions represent the variation points
in a variability model and the assets describe the reusable artefacts and their dependencies.
In contrast with our proposal, in COVAMOF attributes are only related to variation points,
but not with variants, thus direct impact from one variant toanother cannot be specified.

34

In DOPLERVML attributes are related to assets and not to the variability model, besides
constraints on attributes are not considered by the authors. Furthermore, both proposals do
not provide automated analysis.

To the best of our knowledge, only Metzger et al (2007) have partially explored the
automated analysis of OVM. As part of their work, they propose an indirect way to au-
tomatically analyse OVMs. First, they transform an OVM intoa Varied Feature Diagram
(VFD+), which is a formal “back-end” language used to define semantics and automating
analysis, and in doing so, they reuse the semantics of analysis operations on VFD+. To carry
out this transformation, they provide an ad–hoc algorithm.Second, they map the VFD+ to
a propositional formula and then automatically analyse theOVM by means of the solver
SAT4j (Berre and Parrain, accessed November 2010). In contrast to our proposal, they do
not address quality information.

9 Discussions and conclusions

In this article, we have presented an approach for quality-aware analysis in software product
lines using OVM to represent variability. To provide a method for quality-aware analysis,
we follow three steps. First, we have presented a way to associate quality information with
OVM (referred to as OVM+ϕ). Second, we have proposed a number of analysis opera-
tions to verify OVM+ϕ. Third, we have presented a mapping from OVM+ϕ to a constraint
satisfaction problem and use Choco, an off-the-shelf constraint programming solver, to au-
tomatically perform the analysis tasks. To illustrate the feasibility of our approach, we have
used a product line example from the automotive domain, which was created in a national
project by a leading car company. Besides, we have introduced FaMa-OVM, which is a pro-
totypical tool developed as a proof of concepts of our approach. We were able to identify
void models, dead and false optional elements, and check whether the product line example
satisfies quality conditions. With FaMa-OVM results, we have determined that the addition
of quality information to the analysis process highly increases the complexity of the prob-
lem when trying to find an optimal solution or the most representative product, as we have
discussed in Section 7.2. We believe that it is important to work in collaboration with other
research areas (e.g., Constraint Programming, Artificial Intelligence), in order to find other
techniques that could better solve this problem.

In our approach we consider 1 : 1 relationships between OVM and configuration model
elements. However, these relationships could be extended to be of 1 :N with only minor
changes. These changes concern the mapping from OVM+ϕ to a CSP. In 1 : 1 relationships,
we can omit the configuration model in the mapping process andthen each relationship
between an OVM element and a quality attribute becomes a variant in the CSP. If 1 :N is
allowed, the configuration model cannot be omitted. Consequently, the mapping is changed
and each relationship involving an OVM element, a configuration model element, and a
quality attribute become a variable in the CSP. For the sake of simplicity we have not ad-
dressed 1 :N relationships, although our approach is theoretically applicable.

In our approach, a quality attribute can be composed of values of other attributes, such
asTotalCostandTotalMemory. However, the compositionality of certain attributes, such as
security, usability, and performance is not obvious and often hard to define. In our approach,
we deal with attributes that are technically known and that can be composed of means of
functions on individual values. In addition, in our proposal, an attribute can be involved in
many functions, yet these functions must allow a common neutral value. For example, if the
neutral value ofGPS.Costis zero, then it cannot be involved simultaneously in an addition

35

and a multiplication operation. Therefore, a limitation ofour approach is that the same
attribute can only be involved in multiple functions when itis possible to find a common
neutral value for these functions.

There may be some cases in which the engineer wants to postpone the decision about the
value to be assigned to an attribute, for example, the attributeCostof a given functionality. In
these cases, it would be helpful if a range and not a specific value could be specified for the
value of the attributes related to variants. The use of ranges would slightly vary our approach,
since we limit attribute values to concrete values or functions, however it would be possible
to extend our proposal to support it. In fact, in our tool, ranges can be specified. One of the
consequences of adding ranges as values for attributes is that the number of products could
be increased and not reduced, as we have mentioned in Section1. For example, it would
be possible to have different products with the same functionalities but different levels for
attributes. In our approach, the products differ only by functionalities.

Regarding our tool, we emphasise that it is based on a framework for the analysis of fea-
ture models, which is a research area that has been explored.We noted that this framework
simplified the development, since we did not have to start from scratch. We have used a CSP
solver to implement the analysis, Choco, to be precise. In a CSP, all variables belong to a fi-
nite domain, which implies that attributes must have a domain. Due to limitations in Choco,
functions can only involve integer values. Consequently, we could not use real numbers as
we intended, and real numbers were mapped to integers.

In this article, we have proposed a technique to support quality-aware analysis in SPLE
with OVM. In this analysis, there can be different users of the different operations with dif-
ferent quality conditions. Therefore, the association between quality conditions and stake-
holders would be determined by the user of the operation. Forinstance, minimising the de-
velopment cost is important to the product provider, whereas accuracy of positioning system
is far more interesting to the product customer.

In our experience, we have observed that although feature models and OVM are similar,
both the specification of quality information in OVM and the implementation of our tool
were not straightforward. This is due to their differences in structure and the way they re-
late to quality information. Furthermore, the addition of quality information to the analysis
process highly increases the complexity of the problem.

The CSP solver we have used is not well prepared to solve such acomplex problem as
the quality-aware analysis. Our proposal provides a way to theoretically solve this problem,
however when implementing FaMa-OVM to provide automated support for our approach,
it was demonstrated that this problem cannot be solved within a reasonable time. Thus, we
consider that it is important to investigate the nature of problems of the automated analysis
of variability models associated with attributes.

Currently the FaMa-OVM textual format is created manually.To facilitate this task, we
are implementing a textual editor using the Xtext framework(Foundation, accessed April
2011). In addition, we are working on the integration of FaMa-OVM with an OVM editor
in order to offer a visual editor from where it is possible to execute quality-aware analysis.
The visual OVM editor is included in the REMiDEMM (Requirements Engineering and
Management in Domain Engineering with Multi-Model Interaction) case tool, which was
presented in (Heuer et al, 2010).

36

Complementary material

The FaMa-OVM tool and the RFW textual format used in our evaluation are available at
http://www.lsi.us.es/~dbc/material/SofQualJ11.

Acknowledgements We would like to thank Silvia Abrah̃ao and Isidro Ramos for their helpful comments in
earlier versions of this article. We also would like to thankJośe Galindo for his work on implementing FaMa-
OVM tool. This work has been partially supported by the European Commission (FEDER) and Spanish
Government under CICYT project SETI (TIN2009-07366), by theAndalusian Government under ISABEL
(TIC-2533) and THEOS (TIC-5906) projects, by Evangelischer Entwicklungsdienst e.V. (EED) and by the
DFG under grant PO 607/2-1 IST-SPL.

References

Bagheri E, Di Noia T, Ragone A, Gasevic D (2010) Configuring software product line fea-
ture models based on stakeholders’ soft and hard requirements. In: Proceedings of the
14th international conference on Software product lines, Springer-Verlag, Berlin, Heidel-
berg, SPLC’10, pp 16–31

Batory D (2005) Feature models, grammars, and propositional formulas. In: 9th Interna-
tional Software Product Line Conference, Springer–Verlag, LNCS, vol 3714, pp 7–20

Batory D, Benavides D, Ruiz-Cortés A (2006) Automated analysis of feature models: Chal-
lenges ahead. Communications of the ACM 49(12):45–47

Benavides D, Trinidad P, Ruiz-Cortés A (2005) Automated reasoning on feature models. In:
17th Int. Conf. Advanced Information Systems Engineering,Springer–Verlag, LNCS, vol
3520, pp 491–503

Benavides D, Segura S, Ruiz-Cortés A (2010) Automated analysis of feature models 20
years later: A literature review. Information Systems 35(6):615 – 636

Berre DL, Parrain A (accessed November 2010) Sat4j solver. http://sat4j.org/
Chen L, Babar MA, Ali N (2009) Variability management in software product lines: A sys-

tematic review. In: 13th Intl. Software Product Line Conference, Carnegie Mellon Uni-
versity - Pittsburgh, PA, USA, pp 81–90

Czarnecki K, Helsen S, Eisenecker U (2005) Formalizing cardinality-based feature models
and their specialization. Software Process: Improvement and Practice 10(1):7–29

Dhungana D, Rabiser R, Grünbacher P, Neumayer T (2007) Integrated tool support for soft-
ware product line engineering. In: 22nd IEEE/ACM International Conference on Auto-
mated Software Engineering, ACM, New York, NY, USA, pp 533–534

Dhungana D, Heymans P, Rabiser R (2010) A formal semantics for decision-oriented vari-
ability modeling with dopler. In: Fourth International Workshop on Variability Modelling
of Software–Intensive Systems, pp 29–35

Felfernig A, Friedrich GE, Jannach D (2000) UML as domain specific language for the con-
struction of Knowledge-Based configuration systems. International Journal of Software
Engineering and Knowledge Engineering (IJSEKE) 10(4):449–469

Finkel R, O’Sullivan B (2011) Reasoning about conditional constraint specification prob-
lems and feature models. Artificial Intelligence for Engineering Design, Analysis and
Manufacturing 25(Special Issue 02):163–174

Foundation E (accessed April 2011) Xtext - language development framework.
http://www.eclipse.org/Xtext/

37

Garcia F, Bertoa M, Calero C, Vallecillo A, Ruiz F, Piattini M, Genero M (2006) Towards a
consistent terminology for software measurement. Information and Software Technology
48(8):631–644

Heuer A, Lauenroth K, M̈uller M, Scheele JN (2010) Towards effective visual modeling of
complex software product lines. In: Proceedings of the 3rd International Workshop on
Visualisation in Software Product Line Engineering (VISPLE) in Proceedings of the 14th
International Software Product Line Conference Volume 2, pp 229–237

Kang K, Cohen S, Hess J, Novak W, Peterson S (1990) Feature–Oriented Domain Anal-
ysis (FODA) Feasibility Study. Tech. Rep. CMU/SEI-90-TR-21, Software Engineering
Institute, Carnegie Mellon University

Kang KC, Kim S, Lee J, Kim K, Shin E, Huh M (1998) FORM: A feature–oriented reuse
method with domain–specific reference architectures. Annals of Software Engineering
5(1):143–168

Karataş A, Ŏguzẗuzün H, Dŏgru A (2010) Mapping extended feature models to constraint
logic programming over finite domains. In: Bosch J, Lee J (eds) Software Product Lines:
Going Beyond, LNCS, vol 6287, Springer Berlin / Heidelberg,pp 286–299

Laburthe F, Jussien N, Rochart G, Cambazard H, Prud’homme C,Malapert A, Menana J
(accessed November 2010) Choco solver. http://choco.emn.fr/

Metzger A, Pohl K (2007) Variability management in softwareproduct line engineering.
In: 29th International Conference on Software Engineering(ICSE Companion), IEEE
Computer Society, pp 186–187

Metzger A, Pohl K, Heymans P, Schobbens P, Saval G (2007) Disambiguating the documen-
tation of variability in software product lines: A separation of concerns, formalization and
automated analysis. In: 15th Intl. Requirements Engineering Conference, pp 243–253

Montagud S, Abrah̃ao S (2009) Gathering current knowledge about quality evaluation in
software product lines. In: SPLC ’09: Proceedings of the 13th International Software
Product Line Conference, Carnegie Mellon University, Pittsburgh, PA, USA, pp 91–100

Pohl K, Böckle G, van der Linden FJ (2005) Software Product Line Engineering: Funda-
tions, Principles and Techniques. Springer–Verlag, Berlin Heidelberg New York

Sinnema M, Deelstra S (2007) Classifying variability modeling techniques. Information &
Software Technology 49(7):717–739

Sinnema M, Deelstra S, Nijhuis J, Bosch J (2004) COVAMOF: A framework for modeling
variability in software product families. In: Third Software Product Line Conference,
Springer –Verlag, LNCS, vol 3154, pp 197–213

Trinidad P, Benavides D, Durn A, Ruiz-Cortés A, Toro M (2008a) Automated error analysis
for the agilization of feature modeling. Journal of Systemsand Software 81(6):883–896

Trinidad P, Benavides D, Ruiz-Cortés A, Segura S, Jimenez A (2008b) Fama framework.
In: 12th Intl. Software Product Line Conference - Tool Demonstrations, IEEE Computer
Society, pp 359 –359

Tsang E (1993) Foundations of Constraint Satisfaction. Academic Press, London and San
Diego

Tun TT, Boucher Q, Classen A, Hubaux A, Heymans P (2009) Relating requirements and
feature configurations: a systematic approach. In: Software Product Lines, 13th Interna-
tional Conference, SPLC 2009, ACM International Conference Proceeding Series, vol
446, pp 201–210

White J, Dougherty B, Schmidt DC (2009) Selecting highly optimal architectural feature
sets with filtered cartesian flattening. Journal of Systems and Software 82(8):1268–1284

38

Appendix A

Table 8 RFW excludes and requires dependencies

Variation Point Variant Type Variation Point Variant

VP1:Type of vehicle requires VP9:Warning signs

VP1:Type of vehicle requires VP10:Signs giving orders

VP1:Type of vehicle requires VP8:Prohibition signs

VP1:Type of vehicle requires VP7:Other signs

V10:Hazardous situation alarm requires V16:Display and sound indication

V15:Show on display excludes V10:Hazardous situation alarm

V9:Sound at warning signs requires V12:Display and sound indication

V9:Sound at warning signs requires V34:Danger

V11:Show warning sign excludes V9:Sound at warning signs

V8:Overspeed warning requires V48:Maximum speed of x km/h end

V8:Overspeed warning requires V19:City limit

V8:Overspeed warning requires V21:Home zone entry

V7:No stopping warning requires V33:No stopping

V7:No stopping warning requires V13:Warn for no stopping sign

V7:No stopping warning excludes V14:No warning

V1:Medium‐class car requires V26:No vehicles

V1:Medium‐class car requires V27:No cars

V1:Medium‐class car requires V31:Do not enter

V1:Medium‐class car requires V41:No overtaking

V1:Medium‐class car requires V5:Switchable

V2:Upper‐class car requires V26:No vehicles

V2:Upper‐class car requires V27:No cars

V2:Upper‐class car requires V31:Do not enter

V2:Upper‐class car requires V41:No overtaking

V2:Upper‐class car requires V6:Durable

V2:Upper‐class car requires V8:Overspeed warning

V3:Small truck (3,5t) requires V26:No vehicles

V3:Small truck (3,5t) requires V27:No cars

V3:Small truck (3,5t) requires V31:Do not enter

V3:Small truck (3,5t) requires V41:No overtaking

V3:Small truck (3,5t) requires V5:Switchable

V4:Big truck (7,5t) requires V29:No vehicles w/ weight > 3,5t

V4:Big truck (7,5t) requires V30:No vehicles over max gross weight g > x

V4:Big truck (7,5t) requires V43:No overtaking vehicles > 3,5t

V4:Big truck (7,5t) requires V41:No overtaking

V4:Big truck (7,5t) requires V6:Durable

V17:Emergency brake requires V10:Hazardous situation alarm

V53:GPS excludes V55:Small

39

VP

VP7:Other
signs

VP

V19:City limit

V

V18:Road w/right
of way start

V

V20:Crossroads

V

V21:Home zone entry

V

V22:Road w/ right
of way end

V

V23:End of city limit

V

V24:Traffic has priority

V

V25:Home zone end

V

VP

VP8:Prohibition
signs

VP

V27: No cars

V

V26:No vehicles

V

V28:No vehicles over
max width > Xm

V

V29:No vehicles
w/ weight > 3,5t

V

V30:No vehicles over max
gross weight g > Xt

V

V31:Do not enter

V

V32:No vehicles over max
height h > Xm

V

V33:No stopping

V

VP

VP9: Warning
signs

VP

V35:Side winds

V

V34:Danger

V

V36:Slippery road

V

V37:Risk of ice

V

V38:Bend

V

V39:Traffic queues

V

VP

VP10:Signs
giving orders

VP

V41:No overtaking

V

V40:Stop and give away

V

V42:No overtaking end

V

V43:No overtaking
vehickes > 3,5 t

V

V44:End of prohibitions

V

V45:Yield

V

V46:Maximum speed
x Km/h

V

V47:One way

V

V48:Maximum speed
of x Km/h end

V

V49:No overtaking
vehicles > 3,5t end

V

VP

VP5:Behaviour
at no stopping signs

1..1

V13:Warn for
no stopping sign V14:No warning

VV

VP

VP6:Behaviour in
hazardous situations

V16:Display and
sound indication

V15:Show on
 display

V17:Emergency
brake

1..1

V V V

VP

VP4:Behaviour
at warning signs

1..1

V11:Show
warning sign

V12:Display and
sound indication

VV

VP

VP3:Confort
functions

V7:No stopping
warning

V8:Overspeed
warning

V9:Sound at
warning signs

V10:Hazardous
situation alarm

V

V V

V

VP

VP1:Type of
vehicle

V1:Medium-class car

1..1

V2:Upper-class car V3:Small truck (3,5t) V4:Big truck (7,5t)

V V V V

VP

VP2:Activation

1..1

V5:Switchable V6:Continuously

VV

VP

VP11:Sensor power

V51:MediumV50:Low V52:High

1..1

V V V

VP

VP12:Positioning
system

1..2

V53:GPS V54:Galileo

VV

VP

VP13: Antenna

V56:MediumV55:Small V57:Big

1..1

V V V

Fig. 19 RFW orthogonal variability model without excludes and requires dependencies

40

1

2 V10Hazardous situation alarm IMPLIES VP11.Range >= 50;

3 V17Emergency brake IMPLIES VP11.Range >= 50;

4 V18Road w/ right of way start IMPLIES VP11.Range >= 25;

5 V19City limit IMPLIES VP11.Range >= 50;

6 V20Crossroads IMPLIES VP11.Range >= 25;

7 V21Home zone entry IMPLIES VP11.Range >= 25;

8 V22Road w/ right of way end IMPLIES VP11.Range >= 10;

9 V23End of city limit IMPLIES VP11.Range >= 10;

10 V24Traffic has priority IMPLIES VP11.Range >= 10;

11 V25Home zone end IMPLIES VP11.Range >= 10;

12 V26No vehicles IMPLIES VP11.Range >= 25;

13 V27No cars IMPLIES VP11.Range >= 25;

14 V28No vehicles over max width $>$ Xm IMPLIES VP11.Range >= 25;

15 V29No vehicles w/ weight $>$ 3.5t IMPLIES VP11.Range >= 25;

16 V30No vehicles over max gross weight g $>$ Xt IMPLIES VP11.Range >=

25;

17 V31Do not enter IMPLIES VP11.Range >= 25;

18 V32No vehicles over max height h $>$ Xm IMPLIES VP11.Range >= 25;

19 V33No stopping IMPLIES VP11.Range >= 10;

20 V34Danger IMPLIES VP11.Range >= 50;

21 V35Side winds IMPLIES VP11.Range >= 50;

22 V36Slippery road IMPLIES VP11.Range >= 50;

23 V37Risk of ice IMPLIES VP11.Range >= 50;

24 V38Bend IMPLIES VP11.Range >= 80;

25 V39Traffic queues IMPLIES VP11.Range >= 80;

26 V40Stop and give way IMPLIES VP11.Range >= 50;

27 V41No overtaking IMPLIES VP11.Range >= 50;

28 V42No overtaking end IMPLIES VP11.Range >= 50;

29 V43No overtaking vehicles $>$ 3.5t IMPLIES VP11.Range >= 50;

30 V44End of prohibitions IMPLIES VP11.Range >= 25;

31 V45Yield IMPLIES VP11.Range >= 80;

32 V46Maximum speed X Km/h IMPLIES VP11.Range >= 50;

33 V47One way IMPLIES VP11.Range >= 25;

34 V48Maximum speed of X Km/h end IMPLIES VP11.Range >= 10;

35 V49No overtaking vehicles $>$3.5t end IMPLIES VP11.Range >= 10;

36 V11Show warning sign IMPLIES TotalAccuracy <= 30;

37 V12Display and sound indication IMPLIES TotalAccuracy <= 30;

38 V13Warn for no stopping sign IMPLIES TotalAccuracy <= 10;

39 V15Show on display IMPLIES TotalAccuracy <= 30;

40 V16Display and sound indication IMPLIES TotalAccuracy <= 30;

41 V17Emergency brake IMPLIES TotalAccuracy <= 10;

42 V18Road w/ right of way start IMPLIES TotalAccuracy <= 30;

43 V19City limit IMPLIES TotalAccuracy <= 30;

44 V20Crossroads IMPLIES TotalAccuracy <= 30;

45 V21Home zone entry IMPLIES TotalAccuracy <= 30;

46 V22Road w/ right of way end IMPLIES TotalAccuracy <= 30;

47 V23End of city limit IMPLIES TotalAccuracy <= 30;

48 V24Traffic has priority IMPLIES TotalAccuracy <= 30;

49 V25Home zone end IMPLIES TotalAccuracy <= 30;

50 V26No vehicles IMPLIES TotalAccuracy <= 10;

51 V27No cars IMPLIES TotalAccuracy <= 10;

52 V28No vehicles over max width $>$ Xm IMPLIES TotalAccuracy <= 10;

53 V29No vehicles w/ weight $>$ 3.5t IMPLIES TotalAccuracy <= 10;

54 V30No vehicles over max gross weight g $>$ Xt IMPLIES TotalAccuracy

<= 10;

55 V31Do not enter IMPLIES TotalAccuracy <= 10;

56 V32No vehicles over max height h $>$ Xm IMPLIES TotalAccuracy <= 10;

57 V33No stopping IMPLIES TotalAccuracy <= 10;

58 V34Danger IMPLIES TotalAccuracy <= 30;

59 V35Side winds IMPLIES TotalAccuracy <= 30;

60 V36Slippery road IMPLIES TotalAccuracy <= 30;

61 V37Risk of ice IMPLIES TotalAccuracy <= 30;

62 V38Bend IMPLIES TotalAccuracy <= 10;

63 V39Traffic queues IMPLIES TotalAccuracy <= 30;

64 V40Stop and give way IMPLIES TotalAccuracy <= 10;

65 V41No overtaking IMPLIES TotalAccuracy <= 30;

66 V42No overtaking end IMPLIES TotalAccuracy <= 30;

67 V43No overtaking vehicles $>$ 3.5t IMPLIES TotalAccuracy <= 30;

68 V44End of prohibitions IMPLIES TotalAccuracy <= 30;

69 V45Yield IMPLIES TotalAccuracy <= 10;

70 V46Maximum speed X Km/h IMPLIES TotalAccuracy <= 30;

71 V48Maximum speed of X Km/h end IMPLIES TotalAccuracy <= 30;

72 V49No overtaking vehicles $>$3.5t IMPLIES TotalAccuracy <= 30;

Fig. 20 RFW domain constraints

